
International Journal of Advanced Information Technology (IJAIT) Vol. 1, No.5, October 2011

DOI : 10.5121/ijait.2011.1501 1

ABSTRACT FACTORY AND SINGLETON DESIGN
PATTERNS TO CREATE DECORATOR PATTERN

OBJECTS IN WEB APPLICATION

Vijay K Kerji

Department of Computer Science and Engineering, PDA College of

Engineering,Gulbarga, India

vkkerji@gmail.com

ABSTRACT

Software Design Patterns are reusable designs providing common solutions to the similar kind of problems

in software development. Creational patterns are that category of design patterns which aid in how objects

are created, composed and represented. They abstract the creation of objects from clients thus making the

application more adaptable to future requirements changes. In this work, it has been proposed and

implemented the creation of objects involved in Decorator Design Pattern. (Decorator Pattern Adds

Additional responsibilities to the individual objects dynamically and transparently without affecting other

objects). This enhanced the reusability of the application design, made application more adaptable to

future requirement changes and eased the system maintenance. Proposed DMS (Development Management

System) web application is implemented using .NET framework, ASP.NET and C#.

KEYWORDS

Design Patterns, Abstract Factory, Singleton, Decorator, Reusability, Web Application

1. INTRODUCTION

Design Patterns refer to reusable or repeatable solutions that aim to solve similar design problems

during development process. Various design patterns are available to support development

process. Each pattern provides the main solution for particular problem. From developer’s

perspectives, design patterns produce a more maintainable design. While from user’s

perspectives, the solutions provided by design patterns will enhance the usability of web

applications [1] [2].

Normally, developers use their own design for a given software requirement, which may be new

each time they design for a similar requirement. Such method is time consuming and makes

software maintenance more difficult. Adapting the software application to future requirements

changes will be difficult if adequate care is not taken during design [3].

Adopting Design Pattern while designing web applications can promote reusability and

consistency of the web application. Without the adoption of the design patterns or wrong

selection of them will make the development of web application more complex and hard to be

maintained. Thus knowledge in design patterns is essential in selecting the most appropriate

International Journal of Advanced Information Technology (IJAIT) Vol. 1, No.5, October 2011

2

patterns in the web application. Unfortunately, the ability of the developers in applying the design

pattern is undetermined. The good practice of using design patterns is encouraged and efforts

have to be taken to enhance the knowledge on design patterns [1].

Creational design patterns abstract the instantiation process. They help make a system

independent of how its objects are created, composed, and represented. A class creational pattern

uses inheritance to vary the class that’s instantiated, where as an object creational pattern will

delegate instantiation to other objects. Creational patterns become important as systems evolve to
depend more on object composition than class inheritance. As that happens, emphasis shifts away

from hard coding a fixed set of behaviors toward defining a smaller set of fundamental behaviors

that can be composed into any number of more complex ones. Thus creating objects with

particular behaviors requires more than simply instantiating class [4].

In case of web applications, it is sometimes necessary to add additional responsibilities to the web

page dynamically and to cater to the changing requirements. Such additions should be transparent

without affecting other objects. There can be possibility where in these responsibilities can be

withdrawn. In such scenario, Decorator Pattern can be used to add the additional responsibilities

to the default web page (whose some of the contents are always constant). For Example if the

application has different users who can log into it (such as Admin, Program Manager and

Stakeholder).Admin will have different user interface when compared to other users but some of

the user interface elements may be similar across all users. In such scenario, we can use

Decorator Pattern to decorate the changing user interface elements depending on the user type,

keeping the remaining elements constant across all type of users [3].

In such applications, Decorator Pattern objects can be created using Abstract Factory creational

pattern. In this work, concrete decorator objects are created with such Abstract Factory pattern

without specifying their concrete classes. This encapsulates the object instantiation process from

the client thus making the system more flexible to future changes in the requirements. Additional

new users can be added to the system without applying changes to the client side code. Client side

code is hidden from the type of current user instantiated by the Abstract Factory pattern thus

making the system more reusable and easier to maintain. Since the application typically needs

only one instance of a concrete factory in abstract factory pattern, we used Singleton design

pattern to implement the concrete factory object.

