
International Journal of Advanced Information Technology (IJAIT) Vol. 2, No.1, February 2012 

DOI : 10.5121/ijait.2012.2104                                                                                                                       37 

 

ACTIVE CONTROLLER DESIGN FOR THE 

GENERALIZED PROJECTIVE SYNCHRONIZATION OF 
THREE-SCROLL CHAOTIC SYSTEMS  

 
Sarasu Pakiriswamy

1
 and Sundarapandian Vaidyanathan

2 

 

1
Department of Computer Science & Engineering 

Vel Tech Dr. RR & Dr. SR Technical University 

Avadi, Chennai-600 062, Tamil Nadu, INDIA 

 
sarasujivat@gmail.com  

 
2
Research and Development Centre 

Vel Tech Dr. RR & Dr. SR Technical University  

Avadi, Chennai-600 062, Tamil Nadu, INDIA 

 
 sundarvtu@gmail.com   

     

ABSTRACT 

 
This paper discusses the design of active controllers for generalized projective synchronization (GPS) of 

identical Wang 3-scroll chaotic systems (Wang, 2009), identical Dadras 3-scroll chaotic systems (Dadras 

and Momeni, 2009) and non-identical Wang 3-scroll system and Dadras 3-scroll system. The 

synchronization results (GPS) derived in this paper for the 3-scroll chaotic systems have been derived 

using active control method and established using Lyapunov stability theory. Since the Lyapunov exponents 

are not required for these calculations, the active control method is very effective and convenient for 

achieving the generalized projective synchronization (GPS) of the 3-scroll chaotic systems addressed in 

this paper. Numerical simulations are provided to illustrate the effectiveness of the GPS synchronization 

results derived in this paper. 
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1. INTRODUCTION 

 
Chaotic systems are nonlinear dynamical systems which are highly sensitive to initial conditions. 

This sensitivity of chaotic systems is usually called as the butterfly effect [1]. Experimentally, 

chaos was first discovered by Lorenz ([2], 1963) while he was simulating weather models. A 

chaotic system simpler than the Lorenz system was proposed by Rössler ([3], 1976). The 

theoretical equations of the Rössler system were later found to be useful in modelling equilibrium 

in chemical reactions. 

 

Chaos synchronization problem received great attention in the literature when Pecora and Carroll 

[4] published their results on chaos synchronization in 1990. From then on, chaos synchronization 

has been extensively and intensively studied in the last three decades [4-35]. Chaos theory has 

been explored in a variety of fields including physical systems [5], chemical systems [6], 

ecological systems [7], secure communications [8-10], etc. 
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Synchronization of chaotic systems is a phenomenon that may occur when   a chaotic oscillator 

drives another chaotic oscillator. Because of the butterfly effect which causes the exponential 

divergence of the trajectories of two identical chaotic systems started with nearly the same initial 

conditions, synchronizing two chaotic systems is seemingly a very challenging problem.  

 

In most of the chaos synchronization approaches, the master-slave or drive-response formalism is 

used. If a particular chaotic system is called the master or drive system and another chaotic 

system is called the slave or response system, then the idea of anti-synchronization is to use the 

output of the master system to control the slave system so that the states of the slave system have 

the same amplitude but opposite signs as the states of the master system asymptotically. In other 

words, the sum of the states of the master and slave systems are designed to converge to zero 

asymptotically, when anti-synchronization appears. 

 

In the recent years, various schemes have been deployed for chaos synchronization such as PC 

method [4], OGY method [11], active control [12-15], adaptive control [16-20], backstepping 

design [21-23], sampled-data feedback [24], sliding mode control [25-28], etc.   

 

In generalized projective synchronization (GPS) of chaotic systems [29-30], the chaotic systems 

can synchronize up to a constant scaling matrix. Complete synchronization [12-13], anti-

synchronization [31-34], hybrid synchronization [35], projective synchronization [36] and 

generalized synchronization [37] are particular cases of generalized projective synchronization. 

GPS has important applications in areas like secure communications and secure data encryption. 

In this paper, we deploy active control method so as to derive new results for the generalized 

projective synchronization (GPS) for identical and different Wang 3-scroll systems and Dadras 3-

scroll chaotic systems. Explicitly, using active nonlinear control and Lyapunov stability theory, 

we achieve generalized projective synchronization for identical Wang 3-scroll chaotic systems 

(Wang,  [38], 2009), identical Dadras 3-scroll chaotic systems (Dadras and Momeni, [39], 2009) 

and non-identical Wang 3-scroll system and Dadras 3-scroll system. 

