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ABSTRACT 

 
Smart cards improve the convenience and security of any transaction. They provide tamper-proof storage 

of user and account identity. Multifunction cards are used to manage network system access, store value 

and other data. The cards carry personal account, credit and buying-preference information and thus, 

security becomes a primary issue here. Public Key Cryptography plays an essential role in electronic 

banking and financial transactions. ECC is one of the best public key techniques for its small key size, high 

security and is suitable for secure access of smart cards. This article gives principles of public key 

cryptography, illustrates two cryptographic algorithms RSA and ECC. The elliptic curve cryptography is 

implemented on smart card using Menezes-Vanstone Elliptic Curve Cryptosystem and Nyberg-Rueppel 

Signature Scheme [2]. The implementation of these algorithms is done using Java Card technology. The 

test results are analysed and comparison about the public key sizes and security aspects are also discussed. 
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1. INTRODUCTION 

 
Today smart cards are used for many different purposes in daily life. The smart card can be a 

phone card, a card carrying our health insurance information, or an electronic purse. The smart 
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card itself is a device which is able to store data and execute commands. It has its own CPU, 

memory and COS, almost equivalent to a computer, and it can implement information storage and 

data processing. With the development of software and hardware technology, smart card is widely 

used in medical, transportation, communications, finance, and other areas.  

 

As information technology continues to evolve, people increasingly have high demand for 

information security of smart card. Information security is one of the main directions of smart 

card; this naturally gives rise to the need for reliable, efficient and convenient cryptographic 

algorithms which provides Authentication, Confidentiality, Integrity, Non-Repudiation, and 

Availability. There are several different wireless terminals on the market, with which the 

consumers can have Internet access. 

 

When these kind of wireless terminals, which need the user to authenticate them before use, are 

getting more common, the need for some kind of authentication method other than typing in 

passwords becomes apparent. The smart cards might offer an easier way to identify users. When 

using a GSM phone, a smart card chip is already hidden inside your handset to provide strong 

authentication to the network operator.  

 

Smart card is an ideal medium for use with PKI applications. It provides secure storage of 

confidential data and is capable of executing complex cryptographic algorithms, such as RSA, 

EIGammal and elliptic curve cryptography (ECC). This paper describes RSA and ECC 

algorithms, compares these two cryptosystems performance implicated in smart card, and gives 

improvement proposal and further development. 

 

2. PRINCIPLES OF PUBLIC KEY CRYPTOSYSTEMS 

 
The basic idea that led to public key algorithms was that keys could come in pairs of an 

encryption and decryption key and that it could be impossible to compute one key given the other. 

Public key Cryptosystems (PKC) algorithm can be divided into two kinds of public key and 

private key. In PKC system, public key is open, however private key is kept confidential, and the 

private key cannot be calculated only from the public key. 

 

Public key algorithms have a big advantage when used for ensuring privacy of communication. 

Public key algorithms use different keys for signing and decryption, and for encryption and 

signature verification. The private key may only be known to its owner and must be kept in 

secret. It may be used for generation of digital signatures or for decrypting private information 

encrypted with the public key. The public key may be used for verifying digital signatures or for 

encrypting information. It needs not to be kept secret, because it is infeasible to compute the 

private key from a given public key. Anyone who informed the user public key is available to 

encrypt information for secure information exchange with the user. As the public key and private 

key are different, only the user can decrypt the message, any user who were not authorized and 

the sender cannot decrypt this message [3]. If Sender A want to send massage m to Receiver B, 

he calculate cipher text c with the encryption function of ENCeB (m), then transport cipher text to 

Receiver B. When Receiver B gets massage m’ he calculates with the function of DECdB (c) to 

obtain massage m. 
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Figure 1.  Public Key Cryptosystems 

 

2.1. RSA Cryptosystem 
 
The RSA cryptosystem was invented in 1977 by Rivest, Shamir and Adleman, and was the first 

realization of Diffie and Hellman's abstract model for public key cryptography [4]. The RSA 

algorithm is the best known of the integer factorization family of cryptosystems where the 

strength of the cryptosystem lies in the mathematical difficulty of factoring large integers.  

