
International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

DOI : 10.5121/ijp2p.2015.6201                                                                                                                        1 

 

 

CONGESTION CONTROL FOR P2P LIVE STREAMING 

 

Nikolaos Efthymiopoulos
1
, Athanasios Christakidis

1
, Maria Efthymiopoulou

1
, 

Loris Corazza
1
, Spyros Denazis

1 

 
1
Department of Electrical and Computer Engineering, University of Patras, Patras, 

Greece 

 

 

ABSTRACT 

 
In recent years, research efforts tried to exploit peer-to-peer (P2P) systems in order to provide Live 

Streaming (LS) and Video-on-Demand (VoD) services. Most of these research efforts focus on the 

development of distributed P2P block schedulers for content exchange among the participating peers and 

on the characteristics of the overlay graph (P2P overlay) that interconnects the set of these peers. 

Currently, researchers try to combine peer-to-peer systems with cloud infrastructures. They developed 

monitoring and control architectures that use resources from the cloud in order to enhance QoS and 

achieve an attractive trade-off between stability and low cost operation. However, there is a lack of 

research effort on the congestion control of these systems and the existing congestion control architectures 

are not suitable for P2P live streaming traffic (small sequential non persistent traffic towards multiple 

network locations). This paper proposes a P2P live streaming traffic aware congestion control protocol 

that: i) is capable to manage sequential traffic heading to multiple network destinations , ii) efficiently 

exploits the available bandwidth, iii) accurately measures the idle peer resources, iv) avoids network 

congestion, and v) is friendly to traditional TCP generated traffic. The proposed P2P congestion control 

has been implemented, tested and evaluated through a series of real experiments powered across the 

BonFIRE infrastructure. 

 

KEYWORDS 

 
Peer to Peer, Live Streaming, Congestion Control 

 

1. INTRODUCTION 

 
Video streaming has become a dominant part of today's internet traffic. As analysed in [7] 

between 2012 and 2013, the highest growth happened on the Internet side in online video with 16 

per cent year-over-year growth. By 2018, digital TV and online video will be the two most highly 

penetrated services, with 86 per cent and 78 per cent respectively. Additionally is considered that 

the market is growing with very good chances of very high penetration of these services to new 

internet users. On the other hand the tremendous number of users with heterogeneous capabilities 

leads even the major streaming service providers (e.g. YouTube) to suffer from high bandwidth 

costs. Peer-to-peer live streaming and video on demand architectures [2],[6],[25] have received a 

lot of research attention in the past few years aiming at achieving a better trade-off between 

bandwidth costs and quality of the transmitted video, while providing scalability and stability of 

these services. In more detail, the major requirements for P2P live streaming systems are: 

Efficiency of the video distribution, as analysed in [1],[2],[3],[14], in terms of upload bandwidth 

utilization of participating peers. The goal here is to minimize the additional bandwidth that is 

contributed by a set of media servers (cloud). Efficiency has a direct impact on the trade-off 

between bandwidth costs and video quality. 



International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

2 

 

Stability of the system, as described in [4],[5],[20],[21],[22],[23],[24], in the presence of dynamic 

conditions. The stability of the system is greatly affected by the dynamic conditions of the 

underlying network. The total P2P overlay bandwidth also changes quite frequently due to peer 

arrival and departures. These conditions have a serious impact in the quality of service (QoS) and 

consequently in the quality of experience (QoE). A stable P2P live steaming system must be able 

to monitor and react to these changes. 

 

Scalability property of such systems is determined by the amount of bandwidth and processing 

overhead that media servers have to contribute as the number of participating peers grows. For 

the design of a scalable system, this overhead has to remain low even in cases that the number of 

participating peers is large. 

 

A P2P overlay is a graph in which each node represents a user, and each edge that connects two 

nodes represents the exchange of video blocks between users. Several methods [2],[14],[3] have 

been proposed that try to optimize this graph in order to achieve stability and maximum 

exploitation of the available bandwidth of the participating peers while simultaneously they 

exploit network locality [2],[27]. These works assume the a priori knowledge of the dynamic 

upload bandwidth even in cases where peers fail to fully exploiting it. Under this observation 

there is a need for a P2P congestion control architecture which will be able to provide this 

information to P2P overlay optimization architectures in order to make their implementation in 

real P2P streaming systems feasible. 

 

Currently, monitoring and control systems have been proposed [5],[8],[1],[29] that try, in a 

scalable and dynamic fashion, to monitor the available resources of a P2P overlay in order to 

calculate the deficit or surplus of its aggregate upload bandwidth. In this way, in case of deficit, 

they allocate dynamically additional upload bandwidth or, in case of surplus, they exploit it for 

other purposes. Nevertheless, these attempts, and other that explore the dynamics of P2P live 

streaming [26],[28] are based on the dynamic and accurate estimation of the idle upload 

bandwidth of each participating peer and its upload bandwidth capacity that a successful P2P 

congestion control architecture will offer. 

 

Although there is a vast amount of literature, which analysed in detail in [9], on congestion 

control for point-to-point bulk data transfers, there are only very few works regarding P2P 

congestion control. An approach that concerns P2P traffic is LEBDAT [13] but it is suitable for a 

P2P file sharing system where: i) traffic is persistent, ii) traffic consisted from much larger blocks 

than those used in P2P LS and VoD , iii)there are no delay constraints in the application. Only a 

recent approach that described in [12] proposes a congestion control algorithm for P2P live 

streaming. Despite its good features it assumes persistent traffic and transmits in parallel the 

various video blocks to multiple receivers. In this way resources are wasted in case of no 

persistent traffic and the latency for the reception of a block is highly increased. Thus it doesn’t 

achieve low delay which is an essential requirement in P2P live streaming systems. 

