
International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

DOI : 10.5121/ijp2p.2017.8301 1

A SECURE EPIDEMIC BASED UPDATE PROTOCOL

FOR P2P SYSTEMS

1
Manghui Tu and

2
Dianxiang Xu

1
Department of CITG Purdue University Northwest 2200 169th Street Hammond, IN,

46323, USA
2
Department of Computer Science Boise State University 1910 University Drive

Boise, ID, 83725, USA

ABSTRACT

Epidemic Based Update Protocols Are Designed To Address The Consistency Issues For Data Replication

In P2p Systems. However, Update Protocols Also Raise Security Issues. An Epidemic Based Update

Protocol May Be Exposed To Security Threats When It Is Operated In An Untrustworthy P2p Environment.

To Address This Issue, Security Prevention And Detection Protocols Are Designed In The Epidemic Based

Update Protocol To Protect Update And Their Timestamps From Being Tampered By Compromised

Malicious Peers. Theoretic Analysis Shows That The Secured Update Protocol Can Detect All

Manipulations On The Timestamps Of Updates And Can Eventually Identify The Compromised Peers In

The System.

KEYWORDS:

Peer-to-Peer;Epidemic based update protocols; consistency; timestamps; security

1. INTRODUCTION

Peer-to-Peer (P2P) systems aim to support collaboration and data sharing among participants [3,

18, 20, 24, 28]. A major barrier to support fast data accesses on large scale distributed systems is

the high latencies of wide area networks. To overcome the barrier of high network latency, data

stored in the P2P systems can be replicated at peers to improve both data access performance and

availability [3, 4, 18, 20, 25]. However, replication raises consistency issues to be addressed.

Asynchronous update protocols such as epidemic update protocols [2, 7, 9, 24] have been

proposed to improve the response time and avoid single point of failures. In an epidemic update

protocol, updates can be executed locally at any single site, and the updates are then propagated

to all other sites. The key to the success of these protocols is to maintain the causal order, by

using the transaction logs and a happened-before logic [2], which is implemented by a vector

clock based two-dimensional timetable [2, 4, 8, 9, 17]. Security is another important issue in P2P

environments where peers may be compromised and become malicious even with trust

management, access control, and security protection in place [22, 23, 24, 27]. Adversaries may

tamper the updates or update records and introduce conflicting updates into the system. Research

works addressing security issues in P2P systems mainly focus on trust management [1, 21], data

accesses, data storage, and routing mechanisms [26], and few of them addresses the security

issues on the update dissemination. Some research works propose mechanisms to protect the

integrity of the update itself [14, 15, 16, 19], but none considers the security protection of

timestamps or vector clocks of the updates, which are essential to the correctness of the update

protocol.

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

2

The security protection of timestamps of update transactions is not trivial. Timestamps are

generated by peers to maintain the causal order of update events in the system. A compromised

peer may generate fake timestamps for its own site, signed with its own private key and then

propagate to other site. Such an attack cannot be prevented or detected by using digital signature

based technologies. Also, a site may falsely claim that it has received an update that has not been

propagated to the site or deny the fact that the site has received an update from another site. This

cannot be prevented through the use of digital signature of the site that creates the update.

Without appropriate protection, the tampered timestamps can poison update propagation by

introducing non-existent conflicting updates, too many of which may lead to the crash of the

system [7, 24], or introduce inconsistency to the system without being detected [24]. Thus,

sophisticated mechanisms are needed to detect such malicious activities timely and precisely.

In this paper, to address security issues of the update protocol, detection procedures are designed

in a two-level update protocol to secure the update propagation protocol in such a way that a non-

compromised peer can detect tampered updates and prevent the updates from being further

propagated to other sites. The remainder of this paper is organized as follows. Section 2 discusses

related works on securing timestamps in distributed systems. Section 3 describes the system

model of the P2P system and Section 4 gives background information about timestamps and the

basics of the epidemic based lazy update protocol. Section 5 conducts security analysis and

proposes a secure update dissemination protocol and Section 6 presents simulation results.

Section 7 gives the conclusion of this paper.

2. RELATED WORK

The secure update dissemination issue has been recently studied in some research works [14, 15,

16, 19, 11]. In distributed systems, nodes may be compromised and can compromise the data

availability and integrity. Secure dissemination schemes without public key signature has been

developed in [14, 15, 16, 19]. The epidemic-style update diffusion in distributed systems that may

suffer Byzantine component failures was first discussed in [14]. In this work, two protocols are

developed based on the principle that a replica site accepts an update only if b+1 correct nodes

have accepted the updates. A more efficient update dissemination algorithm is proposed in [15]

and an optimal protocol is proposed in [16]. The algorithm may require less rounds of

computation optimality of the algorithm. All these research works assume that there are b

compromised nodes which become malicious, and thus require data to be written to at least b+1

non-faulty nodes initially before the update dissemination, which makes the dissemination slow.

In [19], a new update dissemination algorithm is proposed by using the path verification protocol,

which allows an update to be forwarded even when the forwarding host has not accepted that

update. A host accepts an update only receiving b+1 propagations with the same update and

disjoint gossip path. Even the sender cannot remove its own identity to fake a path, but it cannot

prevent multiple compromised servers to fake multiple disjoint paths by modifying the existing

path, without server integrity protection. Also, it cannot prevent compromised servers to

impersonate other servers without proper authentication. Most of research works focus on public

key algorithms to protect the integrity of the update from groups of clients [5, 11]. The digital

signature method makes the integrity protection much efficient, but all of those research works do

not consider the security protection of vector clocks, which is essential to the efficiency of update

dissemination.

3. SYSTEM MODELING

Some peers are dedicated for the P2P system with strong security management (e.g. timely patch

installation, appropriate firewall setup, well enforced security policies, strict access control, and

secured communication and information storage). Some other peers participate as non-dedicated

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

3

servers without strong security management. Generally speaking, those peers without strong

security management may have a higher probability to be compromised than those well managed

peers. In this research, some of the peers are assumed to be untrustworthy.

Fig.1 The topology of the P2P system modeled as a two level hierarchy.

To provide reliable and provable communication, P2P systems may be organized into structured

overlay networks [6, 10, 13, 25, 28]. In such systems, peers are organized into groups and each

group is managed by a super peer. In this research, we consider structured P2P overlay systems

with two-level hierarchy, in which peers are grouped into non-overlap local groups. Each local

group will be managed by a super peer, which represents the local group to communicate with

other groups for update information exchange. The super peers are organized into a super group.

A peer can only communicate with another peer in the same group (a super peer can

communicate with other super peers and all peers in its local group). Let HC = {H0, …,HM-1}

denote the set of M local groups and Pk = {Pk,0, Pk,1, … } denote the set of Nkpeers in group

Hk, where Pk,0is the super peer. Also, let HS denote the super group, hence, HS = {P0,0, P1,0,

…, PM-1,0}. Thetopology of the P2P system considered in this research is shown in Fig.1. Note

that systems with millions of nodes can be extended to form a multi-layered hierarchical structure

with more than 2 layers.