The RSA key pair generation algorithm is generated by following steps:  

 

1. Choose two random primes, p and q, of length l/2.  

2. Calculate n=p*q and Φ= (p-1) (q-1).  

3. Choose integer e to meet 1<e<Φ and gcd(e, Φ)=1.  

4. Calculate integer d to meet 1<d<Φ and e*d=1(mod Φ).  

5. Get the public key pair (e,n) and the private key pair (d, n). 

Where n is RSA’s operation mode, e is signified encryption index, l is signified security 

parameters and d is signified private key. RSA encryption scheme is get cipher text by the 

encryption formula c=me mod n, and get the explicitly by the decryption formula m= cd mod n.  

The premise behind RSA’s security is the assumption that factoring a big number (n into p, and q) 

is hard. And thus it is difficult to determine Φ (n). Without the knowledge of Φ (n), it would be 

hard to derive d based on the knowledge of e. 

 

2.2. ECC Cryptosystem 

 
ECC is a public key primitive that is increasingly important as alternative to RSA. ECC was 

proposed independently by Miller and Koblitz in 1985, is becoming widely known and accepted 

[8]. Elliptic curves are mathematical constructions, that can be defined over and field. A field is 

defined by a set of elements and some operations that have some special properties. Order E is the 

finite field Fp on the elliptic curve, P is a point on the elliptic curve [1]. While using ECC, we 

deal with various properties of points on curve, and functions. The only aim is to use elliptic 

curves as an encryption tool which converts the information m into the point P on the curve E. It 

is defined by formula:  
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+ax+b 

 

Where a , b ∈ Fp, and satisfies the equation:  

 

4a3+27b2
 ≠ 0 (mod p) 

 

Set the order of P is a prime n, so that assemblage P is cyclic subgroups of elliptic curves which 

generated by P. Prime P, elliptic curve equation E and order n constitute a public set of 

parameters. The whole ECC algorithm works on the principle of generating the secret key from 

the random generated integer and the key pair obtained by once adding the multiplying the elliptic 

curve points [1]. The ECC key pair generation algorithm is generated by following steps:  

 

1. Choose a random key d in [1,n-1].  

2. Calculate Q=d*p.  

3. Get the public key pair (Q,d).  

 

Where d is signified private key and Q is signified public key. To achieve the elliptic curve 

encryption, following steps need to do. Express plaintext m as elliptic curve point M.  

 

1. Choose a random key k in [1, n-1]  

2. Calculate C1=k*p  

3. Calculate C2=M+k*Q  

4. Get the public key pair (C1, C2). ; where C1 and C2 are ciphertexts.  

 

The decryption process is receiver calculate M by formula : 

 

M= C2+d* C1 ; where M is the plaintext. 

 

One of the advantages of ECC is that the elliptic curve discrete logarithm problem is believed to 

be harder than both the integer factorization problem and discrete logarithm problem modulo p. 

This extra difficulty implies that ECC is one of the strongest public key cryptographic systems 

known today [6]. 
 

2.2.1 Menezes-Vanstone Elliptic Curve Cryptosystem  

 

The Menezes-Vanstone elliptic curve cryptosystem is defined as follows [10]. Let E be an elliptic 

curve defined over Zp (p > 3 prime), or in GF (pn) with n > 1, such that E contains a cyclic 

subgroup H in which the discrete logarithm problem is intractable.  

 

Let, P = Zp * Zp, C = E * Zp * Zp, and define,  

 

K = { (E, α, α, β ) : β = αα}, 

 

where α ∈ E. The values α and β are public and α is secret.  

 

For K = (E, α, α, β), for a (secret) random number k ∈ Z|H| and for x = (x1 , x2) ∈ Zp * Zp , define  

ek(x , k) = (y0 , y1 , y2) 

where,  

y0 = k α, 

(c1, c2) = k β, 

y1= c1x1 mod p, 
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y2= c2x2mod p. 

For a ciphertext y = (y0 , y1 , y2), define, 

 

dK (y) = (y1c1
-1

  mod p, y2c2
-1

mod p) 

where, ay0= (c1,c2).  

