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ABSTRACT

Executing large number of self-regulating tasks or tasks that execute minimal inter-task communication in
analogous is a common requirement in many domains. In this paper, we present our knowledge in
applying two new Microsoft technologies Dryad and Azure to three bioinformatics applications. We also
contrast with  traditional MPI and Apache Hadoop MapReducecompletion in one example.
The applications are an EST (Expressed Sequence Tag) series assembly program, PhyloD statistical
package to recognize HLA-associated viral evolution, and a pairwise Alu gene alignment application. We
give detailed presentation discussion on a 768 core Windows HPC Server cluster and an Azure cloud. All
the applications start with a “doubly data parallel step™ connecting independent data chosen from two
parallel (EST, Alu) or two different databases (PhyloD). There are different structures for final stages in
each application.

Categories and Subject Descriptors

C4 PERFORMANCE OF SYSTEMS D.1.3 Concurrent Programming; E.5 FILES J.3 LIFE AND
MEDICAL SCIENCES

General Terms
Algorithms, Performance.

Keywords
Cloud, bioinformatics, Multicore, Dryad, Hadoop, MPI

1. INTRODUCTION

There is increasing interest in approaches to data analysis in scientific computing as
essentially every field is considering an exponentia increase in the size of the data overflow.
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The data sizes involve that parallelism is important to process the information in a well-timed
fashion. This is generating acceptable interest in new runtimes and programming models that
unlike conventional parallel models such as MPI, directly address the data-specific issues.
Experience has shown that at least the initial (and often most time consuming) parts of data
analysis are naturally data parallel and the processing can be made independent with possibly
some collective (reduction) operation. This structure has forced the important MapReduce
paradigm and many follow-on extensions. Here we observe four technologies (Dryad [1], Azure
[2] Hadoop [8] and MPI) on three different bioinformatics application (PhyloD [3], EST
[4, 5] and Alu clustering [6, 7]). Dryad is an implementation of extended MapReduce from
Microsoft and Azure is Microsoft’s cloud technology. All our computations were performed on
Windows Servers with the Dryad and MPI work using a 768 core cluster Tempest consisting of
32 nodes each of 24-cores. Each node has 48GB of memory and four Intel six core Xenon
E7450 2.4 Ghz chips. All the applications are (as is often so in Biology) “doubly data paralel”
(or “al pairs” [24]) as the basic computational unit is replicated over all pairs of data items from
the same (EST, Alu) or different sources (PhyloD). In the EST example, each parallel task
executes the CAP3 program on an input data file separately of others and there is no “reduction”
or “aggregation” necessary at the end of the computation, where as in the Alu case, a globa
aggregation is essential at the end of the independent computations to create the resulting
distinction matrix that is fed into conventional high performance MPI. PhyloD has a alike initia
stage which is followed by an aggregation step. In this paper we estimate the different
technologies presentation they provide similar performance in spite of the dissmilar
programming models. In section 2, we explain the three applications EST, PhyloD and Alu
sequencing while the technologies are discussed in section 3 (without details of the well known
Hadoop system). Section 4 presents some performance results. Conclusions are given in section 6
after a discussion of associated work in section 5.

2. APPLICATIONS

2.1 EST and its software CAP3

An EST (Expressed Sequence Tag) corresponds to envoy RNAs (mRNAS) transcribed from the
genes residing on chromosomes. Each individual EST sequence represents a portion of mRNA,
and the EST assembly aims to renovate full-length mRNA sequences for every expressed gene.
Because ESTs match to the gene regions of a genome, EST sequencing has grow to be a
standard practice for gene detection, particularly for the genomes of many organisms that may
be too complex for whole-genome sequencing. EST is addressed by the software CAP3 which is
a DNA sequence assembly program developed by Huang and Madan [4]. that performs a
number of major assembly steps: these steps take in computation of overlaps, building of
contigs, creation of multiple sequence alignments, and making of consensus sequences to a
given set of gene sequences. The program reads a group of gene sequences from an input file
(FASTA fileformat) and writes its output to several output files, as well asthe standard output.

We have implemented a similar version of CAP3 using Hadoop , CGL-MapReduce, and Dryad
but we merely report on anew Dryad study here.
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2.2 PhyloD
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Figure 1. Pictorial representation of PhyloD output.