To improve access performance, data are replicated at peers in such way that the super group

holds the primary copy of the data andeach super peer may hold a subset of the primary copy of

the data. Note that data set hosted by the two super peers may be overlapping with each other. We

assume that once a local group holds a replica of a data object, the super peer in that group also

holds a copy of that data object (it could be the primary copy of the data object or a non-primary

copy of such data object). Data can be read and updated at any peer, but only a limited number of

users are allowed to make updates. Let t denote a transaction, site(t) denote the peer at which the

update t is committed, TS(t) and p(t) denote the logical (timestamps) and physical time of

transaction t, RS(t) and WS(t) denote the read and update data set of transaction t, and let r(t)

denote the record of updatet. When a user needs to access a data object, it can access at any peer

that holds a copy of that data object. For an update t, site(t) needs to propagate t to every peer that

holds a copy of any non-empty subset of WS(t). To fit the large scale of the system, an epidemic

based lazy update mechanism is chosen for update dissemination [2, 8, 9].

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

4

4. BACKGROUND INFORMATION

In an epidemic based update protocol, timestamps is critical to ensure the happened-before

property, i.e., ∀e, f∈E, e�fiffTS(e) <TS(f), where TS(e) and TS(f) denote the timestamps of event

e and event f, and E is the set of all events [4, 8, 9, 17]. The timestamps is maintained by the

vector clock mechanism. The vector clock mechanism was proposed by [12] to ordering events in

a distributed systems, in which each process needs to maintain a vector with the size of the

number of all processes in the system. In such a system, each process is indexed and corresponds

to an element in the vector clock. In the vector, each element corresponds to the number of events

has taken place at its corresponding process. Replica sites maintain logs and then exchange log

information to keep each other informed about the transactions that have occurred on their sites.

This ensures that eventually all data replicas will incorporate all the transactions that have

occurred in the system [4, 8, 9, 17]. Logs and timestamps are combined to a two-dimensional

timetable to make the update dissemination more efficient [8, 9]. Essentially, each replica site Pi

keeps a timetable Ti(shown in Fig. 2),the k
th
 row of which (Ti[k, *]) represents Pi’s knowledge of

the updates that peer Pk has received (through the update exchange information sent by Pk). If

Ti[k, j] = v, then Pi knows that Pk has received the v
th
 update (namely, t′) that is originally issued

at peer Pj and all updates that are causally preceding t′(the v
th
 update issued at peer Pj).The row

Ti[i, *] represents Pi
′s record of the received updates that are originally issued at each replica site,

e.g., Ti[i, j] = u means that Pi has received the u
th
 update (namely, t) that is issued at Pj and all

other updates that are causally preceding t. Also, each peer Pi maintains a local log, denoted as Li,

to log all updates issued locally at Pi or propagated to Pi.

Fig.2 A sample timetable Ti at peer Pi.

Thus, the timetable can be used to define the well-known timetable property, e.g., HasRecvd(Ti, t,

Pk) ≡ (Ti[k, site(t)] ≥TS(t)[site(t)]). That is, site Pi is sure that Pk must have received update

transaction t if Ti[k, site(t)] ≥TS(t)[site(t)]. When Pi performs an update operation, it places a

record in the log Li. When Pi sends a message to Pk it includes all of such update t that

HasRecvd(Ti, t, Pk) is false, together with the time table Ti. When Pi receives a message from Pk it

applies all non-conflict updates and updates its time-table in an atomic step to reflect the new

information received from Pk. When a site receives a log record, it knows that the log records of

all causally preceding events either were received in previous messages, or are included in the

current message. This is referred as the log property and such property is stated as what follows:

∀e, f, (e�f) ∧ (f∈Li), then e ∈Li (Liis the local log maintained by site Pi). This protocol ensures

that whenever a site is aware of an update, it is aware of all causally preceding updates.

Now let’s discuss how to apply timestamps to detect conflicting transactions. When Pjreceives an

update t issued at Pi, it first searches its local (update record) log Ljto see if there exists such a

transaction t′ that TS(t) <>TS(t′) (t and t′ are executed concurrently, denoted as t || t′), and the data

accessed are overlapping (i.e., (WS(t) ∩WS(t′) ≠ φ) ∨ (RS(t) ∩WS(t′) ≠ φ) ∨ (WS(t) ∩ RS(t′) ≠ φ)

[2, 8, 9]. If we only consider transactions accessing a single data object and allow users to read

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

5

old data, then the condition of (WS(t) ∩WS(t′) ≠ φ) is sufficient to determine the conflict. If such a

transaction t′ exists, then a conflicting flag is set with the record of update t (i.e.,r(t)), and

transaction reconciliation procedure is to be launched to abort both update t and update t′.

The correctness of the protocol relies on the exchange of timestamps among all peers, and

conflicts are identified and reconciled based on the causal order defined by timestamps. However,

in an untrustworthy P2P system, a compromised peer may manipulate the timestamps of some

updates, which can poison the updates in the system through propagating malicious update

information to other sites. This may either introduce non-existing conflicts into the system which

implements a denial of service attack, or introduce the inconsistency into the system without

detection by hiding existing conflicts, which may lead the system into an unrecoverable state [7,

24].

5. SECURING THE UPDATE PROTOCOL

To secure the update protocol, security protection, malicious detection, and fault tolerance

procedures will be designed. For simplicity, the description of the secure update protocol will

focus on a single group first. Without loss of generality, an arbitrary group Hk will be considered.

A. SECURITY THREATS TO THE UPDATE PROTOCOL

The following attacks are considered in the research, (a) manipulating updates; (b) manipulating

update value; (c) impersonating other peers to propagate updates; (d) manipulating timetable; and

(e) manipulating timestamps for updates executed locally.

secureSendLocal (Pk,i, msg, Pk,j) {

if RVk,i(t)[i] ≠ 0 return ;

updateSet = {r(t)| r(t)∈ Lk,i,

∧ ¬HasRecvd(Tk,i[j, *], t, Pk,j)};

sort the updateSet such that each r(t) is followed by

r(t') such that t' immediate concurrent or succeeds t.

msg.updateSet= updateSet; and msg.timestable =Tk,i;

Pk,i forms a signature, sigk,i =
,

{ }
k iK

m sg

r(t1) = send (msg, sigk,i) to Pk,j;

if r(t1) is valid ∧ site(t1) = Pk,j∀ r(t) ∈ updateSet

if (r(t).RVk,i(t)[i] ≤ TS(t1)[i]) r(t).RVk,i(t)[i] =TS(t1)[i] ;

else malicious_resolve(Pk,j); }

secureUpdateExecution (Pk,i, t, cid) {

begin mutex

acquire write lock on WS(t) and execute t;