 

The Menezes-Vanstone cryptosystem is a more efficient variation of the well-known ElGamal 

cryptosystem [11]. In the Menezes-Vanstone variation of the ElGamal cryptosystem an elliptic 

curve is used for masking, and plaintexts and ciphertexts are allowed to be arbitrary ordered pairs 

of (nonzero) field elements (i.e. they are not required to be points on E). This yields a message 

expansion factor of two, the same as original ElGamal cryptosystem.  

 

2.2.2 Nyberg-Rueppel Signature Scheme (ECNRA)  
 

The Nyberg-Rueppel signature scheme can be defined as follows.  

 

Let E be an elliptic curve defined over Zp (p > 3 prime) such that E contains a cyclic subgroup H 

in which the discrete logarithm problem is intractable.  

 

Let, P = Zp * Zp, C = E * Zp * Zp, and define,  

 

K = { (E, α, α, β ) : β = αα}, 

 

where α ∈ E. The values α and β are public and α is secret.  

For K = (E, α, α, β), for a (secret) random number k ∈ Z|H| and for x = (x1 , x2) ∈ Zp * Zp , define  

sigK(x , k) = (c ,d) 

where,  

(y1 , y2) = kα 

c = y1+ hash (x) mod p 

d = k – ac mod p 

verK(x ,c ,d) = true ↔ hash(x) = e, 

where  

(y1,y2) = dα + cβ 

e = c – y1mod p 

 

The reason to use the hash algorithm is to make it impossible to and a match between the real 

input and some majorly changed version that would give the same hash value. The problem is 

considered exceptionally difficult to solve with the above hash algorithms [9]. The message 

expansion can be reduced by using point compression. That is, the y-coordinate of the point can 

be recovered given its x-coordinate and a single bit of extra information. 

 

3. CONCLUSIONS 

 
When comparing public key cryptographic systems, there are three distinct factors to take into 

account:  

 

1. Security: What is the security based on. How long has the cryptosystem been in wide 

use and how much its security has been studied.  

2. Efficiency: How much computation is required to perform the public key and private 

key transformations. How many bits must be communicated to transfer an encrypted 

message or signature.  
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3. Space requirements: How many bits are required to store the key pairs and associated 

system parameters. 

  

3.1 Security  
 

RSA and ECC are two public key algorithms. We can comparison these two cryptographic 

algorithms in key size. As is shown in Table 1, if security level is given, ECC has a small 

parameter than RSA. The higher is the level of security, the gap of parameters size more obvious. 

Smaller parameter will make computing faster, shorter keys and smaller key certificates, the 

computation speed of ECC is many times faster than the RSA. For example, RSA key size is 

1024 bit and ECC key size is 160 bit at the 80 security level, their key size ratio is 1 to 6. When 

the security level is raised to 256, their key size ratio increases from 1 to 30.  

 
Table 1. Key size Comparisons (security) 

 

RSA Key size (in bits) 
 

ECC Key size (in bits) 
 

RSA / ECC Key size 

ratio 

512 106 5 : 1 

768 132 6 : 1 

1024 160 7 : 1 

2048 210 10 : 1 

21000 600 35 : 1 

 

It is found that to achieve reasonable security; RSA would need to employ a 1024-bit modulus, 

whereas a 160-bit modulus should be sufficient for the ECC. ECC required a smaller modulus 

than RSA and that the security gap between the systems grew as the key size increased. For 

example, 300-bit ECC is significantly more secure than 2000-bit RSA.  

 

Another way to look at this security issue is to compare the equivalent strength of RSA keys and 

ECC keys for smart card applications. The Table 1 shows that in smart card applications requiring 

higher levels of security, ECC is able to offer security without a great deal of additional system 

resources. 

 

3.2 Efficiency 

 
In both RSA and ECC, considerable computational savings can be made. In RSA, a short public 

exponent can be employed to speed up signature verification and encryption. In ECC, a large 

proportion of the signature generation and encrypting transformations can be precomputed [7]. 