 

This paper has been organized as follows. In Section 2, we give the problem statement and our 

methodology. In Section 3, we present a description of the 3-scroll chaotic systems considered in 

this paper. In Section 4, we derive results for the GPS of two identical Wang 3-scroll chaotic 

systems. In Section 5, we derive results for the GPS of two identical Dadras 3-scroll chaotic 

systems. In Section 6, we discuss the GPS of non-identical 3-scroll chaotic systems. In Section 7, 

we summarize the main results derived in this paper. 

 

2. PROBLEM STATEMENT AND OUR METHODOLOGY 

 
Consider the chaotic system described by the dynamics 

 

( )x Ax f x= +&            (1) 

where 
n

x ∈R is the state of the system, A  is the n n× matrix of the system parameters and 

: n n
f →R R is the nonlinear part of the system. We consider the system (1) as the master or 

drive system. 

As the slave or response system, we consider the following chaotic system described by the 

dynamics 

( )y By g y u= + +&             (2) 
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where 
n

y ∈R is the state of the system, B is the n n× matrix of the system parameters, 

: n n
g →R R is the nonlinear part of the system and

n
u ∈R is the controller of the slave system. 

If A B= and ,f g= then x and y are the states of two identical chaotic systems. If A B≠ or 

,f g≠ then x and y are the states of two different chaotic systems.  

In the active control approach, we design a feedback controller ,u which achieves the generalized 

projective synchronization (GPS) between the states of the master system (1) and the slave 

system (2) for all initial conditions (0), (0) .n
x z ∈R  

For the GPS of the systems (1) and (2), the synchronization error is defined as 

  ,e y Mx= −           (3) 

where  

  

1

2

0 0

0 0

0 0 n

M

α

α

α

 
 
 =
 
 
 

L

L

M M O M

L

       (4) 

In other words, we have 

 ,   ( 1, 2, , )i i i ie y x i nα= − = K        (5) 

From (1)-(3), the error dynamics is easily obtained as 

   ( ) ( )e By MAx g y Mf x u= − + − +&           (6) 

The aim of GPS is to find a feedback controller u so that 

lim ( ) 0
t

e t
→∞

=  for all (0) .n
e ∈R       (7) 

Thus, the problem of generalized projective synchronization (GPS) between the master system 

(1) and slave system (2) can be translated into a problem of how to realize the asymptotic 

stabilization of the system (6). So, the objective is to design an active controller u for stabilizing 

the error dynamical system (6) at the origin.  

We take as a candidate Lyapunov function 

            ( ) ,T
V e e Pe=                                                      (8) 

where P is a positive definite matrix.  

Note that : n
V →R R is a positive definite function by construction.  



International Journal of Advanced Information Technology (IJAIT) Vol. 2, No.1, February 2012 

40 

 

We assume that the parameters of the master and slave system are known and that the states of 

both systems (1) and (2) are measurable. 

If we find a feedback controller u so that 

( ) ,T
V e e Qe= −&          (9) 

where Q is a positive definite matrix, then : n
V →& R R  is a negative definite function.  

Thus, by Lyapunov stability theory [40], the error dynamics (6) is globally exponentially stable 

and hence the condition (7) will be satisfied. Hence, GPS is achieved between the states of the 

master system (1) and the slave system (2). 

 

3. SYSTEMS DESCRIPTION 

 
The Wang 3-scroll system ([38], 2009) is described by the dynamics 

 

1 1 2 2 3

2 2 1 3

3 3 1 1 2

( )x a x x x x

x bx x x

x cx dx x x

= − −

= − +

= − + +

&

&

&

         (10) 

where 
1 2 3, ,x x x are the state variables and , , ,a b c d are constant, positive parameters of the 

system. 

The Wang dynamics (10) exhibits a 3-scroll chaotic attractor when the system parameter values 

are chosen as  

     0.977,   10,   4,    0.1a b c d= = = =  

Figure 1 depicts the strange attractor of the Wang 3-scroll chaotic system. 

The Dadras 3-scroll system ([39], 2009) is described by the dynamics  

1 2 1 2 3

2 2 1 3 3

3 1 2 3

x x px qx x

x rx x x x

x sx x xε

= − +

= − +

= −

&

&

&

        (11) 

where 1 2 3, ,x x x are the state variables and  , , , ,p q r s ε are constant, positive parameters of the 

system. 

The Dadras dynamics (11) is chaotic when the parameter values are taken as  

 3,   2.7,  1.7,   2,   9p q r s ε= = = = =  

Figure 2 describes the strange attractor of the Dadras 3-scroll chaotic system (11). 
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Figure 1. Strange Attractor of the Wang 3-Scroll Chaotic System 

 

Figure 2. Strange Attractor of the Dadras 3-Scroll Chaotic System 
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4. GPS OF IDENTICAL WANG 3-SCROLL CHAOTIC SYSTEMS 

 
4.1 Theoretical Results 

 
In this section, we apply the active nonlinear control method for the generalized projective 

synchronization (GPS) of two identical Wang 3-scroll chaotic systems ([38], 2009).   