Tk,i[i, i] = Tk,i[i, i] ++;

TS(t) = Tk,i[i, *];

commit(t);
client cid sign a signature, sigcid = {cid, t.id (t),

TS(t), p(t), WS(t), WS(t).value, site(t), t}Kcid;

builds a transaction record r(t) = {{cid, Tid(t),
TS(t), WS(t), WS(t).value, site(t), t}, sigcid};

r(t). RVk,i(t) is initialized to be all 0;

Lk,i= L k,i ∪ {r(t)};
end mutex;}

Fig 3 (a). The secured update execution protocol Fig 3 (b) The secured update forwarding protocol

To fight against attack methods (a) and (b), authentication mechanisms such as digital signature

can be used to digitally sign t together with the value of the update t (WS(t).value), TS(t), client

ID (cid), WS(t), local transaction ID (t.id), and site(t). Whenever a peer receives an update

forwarding message, it verifies the digital signature of the message by using the client’s public

key stored locally. Therefore, no update message can be modified and no fake update can be

generated by any compromised peer. The update execution procedures incorporated with

authentication procedures are shown in Fig. 3(a). Similarly, to fight against attack method (c), the

update forwarding message can be digitally signed with the ID of the peer who forwards the

message and then verified by the receiving peer. The update forwarding procedures incorporated

with authentication procedures are shown in Fig. 3(b).

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

6

B. VECTOR CLOCK MANIPULATIONS AND COUNTERMEASURES

It is much more complex to fight against attack methods (d) and (e). To prevent TS(t) from being

manipulated by a peer other than site(t), TS(t) can be digitally signed together with the update

(shown in Fig.3 (a)), and then verified by the receiving peer (shown in Part A of the secured

update protocol described in Fig. 8). However, it cannot easily prevent and detect a compromised

peer Pk,i (Pk,i≡site(t)) to generate an arbitrary TS(t) for update t as the following 5 cases. Case 1,

increasingPk,i's own entry in TS(t) from TS(t)[i] to TS'(t)[i], e.g., TS'(t)[i] > TS(t)[i]. Case 2,

decreasingPk,i's own entry in TS(t) from TS(t)[i] to TS'(t)[i], e.g., TS'(t)[i]< TS(t)[i]. Case 3,

increasinganother peerPk,j's entry in TS(t) from TS(t)[j] to TS'(t)[j], e.g., TS'(t)[j] > TS(t)[j]. Case

4, decreasing another peer Pk,j's entry in TS(t) from TS(t)[j] to TS'(t)[j], e.g., TS'(t)[j] < TS(t)[j].

Case 5, any combination of the above 4 cases. Note thatPk,i can also be a super peer, i.e., i= 0.

Consider case 1. Pk,i (Pk,i≡site(t)) generates a manipulated TS(t) for an update t by increasing its ith

entry. For example, Pk,3generates TS'(t) = (1, 3, 3, 6, 4) for the update t whose legitimate TS(t)

should be (1, 3, 3, 5, 4), as shown in Fig. 4.

Fig. 4. TS(t) is manipulated by the compromised peer Pk,3 (which is site(t)) by increasing TS(t)[3].

Based on the conflict detection procedure defined in Section IV and Section V, this

manipulation does not introduce any “new” inconsistency to the system (shown in Theorem 1).

To detect this type of manipulation, we can enforce an immediate concurrentorimmediate

succeeding update execution order at the receiving site Pk,i such that only an immediate

concurrent update or an immediate succeeding update (denoted as tf) of t can be selected as the

next update to be tested locally for execution. An update tf immediate succeeds another update t,

denoted as t�imt
f, if ∀j ≠ site(tf), TS(tf)[j] ≡TS(t)[j] ∧TS(tf)[site(tf)] ≡TS(t) [site(tf)] +1. An update

t
f
 isimmediateconcurrentwith another update t, denoted as t<>imt

f
, if ∃i∈ {1, 2, …, Nk}, TS(t

f
)[i]

≡TS(t)[i]+1 ∧∀l≠i, TS(t
f
)[l] ≤TS(t)[l]. Similarly, a timestamp V1immediate succeeds another

timestamp V2 (V2 �im V1) if ∃i∈ {1, 2, …, Nk} V1[i] ≡V2[i] +1 ∧∀j ≠i, V1[j] ≡V2[j]. A timestamp

V1 is immediateconcurrent with another timestamp V2 (V2 <>im V1) if ∃i∈ {1, 2, …, Nk}, V1[i]

≡V2[i] + 1∧∀l≠i, V1[l] ≤V2[l]. With this immediate succeeding or immediate concurrent

execution order, whenever there is such a tf missing in the propagation message from Pk,j, Pk,i

can conclude that a manipulation has been committed either by Pk,j or the peerPk,j has been

misled by other peers through the timetables mechanism (shown in Theorem 2), which requires

a tracking process to identify the malicious peer (shown in the proof of Theorem 2). If itis

misled,Pk,j can simply resend the missing updates.

Theorem 1. If Pk,i (site(t)) generates a manipulated timestamps for t by increasing the ith entry of

TS(t), then, the manipulation of t will not introduce any non-existent conflict into the system.

Proof: Suppose that an update t with TS(t) = (1, 3, 3, 5, 4) is originally issued at peer Pk,i (i = 3)

and is manipulated to TS'(t) = (1, 3, 3, 6, 4). Based on the current conflict detection procedure

defined in Section IV, two updates (t and t′) conflict with each other if and only if TS(t) <> TS(t′)

∧ ((WS(t) ∩ WS(t′) ≠ φ). Suppose that there is another update t1 conflicts with the manipulated

update t but t1 does not conflict with the original update t, then TS′(t) <> TS(t1) ∧ (TS(t) � TS(t1)

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

7

∨TS(t1) � TS(t)). First consider TS(t1) � TS(t). We know that TS(t) �TS′(t) since ∀j ≠i, TS(t)[j]

≡TS′(t))[j] ∧TS(t)[i] <TS′(t))[i], therefore, we have TS(t1) � TS′(t) and this contradicts with the

condition TS′(t) <> TS(t1). Then consider TS(t) � TS(t1). Since t1 reads from t, no matter what

changes applied to TS(t), TS′(t) � TS(t1) will always hold based on the current epidemic update

protocol. Therefore, it contradicts the condition TS′(t) <> TS(t1). Therefore, it is impossible that

the manipulation of t as Case 1 will lead to TS′(t) <> TS(t1). Hence, it is true that such an update t

with manipulated timestamps TS′(t) will not introduce non-existent conflict into the system.

Theorem 2.Assume theimmediateconcurrent or immediate succeeding update execution order is

enforced in the entire system. If the update messagePk,ireceived from Pk,j missesan immediate

concurrent or immediate succeeding updatet
f, then either Pk,j could have been misled by other

peers through manipulated timetable or the site Pk,j is malicious.