PhyloD is a dtatistical package to recognize HLA-associated viral development from the
specified sample data. It is obtainable today as aweb application and as downloadable source
code . consecutively PhyloD jobs is a compute intensive process. PhyloD- Cloud is an attempt to
influence Windows Azure as a computing platform and make a scal able web-based application to
development PhyloD jobs. Users should be intelligent to submit sensibly large jobs with this web
application with least manual association.

The package is used to get associations between HLA alleles and HIV codons and between
codons themselves. The digtinctiveness of PhyloD comes from the detail that it takes into
reflection the phylogenic development of the codons for producing its results. The package takes
as input the phylogenic tree in sequence of the codons, the information about being there or
absence of HLA aleles and the information about presence or absence of HIV codons. It fits its
inputs to a generative model and computes a ‘p-value’, a measure of the association between
HLA aleles and the HIV codons. For a set of such computed p-values, the package may
also compute a ‘g-value’ per p-value which is an indicative measure of the significance of the
result. Figure 1 presents the output of one such run. Arcs indicate association between codons,
colors indicate g-values of the most significant association between the two attributes.

At a high level, a run of PhyloD does the following: (i) calculate a cross product of input files to
make all alele-codon pairs, (ii) For each allele-codon pair, calculate p value, and (iii) with the p
values from the previous step, compute the g value for each allele- codon pair. The calculation of
p value for an alele-codon pair can be completed separately of other p value computations and
each such calculation can use the same input files. This gives PhyloD its “data-parallel”
characteristics namely, (i) ability to separation input data into smaller logical parts and (ii)
workers performing similar calculation on data partitions without to a large extent inter-process
communication.
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3. TECHNOLOGIESEXPLORED
3.1Dryad

Dryad is a distributed execution engine for coarse grain data parallel applications. It
combines the MapReduce programming style with dataflow graphs to resolve the computation
tasks. Dryad considers computation tasks as directed acyclic graph (DAG) where the
vertices symbolize computation tasks and with the edges performing as communication
channelsin excess of which the data flow from one vertex to another. The data is stored in (or
partitioned to) local disks via the Windows common directories and meta-data files and Dryad
schedules the carrying out of vertices depending on the data locality. Dryad also supplies the
yield of vertices in local disks, and the other vertices which depend on these results, access
them via the common directories. This enables Dryad to re-execute unsuccessful vertices, a
step which improves the fault tolerance in the programming model.

3.2Azure
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Figure 2. Architecture of atypical Azure application

Windows Azure platform is an internet-scale cloud computing and services platform hosted in
Microsoft data centers. Dissimilar the distinctive cloud environments where the users are
accessible with virtualized hardware mechanism such as load balancers, virtua servers (E.g.
Amazon EC2) and cloud storage services such as Amazon S3 etc., Azure offers a set of
discrete scalable components known as “roles” next to with a set of storage and communication
components. The architecture of a distinctive Azure application is shown in figure 2. The web
role and the worker role correspond to the giving out components of an Azure application. The
web roleis aweb application easy to get tovia HTTP or HTTPs endpoints and ishosted in an
environment that supports subset of ASP.NET and Windows Communication Foundation (WCF)
technologies. Worker position is the main dealing out individual in the Azure platform which can
be used to execute functions written in managed code, scripts, or individua executables on data
products. Both web position instances and worker role instances can right of entry the
storage services.

Azure Queues are earliest in, First Out (not guaranteed) determined communication channels
which can be used to build up composite communication patterns between a set of corporation
worker roles and web roles. A set of tasks/jobs can be controlled as a set of messages in an Azure
gueue and a set of workers can be deployed to eliminate a message (a task/job) from the queue
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and perform it. Azure provides three types of storage services Blob, Queue, and Table. The blob
represents a perseverance storage services comprising of set of blocks. The user can store data
(or partitioned data) in blobs and contact them from web and worker role instances. Azure
Tables provides planned storage for maintaining service state. The Azure blobs and Queues have
secure similarities to the Amazon Elastic Block storage and Simple Queue Service.

3.30Id Fashioned Parallel Computing

One can execute many of the functionalities of Dryad or Hadoop using classic paralle
computing together with threading and MPI. MPI in particular supports “Reduce” in
MapReduce parlance through its collective operations. The “Map” operation in MPI, is
immediately the simultaneous execution of MPI processes in between communication and
synchronization operations. There are several significant differences such as MPI individual
oriented towards memory to memory operations whereas Hadoop and Dryad are file oriented.
This difference makes these new technologies far more robust and flexible. On the other the file
orientation implies that there is much greater overhead in the new technologies. Thisis a not a
problem for initial stages of data analysis where file 1/0 is separated by along processing phase.
However as discussed in [6], this feature means that one cannot execute efficiently on
MapReduce, traditional MPI programs that iteratively switch between “map” and
“communication” activities. We have shown that an extension CGL-MapReduce can support both
classic MPI and MapReduce operations and we will comment further in section 4.3 on this.
CGL-MapReduce has a larger overhead than good MPI implementations but this overhead
does decrease to zero as one runs larger and larger problems.