 

Motivated by the lack of critical mass of research in the area of congestion control for P2P LS 

and VoD systems and the serious issues raised above, we have designed, implemented and 

evaluated in a real environment a congestion control P2P architecture that:  

 

• Is suitable for highly dynamic traffic characterized by sequential transmissions to 

different network locations (P2P video blocks) 

• It efficiently utilizes the upload bandwidth of participating peers 

• It remains stable and robust in the eventuality of changes in peer’s upload bandwidth, 

time-varying delays and dynamic underlying network conditions 



International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

3 

 

• It accurately and dynamically measures the available upload bandwidth capacity of each 

peer and avoids buffer overloading of the participating network devices in the underlying 

network (BufferBloat problem) 

 

The reminder of this paper is structured as follows: Section 2 presents our P2P live streaming 

system’s architecture. Section 3 provides the problem setting. In Section 4 is analysed the 

proposed P2P congestion control architecture. Section 5 presents the P2P congestion control 

strategy. Section 6 describes our evaluation test-bed and evaluates the proposed P2P congestion 

control architecture. Finally in Section 7 we conclude and highlight our future steps. 

 

2. SYSTEM ARCHITECTURE 

 
Our P2P live video streaming system (Fig. 1) consists of a media server in a cloud, (noted by S) 

and a set of peers (noted by N). The cloud is responsible for: i) the initial diffusion of the video to 

a small subset of nodes among participating peers, ii) the tracking of the network addresses of 

participating peers in order to assist the construction and management of the P2P overlay, iii) the 

dynamic and scalable monitor of the resources of participating peers, iv) the dynamic allocation 

and release of auxiliary bandwidth. 

 

The video stream that the system disseminates is divided into video blocks. In order to allow 

peers to exchange video blocks, each peer maintains network connections with a small subset of 

other peers which will be noted as neighbours. The sets of these connections change dynamically 

and form a dynamic graph called the P2P overlay. In our previous works [1],[2],[3] we present a 

graph topology and P2P overlay management (dynamic and distributed optimization) algorithms 

that each peer periodically executes which result in the dynamic reconfiguration of the P2P 

overlay. We use distributed optimization theory in order to dynamically ensure in a distributed 

(scalable) and dynamic fashion that: i) peers have connections proportional with their upload 

bandwidth, ii) peers have connections with other peers close to the underlying network, iii) our 

P2P overlay is adaptable to underlying network changes and peer arrivals and departures. This 

allows us to efficiently exploit all the available bandwidth resources even if they are highly 

heterogeneous. 

 

The dynamic output of the P2P overlay management algorithms that run in each participating 

peer is a neighbour list that is passed in the Distributed Block Transmission Scheduler. 

 

 

Figure 1. Proposed P2P live streaming system architecture 

 

After that, video block exchanges are coordinated by the Distributed Media-Block Transmission 

Scheduler (DBTS) which is comprised by a set of algorithms executed by every peer who 



International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

4 

 

dynamically communicates with its neighbours. The major objective of DBTS is to ensure the 

timely delivery of every video block to every peer by exploiting the upload bandwidth of 

participating peers and the additional bandwidth resources that media servers (cloud) may 

contribute. Each peer periodically sends to its neighbours control messages which encapsulate 

information about video blocks that it owns. Thus, periodically each peer (through a matching 

algorithm) is able to request from each one of its neighbours a different video block or nothing if 

there is no video block to request. In order to perform the requests a matching algorithm is 

executed periodically by each peer and its objective is to request as many unique blocks as 

possible. These requests are served sequentially by each peer who prioritizes them by selecting 

each time its most deprived neighbour to serve its block request. As most deprived is defined the 

neighbour that has the smallest total number of blocks compared to the video blocks that sender 

peer owns. Our proposed DBTS is analysed in detail in our previous works [1],[2],[3]. DBTS 

sends the video blocks that have to be sent in the P2P congestion control component and the 

ordered stream with the blocks that it receives to the video player. 

 

Our proposed P2P overlay and our DBTS enhance our P2P live streaming system with two 

properties. The first property (Property 1) is that if idle bandwidth exists it is derived from 

bandwidth surplus in the system and not from the inefficiency of the system to exploit it. In other 

words, we guarantee that the presence of idle bandwidth implies (testifies) the complete stream 

delivery. The second property is that the percentages of the idle resources among participating 

peers are almost equal (Property 2). We highlight here that in case of heterogeneous peer upload 

bandwidth various peers send with various bitrates (analog with their upload bandwidth capacity) 

but the percentage of their bandwidth utilization, and so the percentage of their idle time is very 

similar. 

 

By exploiting the aforementioned properties we developed two components responsible for the 

monitoring of the total upload bandwidth of the P2P overlay and the control of the auxiliary 

upload bandwidth and the playback rate in order to have a stable P2P live streaming system. 

These are background work and we describe them in detail in [18] and [19]. 

 

We note the first as Scalable Bandwidth Monitoring (SBM) in which a scalable gossip protocol 

that is connected with a centralized component in the cloud and : i) aggregates the monitoring 

information from DBTS and P2P congestion control, ii) forms all the required metrics that QoS 

enabler needs. 

 

QoS Enabler, which is the second one, has to calculate dynamically the amount of total system's 

upload bandwidth surplus or deficit towards the control of the idle bandwidth resources. In order 

to achieve this it: i) add or remove dynamically the amount of upload bandwidth that is needed as 

this is determined by the bandwidth allocation control strategy and/or ii) adapt the playback rate 

to the available resources. 

 

Our P2P congestion control is able to manage sequential transmissions of video blocks to 

multiple locations that DBTS sends to it and to provide to the Scalable Bandwidth Monitoring 

and to the P2P overlay the dynamic estimation of: i) the upload bandwidth capacity, ii) the idle 

bandwidth resources of each participating peer with the way that will be requested from the latter. 

In the rest of this work we describe this component in detail. 

 

3. PROBLEM STATEMENT 

 
Without loss of generality, we assume that the source of congestion problems lies with the 

uploading capabilities of the peers rather than the downloading. Likewise, the problem will be 



International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

5 

 

aggravated by the incoming edge of the network (usually home gateways or DSLAM) as they 

may act as the primary bottleneck for any of the outgoing flows including P2P flows. 