Proof: Case 1.1: if ∀t1∈Z(t) = {t| r(t)∈updateSet∧¬HasRecvd(Tk,i, t, Pk,i)}, tf
� t1∨t

f<> t1, then tf

either has a smaller timestamps than or concurrent with the updates in the update propagation

message. Let t2∈ Z(t) and has the smallest timestamps, then one or more updates preceding t2 are

missing in the update propagation message. Based on the sending protocol shown in Fig. 3(b),

this can happen only if Pk,j itself is maliciousor Pk,j “thought” that Pk,i has received such missing

updates based on information provided by the two-dimensional timetable Tk,j, which is updated

when Pk,j receives update propagation message from another peer. This happens only if another

peer has provided some false information to Tk,j that the site Pk,i has received such update tf. To

track which peer has provided such false timetable information, another two dimension table is

needed for each site. Let Χk,j denote such timetable at site Pk,j. If the knowledge of Pk,j on the

update reception status of a site Pk,i is updated, e.g., an entry Tk,j[i, m] is updated, and this update

is done with the knowledge provided by Pk,l, then Χk,j[i, m] = l. Through this mechanism, it will

always be able to identify which peer lied about the update reception status of Pk,i, together with

the update propagation message log. Note that the tracking mechanism is very expensive since it

may need to investigate multiple sites. Case 1.2: If ∃t1∈ Z(t) and t1�t
f∨t

f
<> t1, then t

f
 has a

smaller timestamps than some but not all of the propagated updates in the update propagation

message. Since each site Pk,j strictly follows the immediate concurrent or immediate succeeding

update execution order, it is impossible that those missing updates are propagated by other peers.

Therefore, Pk,j can be determined to be malicious.€

Consider case 2. Pk,i (Pk,i≡site(t)) generates a manipulated TS(t) for t by decreasing its ith entry.

For example, Pk,3generates TS'(t) = (1, 3, 3, 4, 4)for the update t whose legitimate TS(t) should be

(1, 3, 3, 5, 4), as shown in Fig. 5.

Fig. 5. TS(t) is manipulated by the compromised peer Pk,3 (which is site(t)) by decreasing TS(t)[3].

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

8

Note that TS'(t) is the timestamps of another legitimate update t1(i.e., t1� t). t1 and t may arrive at

different sites which introduces inconsistency undetected. Also, suppose that there is another

update t2 at Pk,0, WS(t) ∩WS(t2) ≠ φ reads from update t1, then, TS(t2) = (2, 3, 3, 4, 4). The update

protocol will treat the relationship between t and t2 as t� t2 (TS'(t) � TS(t2)), while t and t2

should actually conflict with each other since WS(t) ∩ WS(t2) ≠ φ∧ TS(t) <> TS(t2) is true. Too

many of such undetected inconsistencies and conflicts can bring the system into an unrecoverable

state. To fight against this, a detection procedure should be designed in the update receiving

protocol. Whenever a peer Pk,mreceives an update propagation containing an update with

timestamps (1, 3, 3, 4, 4), the update is either the manipulated update t or the update t1 that

causallyprecedes t asshown in Fig. 5. Based on the current update protocol, either t or t1 can be

integrated in the system and the other will be ignored. To determine whether the update is

legitimate, Pk,m can check the value of the update t (or t1) (WS(t).value or WS(t1).value) against the

value of WS(t) in the local database (WS′(t).value) or WS′(t1).value after t (or t1) is executed

locally. If the two values do not match with each other, then Pk,m can determine that t is

manipulated and site(t), Pk,i, is malicious.

Theorem 3. If Pk,i (site(t)) generates a manipulated timestamps for t by decreasing the i
th
 entry of

TS(t), then any inconsistency introduced by the manipulation of t can be detected by a legitimate

receiving peer Pk,m and the malicious peer Pk,i can be identified. Also, the manipulated update t

will not create conflict with any other update.

Proof: There will only be two cases. Case 2.1, TS'(t)[i] <Tm[m, i] +1, then t will be ignored by

Pk,m. Case 2.2, TS'(t)[i] ≡Tk,m[m, i] +1, which means that Pk,m has not received the update t1 with

TS(t1)[i] ≡TS'(t)[i]. If TS(t1) ≠TS'(t), then t will be detected by applying the immediate concurrent

or succeeding order. If TS(t1) ≡TS'(t). Since t1� t at Pk,i, by applying t to the local database at Pk,m

before t1, WS(t).value will definitely be different from WS’(t).value (the value of the local

database at Pk,m), which can be detected by Pk,m and the malicious peer can be identified as Pk,i.

Also, t1 is an existing update and thus t with TS'(t) ≡TS(t1) will not introduce non-existent conflict

into the system. €

Consider case 3, Pk,i (Pk,i≡site(t)) generates a manipulated TS(t) for t by increasing its jth entry. For

example, Pk,3generates TS'(t) = (1, 3, 4, 5, 4)for the update t whose legitimateTS(t) should be (1,

3, 3, 5, 4), as shown in Fig. 6

Fig. 6. TS(t) is manipulated by the compromised peer Pk,3 (which is site(t)) by increasing TS(t)[2].

This manipulation may introduce inconsistency to the system undetected without appropriate

handling. For example, assume that there is another update t1(TS(t1) = (1, 3, 4, 4, 4)) is issued at

site Pk,2 concurrently with t and WS(t1) ∧ WS(t) ≠ φ, then t1 should conflicts with tsince TS(t) = (1,

3, 3, 5, 4). Without a detection procedure, the system will consider the relationship between t1 and

t as t1� t sincethe timestamps (1, 3, 4, 4, 4) precedes (�) the timestamps (1, 3, 4, 5, 4)). In order

to avoid being detected by enforcing the immediate concurrent or succeeding execution order,

Pk,ican wait until t1 arrives at Pk,i before it propagates t to other sites. To detect the inconsistency

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

9

introduced by this attack, a peer Pk,m can check the value of the update t (WS(t).value) against the

value of WS(t) in the local database (WS’(t).value) after t is executed locally. If the two values do

not match with each other, then Pk,m can determine that update tconflicts with update t1 and site(t),

Pk,i, is malicious.

Theorem 4. If a peer Pk,i (site(t)) generates a manipulated timestamps for t by increasing the j
th

entry of TS(t), then, any inconsistency introduced (or any conflict hidden) by the manipulation of

t can be detected by a legitimate receiving peer Pk,m and the malicious peer Pk,i can be identified.