Simple thread-based parallelism can also support “amost pleasingly parallel” applications but we
showed that under Windows, threading was significantly slower than MPI for Alu sequencing.
This we traced down to excessive context switching in the threaded case. Thus in this paper we
only look at MPI running 24 processes per node on the Tempest cluster. Note that when we
look a more traditional MPI applications with substantial communication between
processes, one will reach different conclusions as use of hybrid threaded on node-MPI between
node strategies, does reduce overhead [6].
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4. PERFORMANCE ANALYSIS

4.1EST and CAP3
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Figure 3. Efficiency vs. number of CPU cores of DryadLINQ implementation of the CAP3 application

We implemented a DryadL INQ application that performs CAP3 sequence assembly program in
paralel. As discussed in section 2.1 CAP3 is a standalone executable that processes a single
file containing DNA sequences. To execute a parallel application for CAP3 using DryadL INQ
we accept the subsequent approach: (i) the input files are partitioned in the middle of the
nodes of the cluster so that each node of the cluster stores approximately the identical number
of input files; (ii) a “data-partition” (A text file for this application) is formed in each node
containing the names of the input files accessible in that node; (iii)) a DryadLINQ
“partitioned-file” (a meta-data file implicit by DryadLINQ) is fashioned to point to the
individual data-partitions to be originate in the nodes of the cluster.

Then we used the “Select” operation available in DryadLINQ to apply a function (developed
by us) on each of these input sequence files. The function cals the CAP3 executable
passing the input file name and other necessary program parameters as command line
arguments. The function also captures the standard output of the CAP3 program and savesit to a
file. Then it moves all the output files generated by CAP3 to a predefined location.

This application resembles a common parallelization obligation, where an executable, a script,
or afunction in a unique framework such as Matlab or R, needs to be useful on a group of data
items. We can develop DryadLINQ applications similar to the above for all these use cases.

We measured the efficiency of the DryadLINQ implementation of the CAP3 application using a
data set of 2304 input files by varying the number of nodes used for processing. The effect of
this benchmark is exposed in figure 3. The set of input files we used for the over benchmark
restricted different number of gene sequencesin each, and hence it did not represent a consi stent
workload across the simultaneous vertices of the DryadLINQ application, because the time the
CAP3 takes to development an input file varies depending on the number of sequences
obtainable in the input file. The above individuality of the data produces lower efficiencies at
advanced number of CPU cores as more CPU cores become idle towards the end of the
calculation waiting for vertices that takes longer time to absolute. An architecture that supports
scheduling of independent tasks/jobs among set of workers/processes depending on the priorities
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of the taskg/jobs would perform an optima scheduling of such a workload by scheduling
taskg/jobs that takes longest to complete first. However, DryadLINQ and other
MapReduce architectures do not hold up this performance, and in these architectures the
scheduling of maps/reducers (in MapReduce) or vertices (in Dryad) is handled based on the ease
of use of data and the cal culation power and not by the priorities.
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Figure 4. Number of dynamic tasks/CPU cores beside the running times of two runs of CAP3.

The primary graph in figure 4 equivalent to 768 files indicates that even though DryadLINQ starts
all the 768 vertices at the same time they terminate at dissimilar times with long running
tasks attractive approximately 40% of the overall time. The second graph (1536 files) shows that
the higher than result has caused lower consumption of vertices when Dryad schedules 1536
vertices to 768 CPU cores. Thisis due to the way Dryad schedule tasks to compute nodes and we
have discussed this behavior extensively in [10]. We would not expect the same behavior (for
graph 2) in other MapReduce implementations such as Hadoop, however, still the non- uniformity
of the processing time of parallel tasks and the simple scheduling adopted by the MapReduce
runtimes may not produce optimal scheduling of tasks.

4.2 PhyloD

The parallel solution of PhyloD can be visualized as consisting of the following three different
phases as shown in Figure 2 (l€eft).