Also, various special bases for the finite field F2
m can be employed to perform the modular 

arithmetic involved in ECC operation more quickly. Certicom has performed the tests using 167-

MHz UltraSparc running Solaris 2.5.1. 

 

It can be found from the Table 2, ECC is an order of magnitude (roughly 10 times) faster than 

RSA [12]. The use of a short public exponent in RSA can make RSA encryption and signature 

verification timings comparable with timings for these processes using the ECC. 
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Table 2. Benchmarks for Solaris (Efficiency) [13] 

 

Function  

 

163-bit ECC (ms)  1024-bit RSA (ms)  

Key pair Generation  3.8  4708.3  

Sign  

 

2.1 (ECNRA)  

3.0 (ECDSA)  

228.4  

 

Verification  

 

9.9 (ECNRA)  

10.7 (ECDSA)  

12.7  

 

Diffie – Hellman Key 

Exchange  

7.3  

 

1654.0  

 

3.3 Space Requirements  
 
Elliptic curve cryptosystems have the potential to provide security equivalent to that of existing 

public key schemes, but with shorter key lengths. Having short key lengths is a factor that can be 

crucial in some applications, for example, the design of smart card systems. The arithmetic 

processor on a smart card is restricted in size to an area of roughly 25 mm
2
. An RSA chip 

designed to do modular multiplication of 512-bit numbers has about 50,000 transistors, while a 

chip designed to perform arithmetic in the field F2
593 has about 100,000 transistors [13]. By 

comparison, a chip designed to do arithmetic in F2
m 

where m is about 200, would have less than 

15,000 transistors, and would occupy about 15% of the 25 mm2 area assigned for the processor. 

Another advantage to be gained by using elliptic curves is that each user may select a different 

curve E, even though all users use the same underlying field K. Table 3 is from Certicom, and 

compares the size of the system parameters and selected key pairs for the different systems, and 

presents evidence that the system parameters and key pairs are shorter for the 160-bit ECC than 

for 1024-bit RSA. 

 
Table 3. Space requirements 

 

 System Parameters 

(bits)  

Public Key (bits)  

 

Private Key (bits)  

 

1024-bit RSA  n / a  1088 2048 

160-bit ECC  481 161 160 

 

Both of the systems have similar bandwidth requirements when they are used to encrypt or sign 

long messages, but say this situation changes for the case where short messages are being 

transformed. The encryption algorithm used in encrypting 100-bit message is an ElGamal variant 

with point compression. Therefore it would appear from this comparison that ECC offers 

considerable bandwidth savings over the RSA when being used to transform short messages [9]. 

In summary, ECC provides greater efficiency than either integer factorization systems, in terms of 

computational overheads, key sizes and bandwidth. In implementations, these savings mean 

higher speeds, lower power consumption, and code size reductions. These benefits make ECC 

widespread used. 
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4. IMPLEMENTATION 
 
At present, smart card is mainly used for electronic identification and storing user information. 

The security services offered by a smart card often include both data encryption and public key 

operations. Creation of a digital signature is often the most computationally intensive operation 

demanded of a smart card. The hardware resources of smart card are limited; security system is 

facing the constraints of memory capacity and computing power. ECC encryption is capable of 

compensate for the limitations of the smart card hardware. On the one hand, the key generated 

from ECC is short, which means less storage capacity, faster information transfer rate and 

computing power can be achieved. On the other hand, the use of ECC in the smart card does not 

require additional hardware, thereby reducing the cost of hardware and improving the usability. 

To implement an ECC, an implementer must select a finite field in which to perform arithmetic 

calculations. Elliptic curve selection and parameter determination may make difference results, 

how to improve the efficiency of the cryptosystem becomes the focus of researchers.  

 

The Elliptic curve cryptosystem and RSA is implemented using Microsystems' Java Card 

emulator. There are three different bases, which can be used to implement fields of characteristic 

two: polynomial base, normal base, and subfield base. We have implemented both the polynomial 

base and normal base fields on Java Card.  