Proof: if the manipulation is successfully implemented, both the j
h
 entry and i

h
 entry have been

increased (jh entry is increased for manipulation while i
h entry is increased for recording the

legitimate update event).To pass the immediate concurrent or succeeding update execution order

at Pk,m, Pk,i has to propagate together with or after the update t1 which is immediately succeeded

by t. If site(t1) ≠Pk,j, then whenever Pk,m receives both t and t1, Pk,i (site(t)) will be determined as a

malicious site. Consider site(t1) ≡Pk,j, which is essentially the same case as shown in case 3. Since

t1conflicts with t at Pk,i and t1�t, then there will be a difference between WS(t).value and

WS’(t).value and it will be detected by a non-compromised peer Pk,m and this can happen only

because Pk,i (site(t)) is malicious. €

Consider case 4, Pk,i (Pk,i≡site(t)) generates a manipulated TS(t) for t by decreasing its j
th
 entry.

For example, Pk,3generates TS'(t) = (1, 3, 1, 5, 4)for the update t whose legitimateTS(t) should be

(1, 3, 3, 5, 4), as shown in Fig. 7.

 Fig. 7. TS(t) is manipulated by the compromised peer Pk,3 (which is site(t)) by decreasing TS(t)[2].

Without detection, such manipulation may introduce non-existent conflicts into the system.

Examples of such updates could be t2 and t3, with TS(t2) = (1, 3, 3, 4, 4) and TS(t3) = (1, 3, 2, 4,

4). With TS(t) manipulated, t2 (or t3) and twill conflict with each other, but actually their

relationship should be t2 (or t3) �t. To detect such attacks, Pk,m can examine the timestamps of t

(site(t) = Pk,i) against Tk,m[i, j] for ∀j, where j ∈ {1, 2, …, Nk}∧j ≠i(site(t) = Pk,i). If ∃j such that

TS'(t)[j] <Tk,m[i, j], (Pk,m has known that Pi has received the update t1 with TS(t1) = Tk,m[i, *]), Pk,i

can be determined to be malicious. If ∀j∈ {1, 2, …, Nk} ∧j ≠i(site(t) = Pk,i), TS'(t)[j] ≥Tk,m[i, j],

the timestamps of t could either be manipulated or authentic. For example, Pk,3 has received both

t2 and t3 but has not propagated them to any other site yet, therefore, no other peer will have the

knowledge that Pk,3 received t2 and t3. The update t’s timestamps, (1, 3, 1, 5, 4), can be authentic (t

isissued before the receipt of t2 and t3) or can be manipulated as described above (i.e., t isissued

after the receipt of t2 and t3 and the original TS(t) = (1, 3, 3, 5, 4) is manipulated to TS'(t) = (1, 3,

1, 5, 4)). If Pk,i keeps generating such timestamps, the system can potentially conflict all the

updates in the system and lead to a denial of service attack.

The successful implementation of the attack described above is due to the missing of the records

proving that t2 and t3 have been sent to Pk,3 before t is issued at Pk,3. Thus, an extra data structure

is needed for the sending site to record the number of updatesthat have issued at the receiving site

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

10

Pk,i, i.e. Tk,i[i, i]. Such piece of information can be obtained through the acknowledge with the

latest update t2 issued at Pk,i (TS(t2)[i] ≡Tk,i[i, i]). Although Pk,i may acknowledge with an update

that is not the latest update issued locally, this can be detected or can be ignored by other non-

compromised peers as shown in Theorem 6. Since an update t1 may be propagated to Nk−1sites by

Pk,m, a timestamp, RVk,m(t1), with Nk entries is sufficient to record such information. This

procedure is described in Fig.3 (b). The detection procedure is designed in the receiving part

described in Part A of the secured update receiving protocol shown in Fig. 8. Whenever a conflict

update tis identified (which is a rare event), Pk,m needs to examine the value of RVk,m(t1)[site(t)]

and TS(t)[site(t)]. If RVk,m(t1)[site(t)] <TS(t)[site(t)] (which means that t1 has been received by

site(t) before t is executed at site(t) and the relationship between t1 and t should be t1�t), then

site(t) can be identified as a malicious peer. It also indicates that a smaller RVk,m(t1)[site(t)]

acknowledged by site(t) (e.g., Pk,i) will be detected (note that site(t) e.g., Pk,i, cannot decrease its

own entry in a vector without detection as discussed in case 2). However, this works only if Pk,m

has propagated t1 to site(t) (e.g., Pk,i). Without the knowledge of the reception of t1 by site(t), after

a site Pk,m determines that t1 and t conflict with each other, Pk,m will launch the procedure to

resolve the conflicts. Therefore, the above detection procedure should be designed into the

conflicting resolve procedure at each sitePk,m, and the input should include the record of t and all

such conflicting updates t1 logged at Pk,m (who initializes the conflicting resolve procedure). A

part of the detection procedure is described in Part B of the secured update receiving protocol

shown in Fig. 8. In Theorem 5, we show that with all these detection procedure in place, the type

of attack described in case 4 can be detected and such malicious site Pk,i can be identified.

Theorem 5. A peer Pk,i decreases the j
h
 entry of TS(t) with site(t) ≡Pk,i, and any inconsistency or

non-existent conflict introduced by t will be detected by a legitimate receiving peer Pk,m and the

malicious peer Pk,i can eventually be identified.

Proof: Suppose that there exists an update t1 such that t1<>t, then TS(t1)[i] <TS(t)[i] ∧∃l∈ {1, 2,

…, Nk}, TS(t)[l] <TS(t1)[l]. However, the manipulation as case 4 will not change this fact and it

will not introduce any undetected inconsistency into the system. Suppose that the manipulated

update t with TS′(t) as case 4 conflicts with t1 and TS(t1) �TS(t) (if TS(t1) <>TS(t) ∨ TS(t)

�TS(t1), the manipulation as case 4 does not introduce any inconsistency or conflict. Since it is

impossible to have t1<>t if site(t) ≡ site(t1), then consider site(t) ≠ site(t1). Since TS(t1) �TS(t),

then t1 must be propagated to Pk,i by at least one peer Pk, l, l∈ {1, 2, …, Nk}∧l ≠i, and TS(t1)[i]

<TS(t) [i] ∧TS(t1)[n] ≤TS(t)[n], n∈ {1, 2, …, Nk}∧n ≠i. Based on the secured update sending

protocol described in Fig. 3 (b), at site Pk,l, it will be true that RVk,l(t1)[i] <TS(t)[i] since t1�t. In

Part A of the secure update receiving protocol, Pk,m calls the detection procedure defined in the

algorithm malicious_detected(r(t), Pk,i) described in Part B of the secure update receiving

protocol for each peer includingpeerPk,l, the inconsistency or conflict introduced by the

manipulatedtwill be detected and Pk,i will be identified as the malicious peer.€

Theorem 6. Upon receiving an update propagation message including update t1, if Pk,i

acknowledges with an update t2 that is not the latest update issued locally and manipulates the

update t as case 4 so that TS(t1) <>TS′(t), it will be detected by another non-compromised

peerPk,m.