Initial — During this phase, the input files are collected from the user and copied to a shared
storage available to all workers. Then a sufficient number of workers are instantiated, each with
the information of the data partition it has to work on. To reduce the parallel overhead, a worker
can process multiple alele-codon pairs. ComputePartial — Each worker processes its
allotted partition and produces intermediate results. These results are again copied to a shared
storage.



International Journal of Advanced Information Technology (IJAIT) Vol. 2, No.3, June 2012

Summarize — During this phase, each of the intermediate results produced during the
ComputePartial phase are aggregated and the final output is produced.

We developed an Azure application for the PhyloD application by utilizing Azure Web Role,
Worker Role, Blob Container, Work Item Queue and Tracking tables described in sec. 3.2
generally and their use in PhyloD is shown in Figure 2 (Right). The web role is a simple
ASP.NET application that allows clients to upload input files and provide other job parameters. A
blob container is created per job which hosts the shared data between web and worker roles.
The uploaded input files are copied to this container and an Initial work item is enqueued in the
shared queue by the web role. Worker roles continuously poll the work item queue for new
messages. A message encapsulates one of {Initial, ComputePartial, Summarize} work items. The
evaluation of these work items is delegated to their respective processors. The processors return a
Boolean result for the evaluation. The calling worker then removes the message from the
gueue or leaves it there based on the results of the evaluation.

While processing an Initial work item, a worker role first tries to locate the entry for thistask in
the JobSteps table. If the job step is not found then it means that the web role enqueued the work
item and then encountered some error before creating the job step entry in the table storage. No
further action is taken in this case and the job is marked ‘Aborted’. If the job step entry is
found and its status is ‘Completed” we just remove this message from the queue. A
‘Completed’ status indicates that a worker has already processed this work item successfully but
could not delete the message from the queue due to, for example, network errors or message
timeout. After these checks are satisfied, the worker updates the status of parent job to ‘In
Progress’. It then enqueues multiple ComputePartial work items in the queue and also creates
corresponding  job. Each ComputePartial work item has the partition information. The
worker then enqueues a Summarize work item and creates its corresponding job step. Finaly, it
updates the status of Initial job step to ‘Completed’ and removes the Initial work item from the
queue. ComputePartial work items are processed by multiple worker roles simultaneously. Each
worker processes its allotted partition of the input data and copies the intermediate results to
the blob container. PhyloD engine works exclusively on files. So, a pre-processing task of
copying the origina input files to worker role’s local storage is required for each
ComputePartial work item. The worker follows similar checks for the status as in the Initial
processing. Finaly, the Summarize work item is processed. Intermediate results are aggregated
to produce the final output which is again copied back to the blob container. The results can be
downloaded via the web role. During the complete process, status information is updated in
azure tables for tracking purposes.

We measured the running time of the PhyloD prototype by varying the number of worker
roles used on Azure cloud, and calculated the efficiency in each worker assignment. Asin CAP3
application describe in section 2.1, we also noticed in PhyloD lower efficiencies with higher
number of workers, as shown in figure 6. In PhyloD the efficiency reduces to around 40%
when we use 100 workers implying that more workers are idling waiting for few long running
workers to finish. To verify the above observation we also measured the number of active
worker role instances during the execution of the PhyloD application. Figure 7 shows that the
less than 20 workers spend 30% of the time in processing long running PhyloD tasks which
results lower efficiencies. Fixing this inefficiency in Azure is farly straight forward as the
taskg/jobs are dispatched via a queue which is accessed by the worker role instances to obtain a
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task/job for processing. Unlike in Dryad and other MapReduce runtimes which require
runtime level support to handle priorities in maps/reduces/ and vertices, in Azure the user can
engueue tasks based on their expected running times, so that tasks that takes longest will be
processed at the beginning. We are currently developing a DryadLINQ application for the
PhyloD data analysis where the set of tasks are directly assigned to a collection of vertices
where each of them process some number of tasks and give intermediate results. Unlike in

Azure
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Figure 7. Number of dynamic Azure workers for the period of arun of PhyloD application.

implementation, in Dryad case, the intermediate results can directly be transferred to a vertex
for aggregation to produce the final output.
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4.3 Alu Sequence Classifications
4.3.1 Complete Problemwith MPI and MapReduce

This application uses two highly parallel traditional MPI applications MDS (Multi-Dimensional
Scaling) and Pairwise (PW) Clustering algorithms described in Fox, Bae et al. [6]. The latter
identifies sequence families as relatively isolated as seen for example in figure8. MDS alows
visualization by mapping the high dimension sequence data to three dimensions for visualization.