 

Accordingly, the goal of the congestion control method is to control the queue size of this 

bottleneck node by controlling the number of network packets that should be injected to the 

network. From the viewpoint of the P2P LS or VoD, this queue should always be non-empty, in 

order to fully utilize the available bandwidth provided of course that the application has the 

necessary blocks to transmit. In addition, its size shouldn’t increase over time as this would lead 

to congestion problems and packet loss. The control of this queue is carried out by observing the 

latencies between the source sender peer and its various destinations. 

 

In more detail as it is depicted in Fig. 2 each peer by acting as a sender sends sequentially P2P 

blocks (B1-B5). Each one of them is composed from a set of network packets and is heading to a 

different receiver peer that belongs in a set of receiver peers (Receiver Peer 1,2 and 3 in Fig. 2). 

The delay between the sender and each receiver peer i is different. Each receiver peer i sends 

acknowledgement packets. In Fig. 2 delays and acknowledgments are noted as d(i) and ack(i) 

respectively. Furthermore between the sender and each of the receivers there is a bottleneck 

network point which forwards packets with a dynamic bitrate that we note here as h(t). The 

objective of the proposed control strategy is to estimate h(t) and control the size of this queue by 

using as feedback the acknowledgements that derived from receiver peers which have different 

and variable delays. We highlight here that the traditional congestion control approach is not 

functional because of the diversity of these delays. 

 

 

Figure 2. P2P live streaming network traffic 

 

4. P2P LIVE STREAMING CONGESTION CONTROL ANALYSIS 

 
In order to fulfil the requirements that we described earlier a control algorithm is executed 

periodically and ensures the stable congestion control. The proof of its stability is out of the scope 

of this work and analysed in detail in [9]. Our congestion control algorithm runs periodically with 

a period T. Each time that the algorithm is executed the source injects u(kT) packets in the 

network according to Eq. 1. 

 

( ) ( )
1 1

0 0

( ) .1
l l

j j

u kT w u jT ack jT Eqγ
− −

= =

  
= − −  

   
∑ ∑

 

 



International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

6 

 

Where ack(jT) is the number of packets that sender acknowledges between time instants (j-1)T 

and jT. Parameter γ is a constant and its value between 0 and 1 ensures the stability of our 

congestion control. As we will analyse later parameter w is the upper limit in which we want to 

set the queue size of the bottleneck network node. 

 

In the rest of this section we prove two lemmas with very important practical consequences upon 

which the architecture of the proposed control method is based. 

 
Table 1. Notation 

 

Symbol Definition 

T Period under which the P2P congestion control algorithm is executed 

nT, n Discrete time instant, number of period 

u(n) Number of packets that should be injected in the network by the sender during 

the n-th period 

h(n) Number of packets that forwarded by the bottleneck network point during the 

n-th period 

y(n) Number of packets that are in the queue of the bottleneck network point at time 

instant n 

d(n) Delay that queue introduces to a packet that enters to it at time instant n 

b(n) Estimated upload bandwidth of the sender at time instant n 

yREF Desirable number of packets in the queue 

uREF Number of packets that injected in the queue in the equilibrium state in order to 

maintain in length yREF 

dREF Desirable delay of the queue 

s Size in bits of each packet 

λ Time interval between the time instant n that control is executed and the time 

instant that the last acknowledged packet sent. 

hλ(n) Number of packets that the bottleneck network node forwards between time 

instants n and n-λ 

uλ(n) Νumber of packets that sender sent between time instants n and n-λ 

γ Eigenvalue of the controlled system 

 

Lemma 1: If the control method of Eq. 1 is applied to a P2P live streaming system then the queue 

length in the bottleneck network node is always upper bounded by the parameter w that can be 

initially set. 

 

Proof: Let a sender peer send packets to m receiver peers which we order according to their 

delays (RTT), dp, between a packet transmission to a peer p and the reception of its 

acknowledgement by the sender, where d1≤ d2≤ …≤dm. As the control algorithm runs periodically 

dp can be expressed as npT where np is equal to the ratio dp/T. Now we define as y(kT) the packet 

queue length in the bottleneck node at time kT. Initially we have y(0)=0 which is smaller than w. 

Thus, in order to prove lemma 1 with induction it suffices to prove that if lemma 1 holds for time 

lT, which means that y(lT)<w, then it also holds for time lT+1, which means that y((l+1)T)<w. 

The queue length in the bottleneck network node at time instant lT is described from Eq. 2. 

 

( ) ( ) ( )
1 1

0 0

 .2
l l

j j

y lT u jT h jT Eq
− −

= =

= −∑ ∑  

In Eq. 2 u(kT) is the number of packets send by the peer during the period kT, and so the number 

of packets that arrived in the bottleneck node, and h(kT) is the number of packets that were 



International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

7 

 

served from that node during that period. According to the definition of y(nT) in Eq. 2 y((n+1)T) 

can be calculated recursively as: 

 

( ) ( ) ( ) ( )( 1)   .3y l T y lT u lT h lT Eq+ = + −
 

If in Eq. 3 we substitute u(lT) with the proposed from Eq. 1 we have: 

 

( )( ) ( ) ( ) ( )
1 1

0 0

1 ( )   .4
l l

j j

y l T y lT w u jT ack jT h lt Eqγ
− −

= =

  
+ = + − − −  

   
∑ ∑  

The sum of the acknowledged packets from t=0 to t=l-1 is equal to the sum of the sums of the 

packets that have been acknowledged by each receiver peer during those periods. The sum of the 

acknowledgments from a peer p during that period is equal to the packets that have been served 

from the bottleneck network node towards p from t=0 to t=l-np-1, since the acknowledgments 

from the packets that were served towards p in the period t=l-np-1 to t=l-1 haven’t been received 

yet. As described earlier np is the ratio between dp and the period with which we execute our 

congestion control algorithm. According to this observation Eq. 4 is reformed as: 

 

( )( ) ( ) ( ) ( ) ( )
11

0 1 0

1  .5
l npl m

p

j p j

y l T y lT w u jT h jT h lT Eqγ λ
− −−

= = =

  
+ = + − − −  

   
∑ ∑ ∑  

In Eq. 5 m is the number of receivers and λp is the number of packets send to p divided by the 

sum of all the packets send to all the receivers. 