Thus, the master system is described by the Wang dynamics 

 

1 1 2 2 3

2 2 1 3

3 3 1 1 2

( )x a x x x x

x bx x x

x cx dx x x

= − −

= − +

= − + +

&

&

&

         (12) 

where 
1 2 3, ,x x x are the states  and  , , ,a b c d are positive, constant parameters of the system. 

The slave system is described by the controlled Wang dynamics 

  

1 1 2 2 3 1

2 2 1 3 2

3 3 1 1 2 3

( )y a y y y y u

y by y y u

y cy dy y y u

= − − +

= − + +

= − + + +

&

&

&

        (13) 

where 1 2 3, ,y y y are the states and 1 2 3, ,u u u are the active nonlinear controls to be designed. 

 For the GPS of the Wang systems (12) and (13), the synchronization error e is defined by 

  

1 1 1 1

2 2 2 2

3 3 3 3

e

e

e

y x

y x

y x

α

α

α

= −

= −

= −

           (14) 

where the scales 1 2 3, ,α α α are real numbers. 

The error dynamics is obtained as 

1 1 2 1 2 2 3 1 2 3 1

2 2 1 3 2 1 3 2

3 3 1 3 1 1 2 3 1 2 3

( )

( )

e ae a y x y y x x u

e be y y x x u

e ce d y x y y x x u

α α

α

α α

= − − − + +

= − + − +

= − + − + − +

&

&

&

     (15) 

We choose the nonlinear controller as 

1

2

3

1 2 1 2 2 3 1 2 3 1 1

2 1 3 2 1 3 2 2

3 1 3 1 1 2 3 1 2 3 3(

( )

)

u a

u be

u ce d y

e a y x y y x x k e

y y x x k e

x y y x x k e

α

α α

α α= −

=

=

+ − + − −

− + −

− − − + −

     (16) 

where the gains 1 2 3, ,k k k are positive constants. 
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Substituting (16) into (15), the error dynamics simplifies to 

1 1

2 2

3 3

1

2

3

e k e

e k e

e k e

= −

= −

= −

&

&

&

         (17) 

Next, we prove the following result. 

Theorem 1. The active feedback controller (16) achieves global chaos generalized projective 

synchronization (GPS) between the identical Wang 3-scroll chaotic systems (12) and (13).   

Proof.  We consider the quadratic Lyapunov function defined by 

   ( )2 2 2

1 2 3( )
1 1

2 2

T
V e e e e e e= = + +                      (18) 

which is a positive definite function on 
3.R  

Differentiating (18) along the trajectories of (17), we get 

      
2 2 2

1 1 2 2 3 3( ) ,V e k e k e k e= − − −&            (19) 

which is a negative definite function on 
3.R  

Thus, by Lyapunov stability theory [40], the error dynamics (17) is globally exponentially stable.  

This completes the proof. � 

 

4.2 Numerical Results 

 
For the numerical simulations, the fourth-order Runge-Kutta method is used to solve the two 

systems of differential equations (12) and (13) with the active controller (16). 

 

The parameters of the identical Wang 3-scroll chaotic systems are chosen as 

0.977,   10,   4,   0.1a b c d= = = =  

The initial values for the master system (12) are taken as 

  1 2 3(0) 16,   (0) 7,   (0) 20x x x= = − =  

The initial values for the slave system (13) are taken as 

  1 2 3(0) 4,   (0) 12,   (0) 9y y y= = = −  

The GPS scales are taken as 1 22.7,   1.7α α= − = and 3 1.4.α = −  

We take the state feedback gains as 5ik = for 1, 2,3.i =  
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Figure 3 shows the GPS synchronization of the identical Wang 3-scroll systems. Figure 4 shows 

the time-history of the GPS synchronization errors 
1 2 3, ,e e e for the identical Wang 3-scroll 

systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. GPS Synchronization of the Identical Wang 3-Scroll Systems 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Time History of the GPS Synchronization Error  
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5. GPS OF IDENTICAL DADRAS 3-SCROLL CHAOTIC SYSTEMS 

 
5.1 Theoretical Results 

 
In this section, we apply the active nonlinear control method for the generalized projective 

synchronization (GPS) of two identical Dadras 3-scroll chaotic systems ([39], 2009).   