Figure 8. Alu: Display of Alu families from MDS cal culation from 35339 sequences using SW-G
distances. The younger families AluY a, AluY b show tight clusters

MDS has a very formulation as it finds the best set of 3D vectors x(i) such that a weighted least
squares sum of the difference between the sequence dissimilarity D(i,j) and the Euclidean
distance [x(i) - x(j)| is minimized. This has a computational complexity of O(N2) to find 3N
unknowns for N sequences. It can be heuristically solved in severaways including Expectation

Maximization and use of traditional excellent x2 minimization methods. The latter are used here.

The PWClustering agorithm is an well-organized MPI pardlelization of a robust EM
(Expectation Maximization) method by means of annealing (deterministic not Monte Carlo)
initially developed by Ken Rose, Fox [14, 15] and others [16]. This improves in excess of
clustering methods like Kmeans which are responsive to false minima. The original clustering
work was based in a vector space (like Kmeans) where acluster isdistinct by avector asits
middle. However in amain advance 10 years ago [16], it was exposed how one could use a vector
free approach and function with just the distances D(i,j). This method is obviousy most normal
for problems like Alu sequences where at this time global sequence position (over all N
sequences) is difficult but D(i,j) can be specifically calculated. PWClustering also has a time
complexity of O(N2) and in perform we discover all three steps (Calculate D(i,j), MDS and
PW(Clustering) take similar times (afew hours for 50,000 sequences) even though searching for a
lot of clusters and refinement the MDS can increase their execution time extensively. We have
presented performance results for MDS and PWClustering elsewhere [6, 17] and for large datasets
the efficiencies are high (showing sometimes super linear speed up). For a node design reason, the
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early distance calculation phase reported under has efficiencies of approximately 40-50% as the
Smith Waterman computations are memory bandwidth inadequate. The more complex MDS and
PWClustering a gorithms show more computation per data access and high efficiency.

4.3.2  Structureof all pair distance processing

The Alu sequencing problem shows a fine known factor of 2 matter present in many O(N2)
paralel algorithms such as those in straight simulations of astrophysical stems. We originally
calculate in parallel the Distance D(i,j) connecting points (sequences) i and j. Thisis complete
in paralel over al processor nodes selecting criterial < j (or j > i for higher triangular case) to
evade calculating both D(i,j) and the equal D(j,i). This can need considerable file relocate as it is
not likely that nodes requiring D(i,j) in a presently step will discover that it was intended on nodes
whereit is desirable.

The MDS and PWClustering algorithms described in section 4.3.1, need a meticulous parallel
disintegration where each of N processes (MPI processes, threads) has 1/N of sequences and for
this subset {i} of sequences stores in memory D({i},j) for al sequencesj and the subset {i} of
sequences for which this node is accountable. This implies that we require D(i,j) and D(j,i)
(which are egual) stored in dissimilar processors/disks. This is a fine known group operation in
MPI caled also gather or scatter but we did not utilize this in current work. Some what we
intended our first calculation of D(i,j) so that professionally we only calculated the autonomous
set but the data was stored so that the presently MPI jobs could proficiently right of entry the data
needed. We chose the simplest approach where the initial phase formed a single file investment
the full set of D(i,j) stored by rows — al j for each consecutive value of i. We commented in
preface that the initia phase is “doubly data paralel” over i and j whereas the MPI agorithms
have the simple data parallelism over just a single sequence index i; there is further the typical
iterative communication-compute phases in both MDS and PWClustering that implies one needs
extensions of MapReduce (such as CGL-MapReduce) if you wish to execute the whole problem
in a single programming paradigm. In both MDS and PWClustering, the only MPI primitives
needed are MPI Broadcast, AllReduce, and Barrier so it will be quite elegantly implemented in
CGL-MapReduce.

4.3.3 Smith Waterman Dissimilarities

We recognized samples of the human and Chimpanzee Alu gene sequences using Repeatmasker
[18] with Repbase Update [19]. We have been dowly growing the size of our projects with the
existing major samples having 35339 and 50000 sequences and these need a humble cluster such
as Tempest (768 cores) for dispensation in a sensible time (a few hours as shown in section 4.3.6).
Note from the conversation in section 4.3.2, we are aiming at underneath problems with a million
sequences -- fairly sensible today on TeraGrid and alike facilities known basic study steps scale
like O(N2). We used open source version NAligner [20] of the Smith Waterman — Gotoh
algorithm SW-G [21, 22] modified to ensure low start up effects by each thread/processing large
numbers (above a few hundred) at atime. Memory bandwidth required was condensed by storing
data items in as few bytes as probable. In the following two sections, we just discuss the initial
phase of calculating distances D(i,j) for each pair of sequences so we can efficiently use either
MapReduce and MPI.
434 Dryad Implementation