 

4.1 Java Card  
 

The Java Card platform allows the on-card application to be written in Java. This brings the main 

advantages of Java to on-card software development. In addition, it provides a good basis for 

multi-application cards, where on the same card more than one application is supported. Many of 

the disadvantages of Java also tag along, unfortunately, like inefficiency and clumsiness of doing 

unsigned 16-bit arithmetic [4]. The on-card executable code consists of byte codes that are 

interpreted by the Java Card Runtime Environment, which controls the execution of the different 

applications while making sure that these applications do not interfere [3]. The goal is that Java 

Card applets can be run in any Java Card. This goal is not fully achieved yet because current 

implementations still differ slightly from the present specification and from each other. 

 

 

 

Figure 2. Software Stack of Java card 
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The software stack of a Java Card is shown in Figure 2. The Java Card Runtime Environment 

(JCRE) has the following interfaces: The Card Executive manages the card and is the 

communication link between the card applet and the off-card code. The Java Virtual Machine 

(JVM) executes the bytecode of the applet and of the library functions it uses. The Java Card 

Framework provides the library functions [4]. They form the standard Java Card API. 

  

4.2 Structure of Implementation  
 

The implementation has been divided into three separate packages: RSA, PB_ECC, and 

ONB_ECC. The RSA package contains all the classes needed to implement the RSA 

cryptosystem, the PB_ECC package contains the classes needed to implement polynomial base 

elliptic curve cryptosystem, and respectively ONB_ECC package contains classes needed to 

implement optimal normal base elliptic curve cryptosystem.  

 

As can be seen from the Figure 3 the only difference between the PB_ECC and ONB_ECC 

packages is one class. PB_ECC uses the PolyField class and ONB_ECC uses the ONBField class. 
 

Figure 3. Structure of Implementation 

 

4.2.1 RSA Implementation  
 

The RSA implementation consists of the RSA package. The package contains a class named RSA 

and the previously described classes BigInt and SHA1. The „RSA‟ class implements the RSA 

encryption algorithm and RSA signature scheme. In addition it contains CRT (Chinese 

Remainder Theorem) variations of the algorithms (crtDecrypt, crtSign).  

 

All the methods in the RSA class use BigInts. In addition, the RSA signature scheme and the 

CRT variation of that scheme use SHA1 to compute SHA-1 message digests. The public methods 

of RSA are shown in Figure 4.  

 

As described earlier, the RSA encryption and signature verification can be speeded up 

significantly by selecting a small public exponent b. Another way to speed up RSA is to use 

Chinese Remainder Theorem (CRT) as described in RSA Cryptography Standard. In this method 

the RSA private key consists of a quintuple (p; q; dP; dQ; qInv), where the components have the 

following meaning: p is the first factor, q is the second factor, dP is the first factor's exponent, dQ 

is the second factor's exponent and qInv is the CRT coefficient [17]. All components are 

nonnegative integers. 
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Figure 4. Class structure of RSA implementation 

 

4.2.1.1 RSA Encryption  
 

In a valid RSA private key the two factors p and q are the prime factors of the modulus n, the 

exponents dP and dQ are positive integers less than p and q respectively, b is the public exponent, 

satisfying,  

b * dP ≡ 1 (mod (p-1)) 

 b * dQ ≡ 1 (mod (q-1)) 

 

and CRT coefficient qInv is a positive integer less than p, satisfying  

 

Theorem is q * qInv ≡ 1 (mod p) 

4.2.1.2 RSA Decryption  
 

The RSA decryption using Chinese Remainder defined as follows. c is a ciphertext representative, 

an integer between 0 and n-1. m is a message representative, an integer between 0 and n-1.  

 

m1 = c
dP 

mod p 

m2 = cdQ mod q 

h = qInv (m1– m2) mod p 

m = m2 + h * q 
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4.2.2 Implementation of Elliptic Curve Cryptosystem  
 

There are two main representation of the field F2n, polynomial representation and normal base 

representation. In polynomial base representation the binary multipliers are written from the 

highest power to the lowest. The normal base is handled respectively, the multipliers are listed 

from the most significant to the least significant. The point (0 , 0) is selected to be the point at 

infinity because it is never on the curve.  

