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ABSTRACT 

 
This paper introduces a nonlinear speech model for improved speaker identification. We modelled the 

speaker identity using Reconstructed Phase Space (RPS) of the speech signal and the Phase Space Point 

Distribution (PSPD) parameters. The PSPD parameters are extracted from five vowels uttered by different 

speakers. The speaker identification experiments are conducted based on the PSPD parameters using Feed 

Forward Multi Layer Perceptron (FFMLP). Overall performance of the Mel-frequency cepstral baseline 

system is compared with the proposed composite classifier system using both cepstral and PSPD features 

across ten different speakers. The experimental results indicate that the accuracy of the phase space 

approach by itself is below that of MFCC features and further it shows that the proposed approach in 

which PSPD features when used with MFCC, pitch and first formant frequency offers reasonable 

improvement in speaker identification accuracy of the system.  
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1. INTRODUCTION 

 
The speaker recognition process is normally classified into two specific tasks namely speaker 

verification and speaker identification [1]. In verification, the goal is to determine from a voice 

sample if a person is whom he or she claims. It is the process of accepting or rejecting the identity 

claim of a speaker.  In speaker identification, the goal is to determine which one of a group of 

known voices beast matches the input voice sample [2]. It is the process of determining which 

registered speaker provides a given utterance. This technique makes it possible to use the 

speaker's voice to verify their identity and control access to services such as voice dialling, 

banking by telephone, telephone shopping, database access services, information services, voice 

mail, security control for confidential information areas, and remote access to computers [3]. 

Many speaker identifications systems are reported in literature [4] [5] [6] [7] [8]. The importance 

of modulation frequencies for speaker recognition and comparison of composite features have 

been studied in [9] and [10] respectively. Experimental evaluations of various features for robust 

speaker identification have also been carried out by many researchers [11] [12]. 

 

Source-filter models form the foundation of many speech processing applications such as speech 

coding, speech synthesis, speech recognition and speaker recognition technology. Usually, the 
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filter is linear and based on linear prediction. The excitation for the linear filter is left undefined, 

modelled as noise, described by a simple pulse train or described by an entry from a large 

codebook [13]. While this approach has led to great advances in the last 30 years, it neglects 

structure known to be present in the speech signal. In practical applications, this manifests itself 

as an increase in the bit rate, less natural speech synthesis and an inferior ability to discriminate 

speech sounds. The replacement of the linear filter (or parts thereof) with nonlinear operators 

(models) should enable us to obtain an accurate description of the speech. This in turn may lead to 

better performance of practical speech processing applications. From a physics and mathematics 

viewpoint, in the traditional linear approach to speech modelling the true nonlinear physics of 

speech production are approximated via the standard assumptions of linear acoustics and 1D 

plane wave propagation of the sound in the vocal tract. Despite the limited technological success 

of the linear model in several applications, there is strong theoretical and experimental evidence 

for the existence of important nonlinear 3D fluid dynamics phenomena during the speech 

production that cannot be accounted for by the linear model. Examples of such phenomena 

include modulations of the speech airflow and turbulence [14].  
 

A somewhat different approach for speech dynamics estimation based speaker recognition has 

been presented by Petry and Barone [15]. The approach is based on nonlinear chaos-theoretic 

approach called largest Lyapunov exponent and improvement on the cepstrum and delta-cepstrum 

[16].The main arguments that show the evidences of nonlinearities in the speech signal are the 

excitation signal and the vocal-tract filter model are mutually independent. The airflow through 

the vocal tract is laminar and the wave equation is linear. Several speaker recognition systems are 

reported based on the non-linear properties of the speech signal. When only the nonlinear features 

are used to fully characterize a speaker, the results obtained are poor. Accuracy of only 6.49% 

using fractal dimension, 7.57% using entropy, 9.19% using largest Lyapunov exponents, and 

19.19% combining all nonlinear features. The information provided by these parameters is not 

enough to discard other parameters. The same idea can explain the bad performance of the 

speaker identification system which uses only pitch, reaching accuracy of only 14.86% [17]. So, 

further investigations should be carried out in nonlinear point of angle to increase the recognition 

accuracy of the speaker recognition system. In this work we propose a novel speaker 

identification system based on non-linear properties of the speech signal and Artificial Neural 

Network (ANN). This paper is organized as three sessions. First Session deals with the speaker 

modelling using reconstructed phase space. Second session deals with the experimental results 

and the third session concludes the work.  