 

We can split the sum of the packets that the bottleneck network node served from j=0 until j=l-1 

into two sums as depicted in Eq. 6. In this equation λ
1
p expresses the ratio of packets that were 

sent to node p and were served from bottleneck network node from j=0 until j=l-np-1, which have 

already been acknowledged (as derived from the definition of np), and λ
2
p expresses the ratio of 

packets that were sent to node p and were served from bottleneck network node from j= l-np until 

j=l-1, which have not acknowledged yet. 

 

( ) ( ) ( )
11 1

1 2

0 1 0 1

   . 6
l npl m m l

p p

j p j p j l np

h jT h jT h jT Eqλ λ
− −− −

= = = = = −

= +∑ ∑ ∑ ∑ ∑  

Now from Eq. 5 by exploiting Eq. 6 we have: 

 

( )( ) ( ) ( ) ( ) ( )
1 1 1

2

0 0 1

1 ( ) .7
p

l l m l

p

j j p j l n

y l T y lT w u jT h jT h jT h lT Eqγ λ
− − −

= = = = −

  
+ = + − − + −  

    
∑ ∑ ∑ ∑  

By using Eq. 2 we have: 

 

( )( ) ( ) ( ) ( )
1

2

1

1 ( )  . 8
m l

p

p j l np

y l T y lT w y lT h jT h lT Eqγ λ
−

= = −

  
+ = + − + −  

   
∑ ∑  

By adding and subtracting w in the second part of Eq. 8 we have: 

 

( )( ) ( ) ( )( ) ( ) ( )
1

2

1

1 1 *  . 9
m l

p

p j l np

y l T w w y lT h jT h lT Eqγ γ λ
−

= = −

+ = − − − − −∑ ∑  



International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

8 

 

From Eq. 9 i)(1-γ) is positive because 0<γ<1 ,ii) w-y(lT) is positive according to our initial 

assumption and iii) h(lT) is always non negative, as it represents the packets that bottleneck 

network node serves. Thus, we can conclude that y((l+1)T)<w 

 

The practical importance of this theorem is that if the buffer dedicated to these flows in the 

bottleneck network node is larger than w, then packet loss will not occur. 

 

Lemma 2: If the control algorithm of Eq. 1 is applied to a P2P live streaming system and w 

satisfies the following inequality. 

 

2

1

1
    .1 0

m

max p p

p

w u n Eqλ
γ=

 
> + 

 
∑  

Then the queue length is positive for any time instant l>nm+1, where nm equals to dm/T for the 

receiver m which exhibits the greatest latency between the sender and all the potential receivers. 

In the above equation umax is the maximum number of packets that can be served by the 

bottleneck node in a period T. 

 

Proof: From Eq. 2 and Eq. 8 we can see that y((l=nm+1)T) is positive. If we prove that if y(lT) is 

positive then y((l+1)T) is also positive then by induction we have proved Lemma 2. 

According to Eq. 8 we have: 

( )( ) ( ) ( ) ( ) ( )
1

2

1

1 1 *  .1 1

p

m l

p

p j l n

y l T y lT w h jT h lT Eqγ γ γ λ
−

= = −

+ = − + − −∑ ∑  

Where y((l+1)T) is larger than: 

 

( )( ) ( ) ( )
1

2

1

1  .1 2
m l

p

p j l np

y l T w h jT h lT Eqγ γ λ
−

= = −

+ ≥ − −∑ ∑  

But according to our model the maximum number of packets that bottleneck network 

point serves is umax so we can rewrite Eq. 12 as: 

 

( )( )
1

2

1

1 .1 3
m l

p max max

p j l np

y l T w u u Eqγ γ λ
−

= = −

+ ≥ − −∑ ∑  

Where the second part of Eq. 13 is: 

 
1

2 2

1 1

1
    .1 4

m l m

p max max max p p

p j l np p

w u u w u n Eqγ γ λ γ λ
γ

−

= = − =

  
− − = − +  

   
∑ ∑ ∑  

The practical importance of this lemma is that we are able to calculate dynamically w 

according to the network latencies and the ratio of unacknowledged packets from each 

receiver and guarantee in this way that there will not be idle bandwidth resources. 

 

5. DYNAMIC WINDOW CALCULATION 

 
In this section we analyse how it is calculated the window of the proposed P2P congestion 

control. Towards this goal we will exploit Lemma 1 and Lemma 2 in order to ensure that the 



International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

9 

 

capacity of the bottleneck network point will not be exceeded and that all the available bandwidth 

will be exploited. From Lemma 2, if we choose γ=1 we have: 

 

2 2

1 1

1
( / )    1 .1 5

m m

max p p p p

p p

w u T n T U d Eqλ λ
γ= =

> + = +∑ ∑  

As described previously, dp is the time between a packet transmission to peer p and the reception 

of its acknowledgement by the sender. This time interval is equal to the RTT between the sender 

and the receiver when the queue of the bottleneck network point is empty plus the time the packet 

has been in this queue (dp=dq+RTTp). dq is 0 when the queue is empty and dqmax when the queue is 

full. From this equation we can calculate the delay in the queue dp=dq+RTTp and thus be able to 

control it to a point which belongs in the region (0,dqmax), where dpmax=dqmax+RTTp. We note 

here that the calculation of dq and dqmax is the same for every receiver peer p and consequently 

independent of p. As a result we note as d(kT) the average queue delay that the packets, which 

were sent to the various receivers during the kth interval, experienced. 

 

The problem that arises here is the calculation of RTTp and dqmax. Since there is no way to 

accurately measure the RTTp we substitute it with dpmin, which is the lowest delay observed for 

peer p. In order to calculate dqmax we must observe packet loss due to congestion, in which case 

dpmax=dqmax+RTTp where dpmax is the latency of the last packet that has been successfully 

transmitted. We now set in Eq. 16 dref which is the queue delay in which we want to operate as a 

percentage a of the total queue size. As a result we have: 

 

min max min*(  0 1 .) 16ref p p pd d a d d with Eqα< <= + −  

The intuition behind this is that when the peer-to-peer flows start with an empty queue it holds 

that RTTp=dpmin, otherwise, when unrelated flows pre-exists we get an inaccurate greater value for 

the RTTp. However, this is not a problem since the goals of the proposed congestion control 

algorithm are not compromised. By setting dref greater than dpmin we guarantee that there are 

always available packets in the queue waiting to be transmitted and thus the available bandwidth 

is utilized. Also, by having dref always less than dpmax congestion and packet loss is avoided. 