We applied the required changes to the DMS application [3] to achieve the above mentioned

objectives. The resulting application showed considerable improvement in performance when

multiple users are added. It abstracts the client code from changes in concrete decorator object

instantiation.

The rest of the paper is organized as follows. Section 2 mentions about the previous study

conducted on this subject. Section 3 explains the motivation of this proposed work Section 4

describes Abstract Factory and Singleton Patterns and their applicability. Section 5 briefs about

DMS web based application. Implementation and sample code is listed in section 6. Finally

conclusion is presented in section 7.

2. PREVIOUS STUDY

In [1], a set of design patterns commonly used in web based applications has been proposed as a

case study. These are the patterns which frequently occur in a web based applications which are

discussed in this work.

In [3], Application of Decorator Design Pattern to the web based application has been proposed

and implemented. Decorator added additional responsibilities to the default user page thus

International Journal of Advanced Information

making the application more adaptable to the future requirements changes. New user types in the

application can be added without changing the client code by using the Decorator Design Pattern.

In[6], It is briefly introduced the concept of software design patterns and

some design patterns including Observer Pattern, Decorator Pattern, Factory Method Pattern and

Abstract Factory Pattern.

In [7], Research and application of Design Patterns on Shopping Mall component design has been

proposed. Strategy, bridge and abstract factory patterns are being used in this work.

3. MOTIVATION

In [4], Client code is exposed to the creation of decorator pattern objects and their composition

and representation. Whenever new user is added, client code is changed

decorator objects creation. Inclusion of Abstract Factory design pattern will ensure the following

advantages:

1. Abstraction of Decorator Object creation from Client code thus making the application

more adaptable to future change

2. Easy to understand and maintain the application

3. Design can be reused because of the use of use of additional design patterns.

4. Provides single instance of the abstract factory object by using Singleton creational

pattern.

Abstract Factory and Singleton Patterns together incorporate the aforementioned objectives in the

proposed implementation.

4. DECORATOR PATTERN

Decorator pattern adds responsibilities to individual objects dynamically and transparently, tha

is, without affecting other objects. Such additional responsibilities can be withdrawn. Also when

extension by sub classing is impractical.

Figure 1.

Component defines the interface for the objects that can have responsibiliti

dynamically. Concrete Component defines an object to which additional responsibilities can be

attached. Decorator maintains a reference to a component object and defines an interface that

conforms to the component interface. Concrete Decor

International Journal of Advanced Information Technology (IJAIT) Vol. 1, No.5, October 2011

cation more adaptable to the future requirements changes. New user types in the

application can be added without changing the client code by using the Decorator Design Pattern.

In[6], It is briefly introduced the concept of software design patterns and given a research on

some design patterns including Observer Pattern, Decorator Pattern, Factory Method Pattern and

In [7], Research and application of Design Patterns on Shopping Mall component design has been

, bridge and abstract factory patterns are being used in this work.

In [4], Client code is exposed to the creation of decorator pattern objects and their composition

and representation. Whenever new user is added, client code is changed since it is exposed to the

decorator objects creation. Inclusion of Abstract Factory design pattern will ensure the following

Abstraction of Decorator Object creation from Client code thus making the application

more adaptable to future changes such as addition of new user type.

Easy to understand and maintain the application

Design can be reused because of the use of use of additional design patterns.

Provides single instance of the abstract factory object by using Singleton creational

Abstract Factory and Singleton Patterns together incorporate the aforementioned objectives in the

ATTERN STRUCTURE

Decorator pattern adds responsibilities to individual objects dynamically and transparently, tha

is, without affecting other objects. Such additional responsibilities can be withdrawn. Also when

extension by sub classing is impractical.

Figure 1. Structure of the Decorator Pattern

Component defines the interface for the objects that can have responsibilities added to them

dynamically. Concrete Component defines an object to which additional responsibilities can be

attached. Decorator maintains a reference to a component object and defines an interface that

conforms to the component interface. Concrete Decorator adds responsibilities to the component.