 

The elliptic curve operations require addition, multiplication, squaring and inversion in the 

underlying field. The inversion operation is by far the most expensive. The elliptic curve 

cryptosystem implementation consists of PB_ECC and ONB_ECC packages. These both 

packages are very similar, the only difference between them is that because the PB_ECC uses 

polynomial base fields it has a PolyField class, and because ONB_ECC uses optimal normal base 

fields it has an ONBField class.  

 

The optimal normal base implementation consists of the ONB_ECC package. The ONB_ECC 

package contains the ONBField class and the previously described classes Curve, CustomField, 

ECParameter, Field, Menezes Vanstone, Nyberg Rueppel, and Point [11]. The implementation of 

normal basis arithmetic is quite simple, only bitwise and, bitwise exclusive-or, and shift 

operations are needed. The fact that these are the fastest operations possible on any 

microprocessor makes optimal normal base (ONB) attractive. Squaring a normal base number 

amounts to a rotation. Addition is simply an exclusive-or operation [6].  

 

The inversion uses Inverse algorithm and the basics of multiplication are the same in any 

mathematical system, just multiply coefficients and sum over all those that have the same power. 

The optimal normal base implementation uses a precomputed lambda matrix to speed up the 

multiplication. The lambda vector for Type I ONB stores all the values of j for each value of i that 

satisfies the equation  

2i+2j = 1 mod (m+1).  

The lambda matrix for Type II ONB is built by working with group of four equations. To build 

the lambda matrix, we find solutions to  

2i + 2j = 1 

2i + 2j = -1 

2i - 2j = 1 

2i - 2j = -1 

 

The operation for field addition is implemented in the Field class. The rest of the operations 

multiplication, squaring and inversion) needed in elliptic curve cryptosystem for optimal normal 

base fields are implemented in the ONBField class. ONBField class implements optimal normal 

base fields over F2
n. 

 

The genLambda method together with the initTwo method creates the lambda vectors described 

above. The field multiplication is implemented in the mul method, which uses the precomputed 

lambda vectors. Squaring a field is implemented in the square method. The inv method computes 

the inversion of a field using inverse algorithm [6] [14].  

 

The public methods in ONBField are shown in Figure 5. 
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Figure 5. Class structure for optimal normal base ECC implementation 

 

5. IMPLEMENTATION RESULTS  
 

This section explains the test results of the RSA and elliptic curve cryptosystem implementations. 

The test results contain the lower and upper limits of 95% confidence interval calculated using the 

T-distribution [8].  
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5.1 RSA Implementation results  
 

Table 4. RSA Cryptosystem’s test results 

 

RSA key  Encryption 

(ms)  

Decryption (ms)  Signing (ms)  Signature 

Verification (ms) 

1024-bit  45.8 ± 2.9  80427.9 ± 5.2  80271.1 ± 2.8  213.6 ± 2.7  

2048-bit 123.0 ± 10.2  622099.1 ± 260.8 621918.8 ± 366.3 827.4 ± 24.8 

 

5.2 ECC Implementation results 
 

Table 5. Polynomial Base ECC test results 
 

Elliptic 

Curve  

Encryption 

(ms)  

Decryption (ms)  Signing (ms)  Signature 

Verification (ms)  

163-bit  4026.4 ± 4.5  1951.8 ± 3.8  2009.3 ± 0.3  4031.2 ± 0.8  

193-bit  6708.4 ± 2.1  3302.1 ± 0.3  3353.7 ± 0.3  6445.8 ± 0.6  

233-bit  11617.9 ± 13.0  5844.6 ± 13.1  5797.5 ± 1.0  11477.8 ± 2.8  

 

Table 6. Optical Normal Base ECC test results (using ECNRA and ECDSA) 

Elliptic 

Curve  

Encryption (ms)  Decryption 

(ms)  

Signing (ms)  Signature 

Verification (ms)  