Packet loss will trigger the right estimation of dpmax and so the recalibration of the control leading 

to the desired behaviour. 

 

We are now in position to dynamically determine the window size, w(kT), in each iteration of the 

congestion control algorithm, according to the Eq.17: 

 

2

2

1

( )   ( ) ( )( _ ) 1 ( )  .1 7
m

p p ref ref

p

w kT U kT kT d min d T d d kT Eqλ γ
=

 
 = + + + + −   

 
∑  

Where U(kT) is the estimated upload bandwidth in the previous interval and λ
2

p(kT) is the ratio of 

the number of packets transmit to node p and not yet acknowledged to the total number of 

transmitted packets in the same interval that are not yet acknowledged. 

 

The intuition behind Eq. 17 is that the first term is derived directly from Lemma 2. The second 

term of Eq. 17 namely γ2[dref-d(kT)] becomes positive and increases the window in case that 

dref>d(kT) and in this case the queue in the bottleneck network point increases. On the contrary if 

dref<d(kT) this second term becomes negative and the queue in the bottleneck network point 

decreases. In this way the queue is stabilized to the desired dref. 

 

 



International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

10 

 

The value of dref, and more specifically the value of the constant α in Eq. 16, determines the 

aggressiveness of the proposed congestion control algorithm towards unrelated TCP traffic. If α is 

close to 0 then the congestion control algorithm is not aggressive at all and in case it is co-

existing with TCP it gives priority to the latter. In the opposite case, where α is close to 1, the 

algorithm becomes very aggressive with high probability of causing starvation to other TCP 

flows. In our future work we will focus to the analytical correlation between the value of the dref 

and its effect in case that our P2P congestion control co-exists with TCP. 

 

Finally the value of U(kT) is calculated dynamically by measuring the rate of the arrival of the 

acknowledgments during the time interval between kT and kT-tc (i.e. the last tc seconds). If this 

interval is small then the congestion control can react very quickly to changes in the available 

upload bandwidth but in expense of its stability. This type of calculation is meaningful only when 

the queue in non-empty, as otherwise the estimated available bandwidth will be equal to the 

sending rate which will be probably smaller than the actual available bandwidth. However, in that 

case, as d(kT) will be smaller than dref, the window size will increase, causing an increase in the 

sending rate and thus filling the queue and providing meaningful estimation of U(kT). 

 

6. EXPERIMENTATION METHODOLOGY AND EVALUATION 

 
In order to evaluate our proposed system we performed simulations with Opnet [30] and we 

implemented and evaluated a real prototype under a variety of scenarios. The development of our 

real prototype was facilitated by experimentation and monitoring tools which have been created 

by BonFIRE test-bed [10]. Our experimentation scenarios have been set up by using the 

infrastructure of iMinds (Virtuall Wall [11]). Virtual Wall is a test bed in which set of nodes are 

connected through a virtual network. It gives to the test bed user the capability to create the 

desired network topology and dynamically adjust (during the experiments) features of each 

underlying network link as: path latency, path bandwidth, packet loss rate, etc. In order to 

evaluate the proposed congestion control architecture a network topology has been created in 

which a node has been assigned to act as a P2P traffic sender and a set of nodes have been used as 

P2P traffic receivers. Another node has been used as router in order to be able to adjust the 

features of each network path and to act as the bottleneck network node.  

 

Three sets of experiments were performed in order to prove the properties of the proposed P2P 

congestion control. In the first one its robustness to changes in the latency of the underling 

network path is demonstrated. In the second is demonstrated its ability to dynamically adapt to 

very curt changes bandwidth of the bottleneck network point and in the third its friendliness (co-

existence) to unrelated TCP traffic. 

 

6.1. Path latency variation 

 
The purpose of the first experiment is to demonstrate the robustness of the proposed architecture 

to the dynamic changes in the latency of the underlying network paths. In order to achieve this 

was created a network topology with two types of network links. The first one is the Sender-

Router (bottleneck network point) link and its latency is set to a constant value equal to 20ms, 

while the second one is the Router-Receiver link whose latency changes every 10s according to a 

uniform distribution between 2ms and 22ms. The available upload bandwidth is constant and 

equal to 4000 Kbps. In this scenario a sender peer sends only to one receiver. 

 

In Figure 3 we depict three variables. The first is Path minimum Round Trip Time, which 

changes dynamically during the execution of the experiment, the second is the desired Round 

Trip Time, including the time that the packets remained in the queue, and the third represents the 

actual measured delay between the transmission of a packet and its acknowledgment. From 



International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

11 

 

Figure 3 we can see that although Path RTT changes very dynamically our architecture stabilizes 

the queue size in the bottleneck network node at a value very close to RTTref (dREF+RTT) 

without ever exceeding this value. Additionally RTT average is always higher than Path RTT and 

never falls so low. These two observations testify that despite the changes in the underlying 

network path latency, our architecture fully exploits the available bandwidth without causing 

packet loss. 

 

Figure 3. Path minimum Round Trip Time (Path RTT), desired Round Trip Time (RTT ref) and actual 

Round Trip Time (RTT avg) over time 

 

Figure 4. Amount of data to be sent, u(kT), and window, w(kT), over time 

 

Figure 4 depicts u(kT) (as it is dynamically calculated from Eq. 1 in each iteration of the 

algorithm) along with the w(kT), which is the window that is calculated according to Eq. 17. Both 

are multiplied by the packet size in order to be translated from number of packets to Kbits. As 

Figure 4 shows, the window increases in the beginning when the measured RTT values are small 

and then it remains stable despite the variation of path latency. The spikes in u(kT) testify the 

immediate adaptation of our architecture to the changes of path latency. 