11
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We developed a DryadL INQ application to execute the calculation of pair wise SW-G distances
for aknown set of genes by adopting a common grain task disintegration approach which requires
least amount inter-process communicationa necessities to improve the higher communication and
synchronization costs of the parallel runtime. To make clear our algorithm, let’s think an example
where N gene sequences produces a pair wise distance matrix of size NxN. We decay the
calculation task b allowing for the resultant matrix and groups the overall calculation into a
block matrix of size DxD where D is amultiple (>2) of the available computation nodes. Due to
the regularity of the distances D(i,j) and D(j,i) we merely calculate the distances in the blocks of
the higher triangle of the block matrix as shown in figure 9 (left). Diagona blocks are specialy
handled and calculated as full sub blocks. As number of diagonal blocks D and total humber
D(D+1)/2, there is no significant compute overhead added. The blocks in the higher triangle are
partitioned (assigned) to the accessible compute nodes and an “Apply” operation is used to
perform a function to compute (N/D)x(N/D) distances in every block, where d is defined as N/D.
After computing the distances in every block, the function calculates the transpose matrix of the
outcome matrix which corresponds to a block in the lower triangle, and writes together these
matrices into two output files in the local file system. The names of these files and their block
numbers are communicated back to the main program. The main program sort the files based on
their block number s and perform another “Apply” operation to join the files equivalent to a row of
blocksin asingle big row block as shown in the figure 9 (right).

4.3.5 MPI Implementation of Distance Calculation

The MPI edition of SW-G calculates pair wise distances using a set of each single or multi-
threaded processes. For N gene sequences, we require to calculate half of the values (in the lower
triangular matrix), which isatotal of M = N x (N-1) /2 distances. At a elevated level, calculation
tasks are consistently divided amongst P processes and perform in parallel. Explicitly, calculation
workload per processis M/P. At alow level, each calculation task can be additional divided into
subgroups and sprint in T simultaneous threads. Our implementation is considered for flexible
utilize of shared memory multicore system and distributed memory clusters (tight to medium
tight coupled communication technologies such threadingand MPI). We offer options for any
combinations of thread vs. process vs. node but in earlier papers [6, 17], we have shown as
discussed in section 3.3 that threading is much dower than MPI for this class of problem. We
explored two different algorithms
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Figure 10. Space Filling MPI Algorithm: Task decomposition (left) and SW-G implementation calculation
(right).

The “Space Filling” MPI algorithm is shown in figure 10, where the data decomposition
strategy runs a "space filling curve through lower triangular matrix" to produce equa
numbers of pairs for each parallel unit such as process or thread. Itis essential to chart
indexes in every pairs group back to equivalent matrix coordinates (i, j) for constructing full
matrix presently on. We implemented a extraordinary function "PairEnumertator” as the
convertor.  Wetried to bound runtime memory convention for presentation optimization.
This is completed by writing a triple of i, j, and distance value of pair wise arrangement to a
stream writer and the system flashes accumulated consequences to a local file occasionally. As
the final stage, individual files are merged to form a full distance matrix. Next we describe the
“Block Scattered” MPI algorithm shown in figure 11. Points are divided into blocks such that
each processor is responsible for al blocks in a simple decomposition illustrated in the figure 11
(Left). This also illustrates the initial computation, where to respect symmetry, we calculate half
the D (0, B) using the following criterion:
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If B >= a, we only calculate D(a,p) if a+f is even while in the lower triangle, B < a, we only
calculate D(a,B) if a+p isodd termed “Space Filling” and “Block Scattered” below. In
each case, we must cal cul ate the independent distances and then build the full matrix
exploiting symmetry of D(i,j).

This approach can be applied to points or blocks. In our implementation, we applied to blocks of
points -- of size (N/P)x(N/P) where we use P MPI processes. Note we get better load balancing
than the “Space Filling” agorithm as each processor samples al values of 3. This computation
step must be followed by a communication step illustrated in Figure 11 (Right) which gives full
stripsin each process. The latter can be straightforwardly written out as properly ordered file(s).