Proof: Known from the proof in Theorem 5, the introduced conflict between can be detected by a

peer Pk,m by asking site Pk,l to evaluate whether RVk,l(t1)[i] <TS(t)[i]. if TS(t1) <>TS′(t) and TS(t1)

�TS(t), then RVk,l(t1)[i] <TS(t)[i] will be true. If Pi had acknowledged with an update t2 that is not

the latest update issued locally, then RVk,l(t1)[i] will be assigned with TS(t2)[i] and became

RV′k,l(t1)[i] , since we know that TS(t2)[i] <RVk,l(t1)[i], it will be followed that RV′k,l(t1)[i]

<RVk,l(t1)[i] <TS(t)[i], then Pk,i will be identified as a malicious peer. €

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

11

Now consider case 5, which is any combination of the above 4 cases. If there is any manipulation

of update t atPk,i as case 1 and case 3, it will create miss of update t1 that t immediate succeeds

(i.e., t1
f ≡t) or concurrent. If site(t) ≡ site(t1) ≡Pk,i, to fill in the missing of t1, Pk,i needs to wait for

another update t2 executed locally, and manipulates TS(t2) to TS′(t2) ≡TS(t1). Since t1�t�t2 and

the execution at another peer Pk,m is t2�t, then the difference between WS(t).value and

WS’(t).value will be detected byPk,m and Pi will be identified a malicious. If site(t1) ≠ site(t)

≡Pk,i,then the miss of t1 cannot be made up and it will be detected byPk,m and Pk,i will be identified

a malicious. If an update t is manipulated by Pk,i as case 2 combined with or without case 4, any

inconsistency or non-existent conflict introduced by this type of attack will be detected by Pk,m as

shown in Theorem 3. For any entry of TS(t) is manipulated by Pk,i using the method shown in

case 4, then it will be detected by using the detection procedure described above, i.e., evaluating

the relationship between RVk,l(t1)[i] and TS(t)[i] for every update t1 that t conflicts with. If any t1

that Pk,i has received before t, then the sending peer Pk,j can detect the manipulation. Thus,

manipulating more entries of TS(t) by Pk,i will only increase the opportunity to be detected by

other peers.

Now we consider attack method (d), i.e., manipulating timetable. We first discuss some attacks

that are related to the attack method (d). If Pk,ikeeps locally issued update for a long time before

propagate to other sites, then it will increase the opportunity to conflict with the updates issued at

other sites. To deal with this issue, one choice for the protocol is to require each site send out

updates periodically. Therefore, other peers will send updates to Pk,i which cannot hide its most

recent update as shown in Theorem 5 and a simple detection procedure can identify this attack. A

compromised peer Pk,imay repeatedly send out the same update record r(t) to some peers, which

may introduce traffic to the system. To precisely detect this type of attack, we can require each

sending site to first check RVk,i(t)[m] for each update record r(t) to see if it has been sent toPk,m.

Also, each update record r(t) at receiving site Pk,m can use a data structure SVk,m(t) to record the

send peer ID Pi. Note that SVk,m(t) can be a simple integer with each bit representing the

corresponding peer ID. If bit i is 1, then Pk,ihas sent r(t) to Pk,m and any receiving of r(t) from Pk,i,

Pk,m can identify Pk,i as a malicious site.

A compromised peer Pk,i may provide false information about the reception of updates at other

site Pk,j by modifying the j
th
 row of the timetable Tk,i. If Tk,i[j, *] is decreased, then other sites may

be informed to send out some updates to Pk,j that Pk,j has already received from others. This will

only introduce limited extra traffic into the system since Pk,l may know that Pk,j has already

received those updates from other sources. If Tk,i[j, *] is increased, then another site Pk,l may be

falsely informed that Pk,j has already received some updates that Pk,j never received. This may

prevent some updates to be propagated to Pk,j which may hurt the converge speed and increase the

opportunity of those updates to conflict with updates issued at Pk,j. Note that it will be extremely

difficult for Pk,i to prevent all other peers to propagate those updates to Pk,j. Even if Pk,i

successfully does this, whenever Pk,l sends out some other updates to Pk,j, Pk,j can detect that there

is a malicious attack against the system since some updates are missing by applying the

immediate concurrent orsucceeding order (Theorem 2). The system can choose to ignore this if

no conflicts incurred or launch a forensics investigation to identify the malicious peer. Note that

at the malicious peer Pk,i, there is no such timetable in the received update propagation message

shows that Pk,j have received those missing updates as Pk,i claimed. Also, if i≡ 0, then any update t

originally executed in Hk will be considered as an update executed locally at Pk,0 (t
S
), which will

generate a new timestamps TS(tS) and then propagate t
S to other super peers. Since the update

itself is signed by client, then no fake update can be generated by super peer. Therefore, for any

i∈ {1, 2, …, Nk}, the above theorems still follow.

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

12

SecureReceive (Pk,i, msg, Pk,j) {

archive a copy of msg;

select r(t1) ∈ Lk,i where

 site(t1) ≡ Pk,i ∧ TS(t1)[i] ≡ Tk,i[i, i];
acknowledged with digitally signed r(t1) back to

Pk,j;

Tk,j = msg. timetable;

for each n from 1 to Nk {

 if (Tk,j[j, n] < Tk,i[j, n]){
 malicious_resolve(Pk,j);

break;}}

updateSet = msg. updateSet;

sort the updateSet such that each r(t) is followed

by r(t') such that t' immediate or succeeds t.

If there is a missing of such r(t′) to enforce the
immediate concurrent or succeeding order

execution // case 1

 then malicious_resolve(Pk,j);

for ∀t∈{t | r(t)∈ updateSet} {
If TS(t)�Tk,j[j, *], then malicious_resolve(Pk,j);

if (HasRecvd(Ti, t, Pk,i)) {

if r′(t).SVk,i(t)≡0 where r′(t) ∈ Lk,i , r′(t).SVk,i(t)=1 ;
else malicious_resolve(Pk,j); // re-send attack

updateSet.remove(r(t) and S = S ∪ r(t); }

for ∀t where r(t)∈ updateSet
{verify the signature of t using client’s public

key;

if not valid then malicious_resolve(Pk,j);
if TS(t) !immediate concurrent or succeeds Tk,i[i, *]

 then malicious_resolve(Pk,j); //case 1

for ∀t {t| r(t)∈ updateSet }{
begin mutex

 if {∃ t′∈ Lk,i|(TS(t)<>TS(t′))∧(WS(t)∩WS(t′) ≠

φ) }{

if ∃l ∈ {1, 2, …, Nk}∧ l ≠ i) ∧

TS'(t)[l] < Tk,i[j, l] ∧ site(t) ≡ Pk,j

malicious_resolve(Pk,j);

 boolean is_malicious = false; //case 4

 for each Pk,lwhere l ∈ {1, 2, …, Nk} {

is_malicious = malicious_detected(r(t), Pk,l);

if (is_malicious) break;}

if (is_malicious != true) {

resolveConflict(t);

 t.inconflict = true;

 resolveConflict(t’);

 t’.inconflict = true;