Thus, the master system is described by the Dadras dynamics 

1 2 1 2 3

2 2 1 3 3

3 1 2 3

x x px qx x

x rx x x x

x sx x xε

= − +

= − +

= −

&

&

&

          (20) 

where 1 2 3, ,x x x are the states  and  , , , ,p q r s ε are positive, constant parameters of the system. 

The slave system is described by the controlled Dadras dynamics 

    

1 2 1 2 3 1

2 2 1 3 3 2

3 1 2 3 3

y y py qy y u

y ry y y y u

y sy y y uε

= − + +

= − + +

= − +

&

&

&

       (21) 

where 
1 2 3, ,y y y are the states and 

1 2 3, ,u u u are the active nonlinear controls to be designed. 

 For the GPS of the Dadras systems (20) and (21), the synchronization error e is defined by 

  

1 1 1 1

2 2 2 2

3 3 3 3

e

e

e

y x

y x

y x

α

α

α

= −

= −

= −

           (22) 

where the scales 1 2 3, ,α α α are real numbers. 

The error dynamics is obtained as 

1 1 2 1 2 2 3 1 2 3 1

2 2 3 2 3 1 3 2 1 3 2

3 3 1 2 3 1 2 3

( )

( )

e pe y x q y y x x u

e re y x y y x x u

e e s y y x x u

α α

α α

ε α

= − + − + − +

= + − − + +

= − + − +

&

&

&

     (23) 

We choose the nonlinear controller as 

 

1 1 2 1 2 2 3 1 2 3 1 1

2 2 3 2 3 1 3 2 1 3 2 2

3 3 1 2 3 1 2 3 3

( )

( )

u pe y x q y y x x k e

u re y x y y x x k e

u e s y y x x k e

α α

α α

ε α

= − + − − −

= − − + + − −

= − − −

     (24) 

where the gains 1 2 3, ,k k k are positive constants. 
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Substituting (24) into (23), the error dynamics simplifies to 

1 1

2 2

3 3

1

2

3

e k e

e k e

e k e

= −

= −

= −

&

&

&

         (25) 

Next, we prove the following result. 

Theorem 2. The active feedback controller (24) achieves global chaos generalized projective 

synchronization (GPS) between the identical Dadras 3-scroll chaotic systems (20) and (21).   

Proof.  We consider the quadratic Lyapunov function defined by 

   ( )2 2 2

1 2 3( )
1 1

2 2

T
V e e e e e e= = + +                      (26) 

which is a positive definite function on 
3.R  

Differentiating (26) along the trajectories of (25), we get 

      
2 2 2

1 1 2 2 3 3( ) ,V e k e k e k e= − − −&            (27) 

which is a negative definite function on 
3.R  

Thus, by Lyapunov stability theory [40], the error dynamics (25) is globally exponentially stable.  

This completes the proof. � 

 

5.2 Numerical Results 

 
For the numerical simulations, the fourth-order Runge-Kutta method is used to solve the two 

systems of differential equations (20) and (21) with the active controller (24). 

The parameters of the identical Dadras 3-scroll chaotic systems are chosen as 

 3,   2.7,  1.7,   2,   9p q r s ε= = = = =  

The initial values for the master system (20) are taken as 

  
1 2 3(0) 5,   (0) 26,   (0) 14x x x= − = =  

The initial values for the slave system (21) are taken as 

  1 2 3(0) 24,   (0) 2,   (0) 6y y y= = = −  

The GPS scales are taken as 1 23.1,   2.4α α= = and 3 1.6.α =  

 We take the state feedback gains as 5ik = for 1, 2,3.i =  

Figure 5 shows the GPS synchronization of the identical Dadras 3-scroll systems. Figure 6 shows 

the time-history of the GPS synchronization errors 1 2 3, ,e e e for the identical Dadras 

3-scroll systems. 
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Figure 5. GPS Synchronization of the Identical Dadras 3-Scroll Systems 

 

Figure 6. Time History of the GPS Synchronization Error  
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6. GPS OF WANG 3-SCROLL AND DADRAS 3-SCROLL SYSTEMS 

 
6.1 Theoretical Results 

 
In this section, we apply the active nonlinear control method for the generalized projective 

synchronization (GPS) of Wang 3-scroll and Dadras 3-scroll chaotic systems.   

Thus, the master system is described by the Wang dynamics 

  

1 1 2 2 3

2 2 1 3

3 3 1 1 2

( )x a x x x x

x bx x x

x cx dx x x

= − −

= − +

= − + +

&

&

&

         (28) 

where 1 2 3, ,x x x are the states and , , ,a b c d are constant, positive parameters of the system. 