Alu data # sequences Cap3 data
Original Replicgtgd (subset Mec.iium size
of original 50k) Files kb

50k | 35k |10k, 20k,30k,40k,50k| SetA | SetB

standard 1,6 41 |30 99 26.49 129.06 | 189.29
Deviation

Min 150 150 151 213 213

Max 479 | 462 467 869 869
Average [296.09(294.89 296.31 438.59 | 455.59
Data points{50000|35399 10000 2304 1152

Table 1: Mean and Standard Deviation of Alu & CAP3 data
4.3.6 Alu SW-G Distance Calculation Performance
We present a summary of results for both Dryad and MPI computations of the Alu

distance matrix in figures 12 and 13. We used several data sets and there is inhomogeneity in
sequence size throughout these sets quantified in table 1. Two of 35,339 and

D blocks Dbleces
0 Ji o1 [Process E 1 : [ D Procass
. N Ma  Send end
AN Py ] ] toPe-y [P,
> Uppe- Triancle x 4
1 > = .
A Calculate if o 5‘*;# . ;:;db Il
™ o+Beven ' P N 4P,
™ B Mt Semc | Send =
N 2 Gal=e 4, p, \ toPo-y [Pz
= e H < H
™ Y
D olocks ~ Dbleces ~
x ~ a N
~ by
N
Lower Triangle .
Calculat= if S,
c+fcdd \
Y
™ "
b \_
o AR " at  send N
s Py Galaz 10y N L&Y

Block Scattered Scatter Communicztion

Figure 11. Block Scattered MPI Algorithm: Decomposition (Left) and Scattered Communication
(Right) to construct full matrix.
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Dyrad Implementatiomn of SW-G alignme nt

{homo genous data)
1 DO

10000
1000 |

Time seconds |

o 10000 20000 Io000 ADOOT Soooo BOO0

Figure 12. Performance of Dryad implementation of SW-G (note that the Y -axis has alogarithmic
scale)

Performance of Dryad vs. MPI of S\W-Gotoh Alignment

e
i —— +— Oryad (replicated data)

S — " — | g Bl scatte ed MPI
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Figure 13. Comparison of Dryad and MPI on SWIG alignment on replicated and original raw data
samples

50,000 sequences were comprised of distinct sequences while we also prepared datasets allowing
us to test scaling as a function of dataset size by taking 10,000 sequences and replicating them 2-
5 times to produce 10K, 20K, 30K, 40K, 50K “homogeneous” or replicated datasets.

In figure 12, we present Dryad results for the replicated dataset showing the dominant compute
time compared to the small partition and merge phases. Further for the Block Scattered MPI
approach, the final “scatter” communication takes a negligible time. Figure 13 compares the
performance of Dryad and the two MPI approaches on the homogeneous (10K — 50K) and
heterogeneous (35K, 50K) datasets. We present the results as the time in milliseconds per
distance pair per core. Thisis measured total time of figure 12 multiplied by number of cores and
divided by sguare of dataset size i.e. it is time a single core would take to calculate a single
distance. Then “perfect scaling in dataset size or number of nodes” should imply a constant value
for this quantity. We find that for Dryad and MPI, the replicated dataset time is roughly constant
as afunction of sequence number and the original 35339 and 50,000 sequence samples are just a
little dower than the replicated case. Note from table 1, that there is little variation in measure of
inhomogeneity between replicated and raw data. A surprising feature of our results is that the
Space Filling MPI agorithm is faster than the Block Scattered approach. Dryad lies in between
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the two MPI implementations and is about 20% dower on the replicated and heterogeneous
dataset compared to Space-Filling MPI. We are currently investigating this but given the complex
final data structure, we see that it is impressive that the still preliminary Dryad implementation
does very well.

In figure 14, we show that Dryad scales well with number of nodes in that time per distance pair
per core is roughly constant on the 10K replicated SW-G data and consistent with Dryad
replicated data points in figure 13. In table 1, we showed that SW-G is more homogeneous than
CAP3 in that standard deviation/mean is lower. However we also got reasonable scaling in figure
3 for CAP3 which corresponds to data set A of table 1 while preliminary results for the more
heterogeneous “Set B”, also shows good scaling from 192 to 576 cores. The dependence on data
homogeneity is very important and needs better study and perhaps dynamic scheduling or more
sophisticated scattering of data between processes to achieve statistical load balance. We study
the effect of inhomogeneous gene sequence lengths for SW-G pairwise distance calculation
applications. These results also present comparisons of Hadoop and Dryad on identical hardware
rebooted with Linux and Windows respectively. The data sets used were arbitrarily generated
with a known indicate sequence length (400) with changeable standard deviations subsequent a
ordinary distribution of the sequence lengths.