}

else {

malicious_resolve(Pk,j); }

if {∃ t′∈ Lk,i| (t’.inconflict) ∧ (t read from t’) ∧

(WS(t) ∧ WS(t′) ≠ φ) } {
 resolveConflict(t);

 t.inconflict = true; }

else if (¬ t.inconflict) {
 acquire write lock on WS(t)

 execute update t locally;

if WS(t).value ≡ WS’(t).value.{
 commit(t) and release write lock; }

else {

 rollback the execution of t

malicious_resolve(Pk,j)} // case 2, 3

 if (Tk,i[i, site(t)] < TS(t)[site(t)]) {

Tk,i[i, site(t)] = TS(t)[site(t)] ;

Xk,i[i, site(t)] = j;

 r(t).SVk,i(t)=1 ;

 Lk,i= Lk,i ∪ {r(t)};
 end mutex };

 begin mutex

 ∀ m,n, {
 value = max (Tk,i[m, n], Tk,j[m, n]);

 if (Tk,i[m, n] < value) {

Tk,i[m, n] = value;
Xk,i[i, site(t)] = j;

} // record who propagate the

knowledge

 Lk,i = {t| r(t)∈Lk,i ∧ ∃ n| HasRecvd(Tk,i,
t,Pk,n)

 };

 end mutex }

}

Part A. The secured receiving protocol

malicious_detected(r(t), Pk,i){

boolean flag =false;

for {∀t1∈ Lk,i|(TS(t)<>TS(t1))∧(WS(t)∧WS(t1)≠φ)}
{ if (RVk,m(t1)[site(t)] < TS(t)[site(t)]){

flag = true;
break;}}

return flag; }

Part B. A part of malicious detection protocol

Fig. 8. The secured update receiving protocol with malicious detection.

Let sigcid denote the signature by client with ID cid, Kcid and Kcid
-1denote the private and public

key pair of that client, value(t) denote the resulted value of WS(t), Tid(t) denotes the transaction

ID of t. Let sigcid ={cid, Tid(t), site(t), TS(t), p(t), WS(t), value(t), t}Kcid. Note that client and the

peer should execute the mutual authentication protocol and the client can obtain the site ID. The

executing part and sending part of the secured update protocol is shown in Fig. 3(a) and Fig. 3(b),

respectively, while the receiving part of the secure update protocol is shown in Fig. 8.

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

13

6. SIMULATION RESULTS

To evaluate the effectiveness of the two-level vector based update protocol on improving the

consistency control in the system, we compare it with classic one level update protocol proposed

in [2, 9]. Due to scale issues, it is not feasible to design a real system to simulate the update

protocol, and thus a simulation is designed to simulate a system with large amount of peers,

organized into a one-level system or a two-level group based hierarchy. Also, there is indeed no

standard procedure to evaluate the system delusion problem discussed in [7]. In this simulation,

we use the number of conflicting units as the parameter to evaluate the effectiveness of system

consistency. Here, conflicting units is defined as the sum of the conflicting transactions that all of

the peers have received, whenever a conflicting is detected. The reason to use conflicting units is

that when there is a higher number of conflicting transactions introduced in the system, the higher

the possibility of system will reach the state that cannot be recovered from the inconsistency.

A. THE EFFECTIVENESS OF THE SCALING UP MECHANISM

In the simulation, the two-level system consists of a number of groups and each group has one

super peer, which further forms a super group together with the super peers from other groups.

The simulated one-level system consists of the same number of peers as the two-level system.

The system consists of a certain number of data objects with coarse granularity. Each update

transaction is defined to access a single data object only, while the data object to be accessed is

totally random. Update rate is simulated as the number of transactions generated by a peer

between two consecutive propagations. Even though the number of updates each peer generated

is totally random, the total number of transactions generated is constant.To effectively compare

the two update protocols, the same set of update transactions, the same update rate and

propagation rate are applied to both simulated system.

In this simulation, three factors, e.g., system size (the number of peers), the number of data

objects, and the update propagation rate (simulate the propagation frequency, i.e., the number of

peers will be chosen to propagate update to within each time period) are considered. We evaluate

how these three factors impact the effectiveness of the two-level vector clock based update

protocol on update inconsistency control. The results are shown in Fig. 9 (a), Fig. 9(b), and Fig.

9(c), respectively.

Fig. 9 (a) shows the impact of system size on the effectiveness of the two protocols. The

parameter setups are: the update propagation rate is 2 and the number of data objects is 100. As

you can see from the result, the larger the system size, the more effective the two-level vector

based protocol. This is mainly due to the factor that the two-level vector clock is more scalable to

large systems, compared with the one level vector clock based update protocol. Each local group

consists of less number of peers, thus conflicting is much easier and earlier to be detected. Also,

the conflicting updates originally executed at different local groups will be forwarded to the super

group and the conflicting will be detected by the super group before they are forwarded to other

local groups. This further helps the update inconsistency early detection.

Fig.9 (a). The impact of system sizeFig.

0

50

100

150

200

250

0 100 200 300 400

system size

C

o

n

f

l

i

c

t

i

n

g

U

n

i

t

s

Two Level

One Level

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

14

9 (b). The impact of the number of data objects

Fig. 9 (b) shows the impact of the number of data objects on the effectiveness of the two

protocols on update inconsistency control. The parameters setups are: the update propagation rate

is 2 and the system size is 225. As you can see, the smaller the number of data objects, the more

effective the two-level vector based protocol on update inconsistency control, compared with the

one level vector clock based update protocol. This is due to the factor that with less number of

data objects, the higher the possibility for two updates to be conflicting with each other, and the

two-level update protocol can detect such conflicting earlier (less number of peers will receive

such update). The larger the number of the data objects are accessed, the lower the possibility of

two updates will be conflicting with other since the data objects accessed by the two updates have

lower opportunity to overlap. Therefore, the effectiveness of the two level vector clock based

update protocol on update inconsistency control is close to that of the one level vector clock

based update protocol, when the number of data objects is large. Note that the system size is only

225 and update rate is 2 per peer. When the system size increases and/or the update rate increases,

the two level vector clock based update protocol will have big advantage, as seen in Fig. 9(a) and

Fig. 9(c.)

Fig. 9 (c) shows the impact of the update propagation rate on the effectiveness of the two

protocols on update inconsistency control. The parameters setups are: the number of data object is

60 and the system size is 225. As you can see, the larger the update propagation rate, the more

effective the two-level vector based protocol on update inconsistency control, compared with the

one level vector clock based update dissemination protocol. This is due to the factor that the

larger the propagation rate, the larger the number of peers will receive those conflicting updates,

and the two-level update protocol can detect such conflicting earlier than the one-level update

protocol. The smaller the update propagation rate, the smaller the number of peers will receive

those conflicting updates. Therefore, the effectiveness of the two level vector clock based update

protocol on inconsistency control is close to that of the one level vector clock based update

protocol.