The slave system is described by the controlled Dadras dynamics 

    

1 2 1 2 3 1

2 2 1 3 3 2

3 1 2 3 3

y y py qy y u

y ry y y y u

y sy y y uε

= − + +

= − + +

= − +

&

&

&

       (29) 

where 
1 2 3, ,y y y are the states, , , , ,p q r s ε  are positive, constant parameters of the system and 

1 2 3, ,u u u are the active nonlinear controls to be designed. 

 For the GPS of the 3-scroll systems (28) and (29), the synchronization error e is defined by 

  ,     ( 1, 2,3)i i i ie y x iα= − =        (30) 

where the scales 1 2 3, ,α α α are real numbers. 

The error dynamics is obtained as 

[ ]

[ ]

[ ]

1 2 1 2 3 1 1 2 2 3 1

2 2 1 3 3 2 2 1 3 2

3 1 2 3 3 3 1 1 2 3

( )e y py qy y a x x x x u

e ry y y y bx x x u

e sy y y cx dx x x u

α

α

ε α

= − + − − − +

= − + − − + +

= − − − + + +

&

&

&

    (31) 

We choose the nonlinear controller as 

[ ]

[ ]

[ ]

1 2 1 2 3 1 1 2 2 3 1 1

2 2 1 3 3 2 2 1 3 2 2

3 1 2 3 3 3 1 1 2 3 3

( )u y py qy y a x x x x k e

u ry y y y bx x x k e

u sy y y cx dx x x k e

α

α

ε α

= − + − + − − −

= − + − + − + −

= − + + − + + −

    (32) 

where the gains 1 2 3, ,k k k are positive constants. 
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Substituting (32) into (31), the error dynamics simplifies to 

1 1

2 2

3 3

1

2

3

e k e

e k e

e k e

= −

= −

= −

&

&

&

         (33) 

Next, we prove the following result. 

Theorem 3. The active feedback controller (32) achieves global chaos generalized projective 

synchronization (GPS) between the Wang 3-scroll system (28) and Dadras 3-scroll system (29).   

Proof.  We consider the quadratic Lyapunov function defined by 

   ( )2 2 2

1 2 3( )
1 1

2 2

T
V e e e e e e= = + +                      (34) 

which is a positive definite function on 
3.R  

Differentiating (26) along the trajectories of (33), we get 

      
2 2 2

1 1 2 2 3 3( ) ,V e k e k e k e= − − −&            (35) 

which is a negative definite function on 
3.R  

Thus, by Lyapunov stability theory [40], the error dynamics (33) is globally exponentially stable.  

This completes the proof. � 

 

6.2 Numerical Results 

 
For the numerical simulations, the fourth-order Runge-Kutta method is used to solve the two 

systems of differential equations (28) and (29) with the active controller (32). 

The parameters of the Wang 3-scroll and Dadras 3-scroll systems are chosen as 

0.977,   10,   4,   0.1,  3,   2.7,  1.7,   2,   9a b c d p q r s ε= = = = = = = = =  

The initial values for the master system (28) are taken as 

  
1 2 3(0) 23,   (0) 4,   (0) 9x x x= = − = −  

The initial values for the slave system (29) are taken as 

  1 2 3(0) 7,   (0) 12,   (0) 20y y y= − = =  

The GPS scales are taken as 1 22.7,   1.2α α= = − and 3 5.6.α =  

 We take the state feedback gains as 5ik = for 1, 2,3.i =  

Figure 7 shows the GPS synchronization of the non-identical Wang and Dadras 3-scroll systems. 

Figure 8 shows the time-history of the GPS synchronization errors 1 2 3, ,e e e for the non-identical 

Wang and Dadras 3-scroll systems. 
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Figure 7. GPS Synchronization of the Wang and Dadras 3-Scroll Systems 

 

Figure 8. Time History of the GPS Synchronization Error  
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7. CONCLUSIONS 

 
In this paper, we had derived active control laws for achieving generalized projective 

synchronization (GPS) of the following pairs of 3-scroll chaotic systems: 

 

(A) Identical Wang 3-scroll systems (2009) 

(B) Identical Dadras 3-scroll systems (2009) 

(C) Non-identical Wang and Dadras 3-scroll systems 

 

The synchronization results (GPS) derived in this paper for the Wang and Dadras 3-scroll systems 

have been proved using Lyapunov stability theory. Since Lyapunov exponents are not required 

for these calculations, the proposed active control method is very effective and suitable for 

achieving GPS of the 3-scroll chaotic systems addressed in this paper. Numerical simulations are 

shown to demonstrate the effectiveness of the GPS synchronization results derived in this paper 

for the Wang and Dadras 3-scroll chaotic systems. 
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