2500
| Time

e e ———

Drryad-swg Total Time

—i—Hadoop-swg

i Drryad-swg Total time {adjusted for

MAligner paerformance)

100 150 200 as0 200 asze

Standard Dewviation

Figure 14. Performance of Dryad for SW-G Alignment on 10K data sample as a function of number of cores

DryadLINQ Scaling Test on SW-G Alignment

Tim & per distance calculation per core
(milliseconds)

o bk L [ Y

Figure 15. Performance of Dryad vs. Hadoop for SW-G for inhomogeneous data as a function of standard
deviation with mean sequence length of 400

Each data set contained a set of 10000 sequences and a 100 million pairwise distance calculations
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to perform. Sequences of changeable lengths are arbitrarily distributed across the data set. The
Dryad-adjusted consequences represent the raw Dryad results familiar for the routine difference
of the NAligner (C#) and JAligner (Java) base Smith-Waterman arrangement programs. As we
observe from the figure 15, together the Dryad implementation as well as the Hadoop completion
performed adequately, without presentation significant act degradations for high standard
variation. In detail the Hadoop implementation showed small improvements in the execution
times. The suitable performance can be credited to the fact that the sequences with changeable
lengths are arbitrarily distributed across the data set, generous a normal load balancing to the
succession blocks. The Hadoop implementations’ trivial performance development can be
recognized to the universal pipeline arrangement of map tasks that Hadoop performs. In Hadoop,
the administrator can identify the map task capacity of a exacting worker node and then Hadoop
global scheduler schedules the map tasks straight on to those placeholders when person tasks
finish in agreat deal better granularity than in Dryad. This allows the Hadoop implementation
to carry out normal global level load balancing.

5. RELATED WORK

There have been several papers discussing data analysis using a variety of cloud and more
traditional cluster/Grid technologies with the Chicago paper [23] influentia in posing the
broad importance of this type of problem. The Notre Dame all pairs system [24] clearly
identified the “doubly data paralel” structure seenin all of our applications. We discussin
the Alu case the linking of an initial doubly data parallel to more traditional “singly data parallel”
MPI applications. BLAST is awell known doubly data parallel problem and has been discussed
in several papers [25, 26]. The Swarm project [5] successfully uses traditional distributed
clustering scheduling to address the EST and CAP3 problem. Note approaches like Condor have
significant startup time dominating performance. For basic operations [27], we find Hadoop and
Dryad get similar performance on bioinformatics, particle physics and the well known
kernels. Wilde [28] has emphasized the value of scripting to control these (task parallel) problems
and here DryadLINQ offers some capabilities that we exploited. We note that most previous
work has used Linux based systems and technologies. Our work shows that Windows HPC server
based systems can also be very effective.

6. CONCLUSIONS

We have studied three data analysis problems with four different technologies. The applications
each start with a “doubly data- parallel” (all pairs) phase that can be implemented in MapReduce,
MPI or using cloud resources on demand. The flexibility of clouds and MapReduce suggest they
will become the preferred approaches. We showed how one can support an application (Alu)
requiring a detailed output structure to allow follow-on iterative MPI computations. The
applications differed in the heterogeneity of theinitial data sets but in each case good performance
is observed with the new cloud technologies competitive with MPI performance. The easy
structure of the data/compute flow and the smallest amount inter-task communicational necessities
of these “pleasingly parallel” applications enabled them to be implemented by means of a
extensive variety of technologies. The sustain for managing big data sets, the perception of
affecting computation to data, and the improved quality of services provided by the cloud
technologies, make simpler the implementation of several problems in excess of traditiona
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systems. We discover that dissimilar programming constructs accessible in cloud technologies
such as autonomous “maps” in MapReduce, “homomorphic Apply” in Dryad, and the “worker
roles” in Azure are all appropriate for implementing applications of the type we inspect. In the Alu
case, we demonstrate that Dryad and Hadoop can be planned to arrange data for make use of in
presently parallel MPI/threaded applications used for additional investigation. Our Dryad and
Azure work was all performed on Windows machines and achieved very large speed ups (limited
by memory bandwidth on 24 core nodes). Similar conclusions would be seen on Linux machines
as long as they can support the DryadLINQ and Azure functionaities used. The current results
suggest several follow up measurements including the overhead of clouds on our Hadoop and
Dryad implementations as well as further comparisons of them.
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