158-bit  1613.0 ± 0.3  830.1± 0.3  806.0 ± 0.3  1569.7 ± 0.5  

194-bit  3006.3 ± 1.6  1415.2 ± 0.4  1502.5 ± 0.3  2700.1 ± 4.5  

209-bit  3730.3 ± 0.6  1814.2 ± 0.4  1863.0 ± 1.2  3492.2 ± 5.0  

 

6. PERFORMANCE ANALYSIS  
 

6.1 Cryptographic cost of the protocol  
 

Computation cost and communication cost are the most important aspects of password 

authentication protocols which affect the overall performance. The performance of the protocol 

relies directly on the asymmetric encryption load/cost and on the Smart Cards resources and 

capacity. In order to evaluate the performance, we studied the cryptographic cost of protocol on 

two 32 Javacards. Smartcard A and B have 2304 bytes RAM, 96 Kbytes ROM, 32 Kbytes 

EEPROM and 10 MHZ Maximum clock (card A), 8 MHZ Maximum clock (card B). The 

estimated cryptographic cost at the client level is about 250 ms to calculate the key encryption 

using card A (600 ms using card B) [4]. On the other hand, the cryptographic computation costs 

about 420 ms at the server level using card A (900 ms using card B) [4][12].  
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This reveals that our enhanced scheme manages to reduce the processing time of cryptographic 

loads to open authenticate and secure sessions for entities especially if we compare it with other 

mechanisms such as certificate based protocols. In certificate-based protocols, each certificate 

verification takes about 2 seconds if the certificates of entities had to be directly signed by the 

Certificate Authority (CA) root. This cost hardly increases in parallel with certificate chain 

increase. 

 

6.2 Comparison of RSA, ECC, ECDSA on Java Card platform  
 
Encryption with 1024-bit RSA is always faster than encryption with 158-, 163- or 174-bit ECC. 

The greatest difference appeared when encryption was made using 1024-bit RSA with public 

exponent 3, and then RSA encryption was 88 times faster than encryption with 163-bit 

polynomial base ECC [17].  

 

Signature verification with 1024-bit RSA was also always faster than with 158-, 163- or 174-bit 

ECC. The greatest difference appeared when signature verification was made using 1024-bit RSA 

with public exponent 3, and then RSA signature verification was 19 times faster than signature 

verification with 163-bit polynomial base ECC [1]. The smallest difference occurred when RSA's 

public exponent was 2
16+1

 then RSA signature verification was only 2 times faster than signature 

verification with 158-bit optimal normal base ECC [15].  

 

On the other hand, decryption with 158-, 163- or 174-bit ECC was always faster than with 1024-

bit RSA. The greatest difference appeared when decryption was made using 158-bit optimal 

normal base ECC then ECC decryption was 97 times faster than decryption with 1024-bit RSA 

using public exponent 3 [11]. The smallest difference occurred with 163-bit polynomial base 

ECC then ECC decryption was 22 times faster than decryption with 1024-bit RSA using CRT and 

public exponent 3 [15].  

 

6.3 Graphical Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Encryption time (in milliseconds) 
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Figure 7. Decryption time (in milliseconds) 

 

Figure 8. Signing time (in milliseconds) 
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Figure 9. Signature Verification time (in milliseconds) 

 

7. CONCLUSION AND OUTLOOK  
 

We have described an authentication and key agreement protocol for smart card communication 

based on elliptic curve cryptographic techniques. The proposed protocol is a public key type with 

the feature of signature generation procedure. The new protocols are based on previous classic 

authentication protocols, including the protection of integrity and session key exchange. This can 

be used to provide the integrity of the data being transferred during the authentication process in 

order to prevent from active attacks.  

 

The protocol is based on the Elliptic Curve Digital Signature Algorithm (ECDSA), and inherits 

the security and implementation properties of the elliptic curve cryptosystems, which seem to 

offer the highest cryptographic strength per bit among all existing public-key cryptosystems. With 

a 160-bit modulus, an elliptic curve system seems to offer the same level of cryptographic 

security as DSA or RSA with 1024-bit moduli. The smaller key sizes result in smaller system 

parameters, smaller public-key signatures, bandwidth savings, faster implementations, lower 

power requirements, and smaller hardware processors. 
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