 

In Figure 5 are depicted three variables. The first is the a priori set available bandwidth in the 

bottleneck network point (available BW). The second is the acknowledgement rate, which is 

dynamically measured (ack rate). The third is the calculated upload bandwidth by the sender (U). 



International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

12 

 

Figure 5 demonstrates the ability of the proposed algorithm to calculate with very high accuracy 

the available upload bandwidth. 

 

Figure 5. A priori set available bandwidth, acknowledgement rate and measured bandwidth over time 

 

6.2. Path bandwidth variation 

 
In the second set of experiments a sender sequentially sends P2P blocks to multiple receivers 

using the network topology of the previous experiment. The difference now is that there are four 

receivers connected with four Router-receiver links. The latency of each of these paths is now 

configured to the following values: d1=12ms, d2=22ms, d3=7ms and d4=16ms. 

 

For better presentation of the results we define the variable dRTTi, which represents the 

difference between the measured latency between the sender and receiver i and the actual RTT 

between the sender and i (which is the RTT that was set during the deployment of the network 

topology). This variable represents the time interval that the packets, which were transmitted to 

node i, remained in the bottleneck queue and ideally should be the same with the value of the dref 

control variable. 

 

In the first scenario the upload bandwidth of the sender remains constant and is set to 4Mbps. 

Figure 6 shows that the dRTT values for all the receivers are similar and very close to the dref 

value, although their respective RTT values are very different. Figure 6 testifies the ability of the 

proposed algorithm to control the size of the queue to the preference point during sequential 

transmission of P2P block to different network locations. 

 

In the next scenario, which is represented in Figure7, Figure 8 and Figure 9, the available 

bandwidth in the router, that acts as the bottleneck network point, changes dynamically every 10 

seconds according to a uniform distribution between 1 and 5 Mbps. 

 

Figure 7 depicts how the available bandwidth changes over time and how the proposed P2P 

congestion control manages to measure the available upload bandwidth by measuring the rate of 

the acknowledgment’s reception. 

 

Figure 8 depicts u(kT) and w(kT) measured in Kbits. It is evident, by inspecting these two 

figures, that the proposed P2P congestion control is able to adapt very quickly to these very 

abrupt changes of the available bandwidth and to fully exploit it in every time instant. 



International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

13 

 

 

Figure 6. Queue delay measured through acknowledgements from four different receivers 

 

Figure 7. Available bandwidth, Acknowledge rate and measured bandwidth over time 

 

Figure 8. Amount of data to be sent, u(kT), and window, w[kT], over time 



International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

14 

 

 

Figure 9. Bottleneck point queue delay as it is dynamically measured from acknowledgements from four 

different receivers 

 

Finally, Figure 9 depicts the dRTT values for the different receivers along with the dref control 

variable. The interesting thing about this figure, besides the fact that all the dRTT values follow 

the behaviour of the dref, is the behavior of the dref variable itself. Although the different actual 

RTT values remain the same for all the receivers the dref variable changes over time. This is due 

to the recalculation over time of the dpmax variable (Eq. 16). In the beginning there are no errors so 

the value of dpmax is calculated by adding a constant to the dpmin variable. However, as the 

available bandwidth changes, and more specifically when it drops, packet loss occurs. This 

triggers the dynamic recalculation of the dpmax variable and as the result the recalculation of the 

dref. This dynamic behaviour of dref along with its advantages will be shown more clearly in the 

next set of experiments 

 

6.3. Co-existence with TCP 

 
The third set of experiments analyses the behaviour of the proposed P2P congestion control under 

the existence of TCP traffic. In order to take meaningful results two different congestion control 

algorithms of TCP were used. These are TCP-BIC [15] and TCP-RENO [16]. The setup for the 

remaining experiments is the same with the second set, having four receivers with fixed path 

latencies according to the previous distribution. The capacity of the bottleneck node is fixed and 

set to 4Mbps. The duration of the experiments is 100s and by using iperf [17] TCP data is sent to 

receiver 1 in parallel with the P2P flows. The value of the constant α in Eq. 16 is set to 0.75. 

 

TCP-BIC: In the first experiment, where TCP-BIC coexists with the proposed P2P congestion 

control, TCP flow starts after our algorithm has been running for 40s and lasts for 60s. Figure 10, 

Figure 11 and Figure 12 are the same three graphs that we presented for the first two set of 

experiments .Figure 10 depicts the recalibration of the dref variable. When TCP traffic starts at 

time 40 the queue gets full and an error occur. This triggers the right calculation of the dpmax and 

thus of the dref. From that point on dref remains constant, meaning there are no more lost packets, 

and the congestion control algorithm succeeds in keeping the dRTT values close to the desired 

point. Figure 11 and Figure 12 show how the control algorithm adapts to the presence of the TCP 

traffic. The u(kT) and w(kT) drops and stabilize in time, while quickly regaining their initial 

value after the termination of the TCP traffic. The above experiment depicts the ability of the 

proposed P2P congestion control to not starve and to stably continue to send data despite TCP-

BIC trying to push the queue latency (dRTT) to the desired value. 



International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

15 

 

 

Figure 10. Queue delay measured through acknowledgements from four different receivers 

 

Figure 11. Amount of data to be sent, u(kT), and window, w[kT], over time 

 

Figure 12. A priori set available bandwidth, Acknowledge rate and measured bandwidth over time 



International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

16 

 

 

Figure 13. Queue delay as it is measured from acknowledgements from four different receivers 

 

Figure 14. Amount of data to be sent, u(kT), and window, w[kT], over time 

 

Figure 15. A priori set available bandwidth, Acknowledge rate and measured 

 

 

 



International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

17 

 

In the second experiment with TCP-BIC which is depicted in Figure 13, Figure 14 and Figure 15 

the proposed P2P congestion control architecture is started after the TCP has been running for 30s 

(time 0). We can observe that, also in this scenario, the proposed congestion control manages to 

“compete” fair with the TCP traffic and allocate half the available bandwidth (2 Mbps), while, 

when the TCP flow ends (time 30s), it quickly adjusts and uses all the available which is 4Mbps 

 

TCP-RENO: The TCP-RENO experiment is identical with TCP-BIC experiment. Figure 16, 

Figure 17 and Figure 18 depict the case that TCP traffic started at 15 sec and ended at 75sec. As 

TCP-RENO doesn’t behave as aggressively as TCP-BIC, the allocated bandwidth of the P2P 

congestion control quickly converges at 2Mbps, which is half the capacity of the link. 