Fig.9 (c). The impact of update propagation rate

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80 90 100

Number of Data Objects

C

o

n

f

l

i

c

t

i

n

g

U

n

i

t

s

Two Level

One Level

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8 9 10

Update/Propagation Rate

C

o

n

f

l

i

c

t

i

n

g

U

n

i

t

e

s

Two Level

One Level

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

15

7. CONCLUSION

The P2P system considered in this research is modeled as a super peer based two-level hierarchy.

A two-level vector clock mechanism is proposed to address the vector clock size issue andupdate

dissemination protocolbased on the proposed vector clock mechanism is proposed to address the

efficiency and scalability issues (e.g., the capability for the system to recover from update

inconsistency) in widely distributed systems. To evaluate the effectiveness of the proposed two

level vector clock based update dissemination protocol, simulations are conducted and the results

show that inconsistency control is greatly improved compared to that of the traditional one level

vector clock based update dissemination protocol. Also, we expect that our two-level vector clock

based update dissemination protocol can also be scaled to a multi-level dissemination protocol

with trivial adjustment. Due to the untrustworthy environment of the P2P data sharing, peers can

be compromised by adversaries and malicious attacks can be launched to compromise the entire

system. Without appropriate control, a single compromised peer can bring down the entire P2P

system by manipulating the timestamps of the updates. To protect the P2P system against

possible malicious attacks, security protocols are designed and integrated into the update

dissemination protocol. Our analysis shows that the security protocol can achieve reasonable

security protection and can detect all such malicious activities and identify malicious peers.

REFERENCE

[1] Aberer, K. and Despotovic, Z.. Managing Trust in a Peer-2-Peer Information System. Conference on

Information and Knowledge Management, Atlanta, Georgia. 2000.

[2] D. Agrawal, A. El, Abbadi, and R. C. Steinke. Epidemic algorithms in replicated databases (extended

abstract). In Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems (PODS ’97), 1997.

[3] S. Androutsellis-Theotokis and D. Spinellis. A survey of Peer-to-Peer content Distribution

Technology. ACM Computing Surveys, Vol.36, No. 4, 2004.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,A. Lakshman, A. Pilchin, S. Sivasubramanian,

P. Vosshall,and W. Vogels. Dynamo: amazon’s highly available keyvaluestore. In Proceedings of

twenty-first ACM SIGOPSsymposium on Operating systems principles, pp. 205–220, 2007.

[5] D. Ellard and J. Megquier. DISP: practical, efficient, secure and fault-tolerant distributed data storage.

ACM Transactions on Storage. Vol.1, No. 1. 2004.

[6] Fiorano Software. Super peer architectures for distributed computing. White paper of Fiorano

Software, 2007.

[7] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a solution.In

Proceedings of the 96 ACM SIGMOD International Conference on Management of Data. 1996.

[8] J. Holliday, D. Agrawal, and D. Abbadi. Partial replication using epidemic communication. In

Proceedings of the 22nd International Conference on Distributed Computing Systems, 2002.

[9] J. Holliday, R. Steinke, D. Agrawal, and D. Abbadi. Epidemic algorithms for replicated databases.

IEEE Transactions on Knowledge and Data Engineering, Vol. 15, No. 3. 2002.

[10] M. Kleis, E. K. Lua, and X. Zhou, “Hierarchical Peer-to-Peer Networks using Lightweight Superpeer

Topologies,” In Proceedings of the 10th IEEE Symp. Comp. and Commun. (ISCC 2005), La Manga

del Mar Menor, Cartagena, Spain, June 27–30 2005.

[11] S. Lakshmanan, M. Ahamad, and H. Venkateswaran. Responsive security for stored Data. IEEE

Transactions on Parallel and Distributed Systems. Vol 14, No. 9, 2003.

[12] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Communications of

the ACM, Vol. 21, No. 7. 1978.

[13] E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim. A survey and comparison of peer-to-peer overlay

network schemes. IEEE Communications Surveys & Tutorials, 7 (2) (2005), pp. 72–93.

[14] D. Malkhi, M. Reiter, O. Rodeh, and Y. Sella. On diffusing updates in a Byzantine environment.

Proceedings of 18th IEEE Symposium on Reliable Distributed Systems, 1999.

[15] D. Malkhi, M. Reiter, O. Rodeh, and Y. Sella. Efficient update diffusion in Byzantine Environments.

Proceedings of 20th IEEE Symposium on Reliable Distributed Systems, 2001.

International Journal of Peer to Peer Networks (IJP2P) Vol.8, No.2/3, August 2017

16

[16] D. Malkhi, E. Pavlov, and Y. Sella. Optimal unconditional information diffusion. Proceedings of 15th

International Symposium on Distributed Computing, 2001.

[17] F. Mattern. Virtual time and global states ofdistributed systems. InProceedings of the Workshop on

Parallel and Distributed Algorithms. Pp. 215–226. 1988.

[18] Microsoft. Peer-to-peer transactional replication. Retrieved from http://technet.microsoft.com/en-

us/library/ms151196.aspx. 2011

[19] Y. Minsky and F. Schneider. Tolerating Malicious Gossip Technical Report. Cornell University

Computer Science TR2001-1853, 2001.

[20] SSWUG. Distributed database: one real world solution.

http://www.sswug.org/editorials/default.aspx?id=2039. 2010

[21] G. Suryanarayana and R. N. Taylor. A survey of trust management and resource discovery

technologies in Peer-to-Peer applications. ISR Technical Report # UCI-ISR-04-6. 2004.

[22] B.M. Thuraisingham and J.A. Maurer, Information survivability for evolvable and adaptable real-time

command and control systems. IEEE Transactions on Knowledge and Data Engineering, Vol. 11, No.

1, 1999.

[23] M. Tu, P. Li, I. Yen, B. Thuraisingham, L. Khan. Secure data objects storage in data grids. IEEE

Transactions on Dependable and Secure Computing. Vol. 7, No.1. 2010.

[24] M. Tu, D. Xu, Z. Xia. Securing epidemic based update protocol for P2P systems. In Proceedings of

theIASTED PDCS 2011(Best Paper). December. 2011.

[25] M. Tu, H. Ma, I. Yen, F. Bastani, and D. Xu. Availability, security, access performance an load

balance in P2P data grid.Journal of Grid Computing. Vol. 11, No. 1, 2013.

[26] B. Traversat and C. Haywood. A Survey of Peer-to-Peer Security Issues. Lecture Notes in Computer

Science, Vol. 2609. 2003.

[27] D. Xu, M. Tu, M. Sanford, L. Thomas, D. Woodraska. Automated security testing with formal threat

models. IEEE Transactions on Dependable and Secure Computing. Vol 9, No. 4. 2012

[28] B. Yang and H. Garcia-Molina. Designing a super-peer Network. In Proceedings ofIEEE

International Conference on Data Engineering, 2003