Technology (IJAIT) Vol. 1, No.5, October 2011

3

cation more adaptable to the future requirements changes. New user types in the

application can be added without changing the client code by using the Decorator Design Pattern.

given a research on

some design patterns including Observer Pattern, Decorator Pattern, Factory Method Pattern and

In [7], Research and application of Design Patterns on Shopping Mall component design has been

In [4], Client code is exposed to the creation of decorator pattern objects and their composition

since it is exposed to the

decorator objects creation. Inclusion of Abstract Factory design pattern will ensure the following

Abstraction of Decorator Object creation from Client code thus making the application

Design can be reused because of the use of use of additional design patterns.

Provides single instance of the abstract factory object by using Singleton creational

Abstract Factory and Singleton Patterns together incorporate the aforementioned objectives in the

Decorator pattern adds responsibilities to individual objects dynamically and transparently, that

is, without affecting other objects. Such additional responsibilities can be withdrawn. Also when

es added to them

dynamically. Concrete Component defines an object to which additional responsibilities can be

attached. Decorator maintains a reference to a component object and defines an interface that

ator adds responsibilities to the component.

International Journal of Advanced Information Technology (IJAIT) Vol. 1, No.5, October 2011

4

5. ABSTRACT FACTORY AND SONGLETON PATTERN STRUCTURE

Abstract factory provide an interface for creating families of related or dependent objects without

specifying their concrete classes. It helps to control the classes of objects that an application

creates. Because a factory encapsulates the responsibility and the process of creating product

objects, it isolates clients from implementation classes. Clients manipulate instances though their

abstract interfaces. Product class names are isolated in the implementation of the concrete factory;

they do not appear in client code [4].

Figure 1. Structure of Abstract Factory Pattern.

Abstract Factory declares an interface for operations that create abstract product objects. Concrete

Factory implements the operations to create concrete product objects. Abstract Product declares

an interface for a type of product object. Concrete Product defines a product object to be created

by the corresponding concrete factory. It implements the Abstract Product interface. Client uses

only interfaces declared by Abstract factory and Abstract Product classes.

The factory completely abstracts the creation and initialization of the product from the client. This

indirection enables the client to focus on its discrete role in the application without concerning

itself with the details of how the product is created. Thus, as the product implementation changes

over time, the client remains unchanged. The most important aspect of this pattern is the fact that

the client is abstracted from both the type of product and the type of factory used to create the

product. Furthermore, the entire factory along with the associated products it creates can be

replaced in a wholesale fashion. Modifications can occur without any changes to the client[5].

In our work, Abstract Product is that of Decorator object of the DMS application. Concrete

products are different types of users (Admin, Program Manager and Stake Holder). Essentially,

International Journal of Advanced Information Technology (IJAIT) Vol. 1, No.5, October 2011

5

Decorator Pattern objects are made as that of Abstract Product and its Concrete Product objects.

Individual Concrete Factory objects are created for each of the user types (Concrete Factory1 for

user type Admin, Concrete Factory2 for user type Program Manager and Concrete Factory3 for

user type Stake Holder). In this design, Client is unaware of which concrete product and concrete

factory classes are created since it access the required objects embedded in abstract class pointer.

Hence the client code is detached from underlying concrete object creation and making the

system more adaptable to future requirement changes and easier to maintain it.

Singleton Pattern ensures a class has only one instance and provides global point of access to it.

Since there is only one instance of the Concrete Factory class, it is implemented using Singleton

Pattern so that client can have access to it from well known access point.

6. DMS APPLICATION

Development Management System is a web based application which allows different types of

user (Admin, Stake Holder and Program Manager) to login and operate the DMS application.

User page has certain functionality similar across all type of users. Changed functionality is

implemented using corresponding Decorator objects, using XML input data queried through

XPath [3].

With reference to Decorator Pattern, DefaultUserView class is of the type ConcreteComponent

which is sub classed from Component base class. Decorator class is sub classed from Component

class which is a base class for Concrete Decorators. Concrete decorators can be Admin,

Stakeholder or Program Manager decorator classes. Dynamic user page is decorated with any of

the concrete decorators depending upon the type of user logged into the system. Also, the

contents of the decorator are read from XML using X-path query [3].