 

In the second TCP-RENO experiment, P2P traffic started after the TCP stream has been running 

for 25s. In Figure 19, Figure 20 and Figure 21 we see how P2P congestion control tends to 

converge around 3Mbps. 

 

Figure 16. Bottleneck point queue delay as it is dynamically measured from acknowledgements from four 

different receivers 

 

Figure 17. Amount of data to be sent, u(kT), and window, w[kT], over time. 

 



International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

18 

 

 

Figure 18. A priori set available bandwidth, Acknowledge rate and measured bandwidth over time 

 

Figure 19. Queue delay as it is measured from acknowledgements from four different receivers 

 

Figure 20. Amount of data to be sent, u(kT), and window, w[kT], over time. 



International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

19 

 

 

Figure 21. Available bandwidth, Acknowledge rate and measured bandwidth over time 

 

6. CONCLUSIONS 

 
Traditional congestion control algorithms are designed for bulk point to point transfers. In this 

work we designed, implemented and evaluated a P2P congestion control algorithm suitable for 

flows containing small chunks of data which are transmitted sequentially to different network 

destinations. Our theoretical work was justified though our evaluation in a real and implemented 

system and we proved that our proposed P2P congestion control architecture: i) is able to utilize 

efficiently all the upload bandwidth of participating peers, ii) is stable, robust even under sudden 

and large and changes in the bandwidth of the bottleneck network point, iii) is immune to time-

varying delays (underlying path latency) caused by dynamic underlying network traffic, iv) is 

able to measure accurately and dynamically the upload bandwidth capacity of each peer, v) is 

able, by controlling the queue length in the bottleneck network point, to avoid buffer overloading 

in the Home Gateways and routers of the underlying network. 

 

ACKNOWLEDGEMENTS 

 
This work was funded from BonFIRE [10] which is an EU project funded by the EC FP7 under 

grant agreement number 257386. 

 

REFERENCES 

 
[1] Konstantinos Deltouzos, Ilias Gkortsilas, Nikolaos Efthymiopoulos, Spyros Denazis, (2013) 

“Liquidstream II - Scalable P2P overlay optimization with adaptive minimal server assistance for 

stable and efficient Video On Demand”, In IEEE INFOCOM 

[2] Efthymiopoulos N, Christakidis A, Denazis S, Koufopavlou O. (2011) “Liquidstream – network 

dependent dynamic P2P live streaming”, Springer Peer-to-Peer Networking and Applications 

[3] Christakidis A, Efthymiopoulos N, Fiedler J, Dempsey S, Koutsopoulos K, Denazis S, Tombros S, 

Garvey S,Koufopavlou O. (2011) “VITAL++ a new communication paradigm: embedding P2P 

technology in next generation networks”, IEEE Communications Magazine 

[4] Yang, Y, A.L.H. Chow, L. Golubchik and D. Bragg, (2010) “Improving QoS in BitTorrent-like VoD 

Systems”, In IEEE INFOCOM 

[5] Delia Ciullo, Valentina Martina, Michele Garetto, Emilio Leonardi, Giovanni Luca Torrisi. (2012) 

“Stochastic Analysis of Self-Sustainability in Peer-Assisted VoD Systems”, In IEEE INFOCOM  



International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

20 

 

[6] “PPLive, http://www.gridcast.cn/. GridCast, http://www.gridcast.cn/. PPStream, 

http://www.ppstream.com/. TVU, http://www.tvunetworks.com/. SopCast, http://www.sopcast.com/.” 

[7] “Cisco 2015, Visual Networking Index (VNI), The Zettabyte Era—Trends and Analysis 

(http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-

vni/VNI_Hyperconnectivity_WP.html) 

[8] Delia Ciullo, Valentina Martina, Michele Garetto, Emilio Leonardi, Giovanni Luca Torrisi, (2012) 

“Performance Analysis of Non-stationary Peer-assisted VoD Systems”. In IEEE INFOCOM 

[9] Ignaciuk Przemysław, Bartoszewicz Andrzej, (2013), “Congestion Control in Data Transmission 

Networks, Springer”, ISBN 978-1-4471-4147-1 

[10] “BonFIRE”, http://www.bonfire-project.eu/ 

[11] “iMinds” Virtual Wall, http://www.iminds.be/en/develop-test/ilab-t/virtual-wall 

[12] R. Birke, C. Kiraly, E. Leonardi, M. Mellia3, M. Meo, S. Traverso, (2012) “Hose Rate Control for 

P2P-TV Streaming Systems”, Elsevier Computer Communications Vol. 35, Issue 18, pp. 2237–2244 

[13] S. Shalunov and G. Hazel, 2010 “Low Extra Delay Background Transport (LEDBAT),” IETF, 

Internet Draft draft-ietf-ledbat-congestion-02 

[14] Phil. Trans. Birke, R. ; Leonardi, E.; Mellia, M.; Bakay, A.; Szemethy, T. ; Kiraly, C.,Lo Cigno, R. ; 

Mathieu, F. ; Muscariello, L. ; Niccolini, S. ; Seedorf, J. ; Tropea,G, (2011) “Architecture of a 

network-aware P2P-TV application: the NAPA-WINE approach”, IEEE Communications Magazine, 

Vol 49, Issue 6, 2011 

[15] “TCP-BIC”, http://www4.ncsu.edu/~rhee/export/bitcp.pdf  

[16] “TCP-RENO”, http://tools.ietf.org/html/rfc3782 

[17] “Iperf”, http://sourceforge.net/projects/iperf/ 

[18] Maria Efthymiopoulou, Nikolaos Efthymiopoulos, Athanasios Christakidis, Spyros Denazis, 

Odysseas Koufopavlou, (2014) “Scalable control of bandwidth resources in P2P live streaming”, In: 

Proceedings of 22nd Mediterranean Conference of Control and Automation (MED), IEEE, pp.792-

797 

[19] Maria Efthymiopoulou, Nikolaos Efthymiopoulos, Athanasios Christakidis, Nikolaos 

Athanasopoulos, Spyros Denazis, Odysseas Koufopavlou, (2015) “Scalable playback rate control in 

P2P live streaming systems” Springer , Peer-to-peer Networking and Applications, 2015 (accepted) 

[20] H  Zhang, J  Wang, M Chen, K Ramchandran (2009) Scaling Peer-to- Peer Video-on-Demand 

Systems Using Helpers. In:Proceedings of the IEEE 16th Int. Conf. on Image Processing. IEEE, pp. 