In our work, changes are incorporated in Decorator Pattern object instantiation process. It is

achieved through Abstract Factory pattern which abstract clients from how the objects are

represented, composed and instantiated. Admin, Stake Holder and Program Manager Objects of

Decorator design pattern are now become part of the Abstract Factory pattern. Since there can be

only one instance of the Concrete Factory object for a particular logged in user, Singleton design

pattern is used so that client can access this one and only instance for further usage.

6. IMPLEMENTATION AND SAMPLE CODE

In this work, we applied changes to a web based application called Development Management

System. This application allows different types of user (Admin, Stake Holder and Program

Manager) to login and operate the DMS application. User page has certain functionality similar

across all type of users. Changed functionality is implemented using corresponding Decorator

objects, using XML input data queried through XPath [3].

AbstractFactory class(Listing1) is a Singleton Design Pattern class which creates the required

Concrete Factory object depending the type of user logged into the system. Instance is a static

function which returns the single instance of the concrete factory object. getInstance is a helper

function which returns the appropriate concrete factory object depending the user type. User type

can be read from either configuration file or registry. Abstract factory also has an important

abstract function, CreateUser which will be implemented by the concrete factory objects to create

the respective user type object.

International Journal of Advanced Information Technology (IJAIT) Vol. 1, No.5, October 2011

6

abstract class AbstractFactory
{

//one and only singleton instance

private static AbstractFactory instance = null;

//function to access the single instance object

public static AbstractFactory Instance()

{

if(instance == null)

{

instance = getInstance();

}

return instance;

}

 //helper function to create proper factory object

Private static AbstractFactory getInstance()

 {

string userType; //get the user type from //.ini file or registry

//Create factory object depending on user //type

Switch(userType)

{

 Case “Admin”:

 return new ConcreteFactory1(); Case “StakeHolder”:

 return new ConcreteFactory2();

 Case “ProgramManager”:

 return new ConcreteFactory3();

}

}

//abstract class & function to create decorator //object

Public abstract Decorator CreateUser();

}

Listing1: Abstract Factory Singleton class

ConcreteFactory1 class (Listing 2) is a sub class of AbstractFactory class which is responsible

for creating AdminDecorator object corresponding to Admin user type. AdminDecorator takes

DefaultUserView as an input argument to its constructor and AdminDecorator object is returned

to the client which has called CreateUser function.

class ConcreteFactory1 : AbstractFactory

{

Public override Decorator CreateUser()

 {

 //Default user view as an input to decorator

DefaultUserView duv = new DefaultUserView(); //create&return Admin Decorator

object

return new AdminDecorator(duv);

 }

}

Listing2: ConcreteFactory1 class for Admin Decorator

ConcreteFactory2 class (Listing 3) is responsible for creating stake holder decorator object.

ConcreteFactory is a subclass of AbstractFactory class and implements CreateUser function

International Journal of Advanced Information Technology (IJAIT) Vol. 1, No.5, October 2011

7

declared in AbstractFactory base class. Again the StakeHolderDecorator object is passed to the

client as Decorator object pointer, without revealing the underlying object in it.

class ConcreteFactory2 : AbstractFactory

{

 Public override Decorator CreateUser()

 {

 DefaultUserView duv = new DefaultUserView(); //create&return Stake

Holder Decorator object

return new StakeHolderDecorator(duv);

 }

}

Listing3: ConcreteFactory2 class for Stake Holder Decorator

ConcreteFactory3 class (Listing 4) is responsible for creating ProgramManager Decorator object.