3053-3056 

[21] J Wang, C Yeo, V Prabhakaran, K Ramchandran (2007) On the role of helpers in Peer-to-Peer file 

download systems: Design, analysis and simulation. In: Proceedings of the 6th Int. Workshop on 

Peer-To-Peer Syst. (IPTPS 2007) 

[22] R Sweha, V Ishakian, A Bestavros (2012) Angelcast: cloud-based peerassisted live streaming using 

optimized multi-tree construction. In: Proceedings of the 3rd Multimedia Systems Conference. ACM, 

pp. 191–202 

[23] P Michiardi, D Carra, F Albanese, A Bestavros (2012) Peer-assisted content distribution on a budget. 

ELSEVIER Computer Networks 56(7):2038–2048 

[24] H Kavalionak ,A Montresor (2012) P2P and cloud: A marriage of convenience for replica 

management. In: Proceedings  of the 6th IFIP Int. Workshop on Self-Organizing Systems, ser. Lecture 

Notes in Computer Science. Springer, pp. 60–71 

[25] UUSee, [Online]. Available:  http://www.uusee.com 

[26] Y Chen, B Zhang, C Chen, D M Chiu (2014) Performance modeling and evaluation of peer-to-peer 

live streaming systems under flash crowds. IEEE/ACM Trans Netw 22(4):1106–1120 

[27] N Magharei, R Rejaie, I Rimac, V Hilt, M Hofmann (2014) Isp-friendly live p2p streaming. 

IEEE/ACM Trans Netw 22(1):244–256 

[28] C Wu, B Li, S Zhao (2012) Diagnosing Network-wide P2P Live Streaming Inefficiencies. ACM 

Trans multimedia Comput. Commun. Appl. 8(1S):Article 13 

[29] A Payberah, H  Kavalionak, V Kumaresan, A Montresor, S Haridi (2012) Clive: Cloud-Assisted p2p 

Live Streaming. In: Proceedings of  12th Int. Conf. Peer-to-Peer Computing. IEEE, pp. 79–90 

[30] Opnet modeler, [Online]. Available: www.opnet.com 

 

 

 

 



International Journal of Peer to Peer Networks (IJP2P) Vol.6, No.2, August 2015 

21 

 

AUTHORS  

 
Nikolaos Efthymiopoulos received the diploma and Doctor of Philosophy degree in 

Electrical and Computer Engineering from the University of Patras, Greece, in 2004 and 

2010, respectively. His main research interests are: network optimization, network 

control, scalable systems, peer to peer, distributed video streaming, distributed searching 

and achieving QoS in computer networks. He has more than 20 publications in these 

areas. He more than 10 years of experience in several FP7 ICT projects and he was 

technical manager assistant and WP leader in VITAL++ and STEER. He has temporarily 

worked as an Assistant Professor in Informatics & MM Department in Greece. He is 

currently a Post-Doctoral Research Associate at the University of Patras in Greece. 

 

Athanasios Christakidis received his diploma in 2004 and his Doctor of Philosophy in 

2010 from the Department of Electrical and Computer Engineering at the University of 

Patras, Greece. His research interests are peer to peer networks, distributed optimization, 

network resource allocation, and congestion control. Since 2004, he participated in several 

FP7 projects, and he has more than 15 publications in these areas. He has led the 

development of a client for stable and efficient peer to peer live streaming.  

 

Maria Efthymiopoulou received the first degree and the Doctor of Philosophy degree in 

Electrical and Computer Engineering from the University of Patras, Greece, in 2008 and 

2015, respectively. Her main research interests are: network control, scalable systems, peer 

to peer, live streaming, video on demand, development of simulation environments, QoS in 

computer networks. She has several publications in these areas. She has 7 years of 

experience in several FP7 ICT projects. She is currently a Post-Doctoral Research 

Associate at the University of Patras in Greece. 

 

Loris Corazza was born in Italy on 1982. He approached to University of Patras as 

member of the Network Architectures and Management group in 2009. His involvement in 

ICT projects started in 2008, when he was member of the Smart Systems Team in Hitachi 

SAS Sophia-Antipolis Research Lab. He has been one of the head developers of P2NER 

P2P-Client while researching in the area of P2P Systems and Content Distribution 

Networks. He is currently a researcher at University of Patras, Greece in the area of Optical 

Software Defined Networks. His main interests and expertise are: software design and 

architecture, network protocols, network management, algorithms for data distribution in P2P networks and 

performance evaluation, network security. 
 

Spyros Denazis is a Professor in the Electrical & Computer Engineering Department, at the 

University of Patras, Greece. He received his Doctor of Philosophy in Computer Science 

from the University of Bradford, UK, in 1993. In 1996, he joined the R&D Department of 

Intracom SA in Athens as Project Coordinator, and in 1998, he joined the Information 

Technology Laboratory of Hitachi Europe in Cambridge UK, as a Senior Research Engineer 

while serving for 3 years (1998-2001) as an Industrial Research Fellow in the Centre for 

Communications Systems Research , of Cambridge University, UK. For the period 2003-

2010, he had also been a Consultant for the Hitachi Europe Sophia Antipolis Laboratory, in France. 

Currently, he leads the Network Architecture & Management Group where he coordinates a range of 

research activities in the areas of P2P live streaming, future internet research experimentation, and SDN. 

 