ConcreteFactory is a subclass of AbstractFactory class and implements CreateUser function

declared in AbstractFactory base class. Again the ProgramManagerDecorator object is passed to

the client as Decorator object pointer, without revealing the underlying object in it.

class ConcreteFactory3 : AbstractFactory

{

 Public override Decorator CreateUser()

 {

 DefaultUserView duv = new DefaultUserView(); //create&return Program

Mgr Decorator object

return new ProgramManagerDecorator(duv);

 }

}

Listing4: ConcreteFactory3 class for Program Manager Decorator

AdminDecorator is a ConcreteDecorator (Listing 5) which adds the responsibility of rendering

the Admin related XHTML to the web browser. AdminDecorator will copy the visual component

object to its base class visual component member variable. It implements the Render function

which in turn reads the XML file to read its required contents and develops the XHTML as per

the XML data [3].

public class AdminDecorator : Decorator

{

//constructor for Admin Decorator

Public AdminDecorator(VisualComponent vc)

{

base.vc = vc;

}

 …

}

Listing5: Admin Decorator class derived from Decorator

International Journal of Advanced Information Technology (IJAIT) Vol. 1, No.5, October 2011

8

__

AbstractFactory af = AbstractFactory.Instance();

Decorator dc = af.CreateUser();

//Client unaware of the type of user

string totalXHTML = dc.Render();

//write the XHTML as string to the browser

Response.Write(totalXHTML);

__

Listing 6: Client code to render the XHTML

Client Code (Listing 6) shows how the final XHTML contents are retrieved from Decorator

object. Client code has been simplified and is now unaware of the user type logged into the

system. It gets single instance of concrete AbstractFactory object and in turn created the proper

Decorator Object which will render the XHTML code to the browser.

Above code snippet reveals us that the client code is hidden from the instantiation process of

concrete decorator objects. AbstractFactory object creation is implemented with the Singleton

design pattern to ensure that only one instance of the concrete factory object is created in the

application to provide the global point of access. Hence the above method of implementation

makes the maintenance of software easier and any changes in the user requirements can be

handled without changing the client part of the code. It also improved the performance of the

application when more number of users is added to the system.

7. CONCLUSION

Software Design Patterns are proven design methods which when used carefully in the

implementation of software development will lead to several advantages. Reusability,

Encapsulation and Ease of system maintenance are some of the benefits one can incorporate into

software systems if these proven design patterns are used in the system. Creational patterns

belong to that category of design pattern which will help in abstraction of object instantiation

process. They help make a system independent of how objects are created, composed, and

represented. Abstract Factory and Singleton patterns belong to creational pattern category, which

are used in this work to encapsulate the Decorator Pattern object instantiation process. Concrete

Decorator objects are created by respective Concrete Factory objects depending on the type of

user logged into the system. This resulted in improved application performance when additional

user types are added to the system and easier to maintain the application code for future

requirement changes.

REFERENCES

[1] Phek Lan Thung, Chu Jian Ng, Swee Jing Thung, Shahida Sulaiman, “Improving a Web Application

Using Design Patterns: A Case Study”

[2] V.Pawan, “Web Application Design Patterns”, CA Morgan Kauffman, 2009.

[3] Vijay K Kerji, “Decorator Pattern with XML in web based application”, ICNCS 2011 Kanyakumari,

India.

[4] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, “Design Patterns Elements of

Reusable Object Oriented Software”,Addison Wessley

[5] Danijel Matic, Dino Butorac, Hrvoje Kegalj, “Data Access Architecture in object oriented application

using Design Patterns”

International Journal of Advanced Information Technology (IJAIT) Vol. 1, No.5, October 2011

9

[6] Mu Huaxin, Jiang Shuai, “Design Patterns in Software Development”, IEEE 2011

[7] Jing Gang Chu, Jia Chen, “Research and Application of Design Patterns on Shopping Mall Design

Component”

Authors

Mr. Vijay K Kerji completed his B.E in 1993 in E&CE and M.Tech in CSE in 2007. He

worked for W.S Telesystems Ltd for two years, CMC Limited Hyderabad for four years,

and Siemens Corporate Research New Jersey for five years and Intel India for two years

as software engineer/senior software engineer. He has three international publications

including IEEE and Springer in the area of software design patterns and computer

networks. Currently he is serving educational institutions as a mentor in the area of c
omputer science engineering and electronics and communication engineering. His area of interest include

software design patterns, object oriented analysis and design, web development, operations research,

computer networks and electronic circuits.