 

2. SPEAKER MODELLING USING PHASE SPACE PARAMETERS  

 
The phase space of a dynamical system is a mathematical space with orthogonal co-ordinate 

directions responding each of the variables needed to specify the instantaneous state of the 

system. Here phase space is the space in which all possible states of a system corresponding to 

one unique point. For mechanical systems, the phase space usually consists of all possible values 

of position and momentum variables. A plot of position and momentum variables as a function of 

time is called a phase diagram. The number of state variables determines the dimension of the 

system. These systems are typically treated as deterministic, i.e. if the state of the system at time 

t0 is known, then the state of the system at any time t1 is completely predictable. 

 

Unfortunately, the entire state space of almost all real systems cannot be observed, if only one 

state variable is available. It would seem that accurate characterization of the system is impossible 

in this case, especially if the dimensionality and nonlinearity of the system are high. However, 

with the transformation on the observable variable known as a time-delay embedding, more 

information about the system is available then one might expect. Takens’ theorem states that 
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under certain assumptions, phase space of a dynamical system can be reconstructed through the 

use of time-delayed version of the original scalar measurements [18]. This new state space is 

commonly referred to in the literature as a Reconstructed Phase Space (RPS), and has been 

proven to be topologically equivalent to the original phase space of the dynamical system, as if all 

the state variables of that system would have been measured simultaneously [19]. A reconstructed 

phase space can be exploited as a powerful signal processing domain, especially when the 

dynamical system of interest is nonlinear or even chaotic [20].  The RPS can be used to estimate 

the dynamical in-variants like attractor dimension, Kolmogorov Entropy etc. of the system [21]. 

Recently this approach has been taken in the realm of speech signal processing by many 

researchers [22] [23]. P Prajith has analysed nonlinear and chaotic nature of speech patterns and 

presented the use of Reconstructed State Space (RSS) for the recognition of Malayalam vowels 

[24]. V L Lajish studied State Space Point Distribution (SSPD) parameters derived from the gray 

scale based State Space Maps (SSM) of handwritten character patterns and used it for high speed 

Handwritten Character Recognition (HCR) applications [25]. N K Narayanan & V Kabeer has 

proposed SSM and SSPD of the gray scale images for the computer recognition of human faces 

[26]. In this work we used the nonlinear feature called Phase Space Point Distribution (PSPD) for 

speaker identification. 

 

2.1. Phase Space of a Dynamical System  

 
For a purely deterministic system, once its present state is fixed, the states at all future times are 

determined as well. Thus it will be important to establish a vector space called phase space or 

state space for the system, such that specifying a point in the space specifies the state of the 

system and vice versa. Then the information about the dynamics of the system can be obtained by 

studying the various features of the corresponding phase space distribution. The state of a particle 

moving in one dimension is specified by its position (x) and velocity (v). Its phase space is a 

plane. On the other hand a particle moving in three dimensions would have a six dimensional 

phase space with three position and three velocity directions. In phase space, momenta can be 

used instead of velocities. 

 

2.2. Speaker Modelling Using Phase Space Point Distribution  

 
In the case of speech signal, what we have is not a phase space object but a time series, only a 

sequence of scalar measurements. We therefore have to convert the observations into state 

vectors. This is the important problem of phase space reconstruction, which is technically solved 

by the method of time delay embedding. One of the profound results established in chaotic theory 

is the Takens’ embedding theorem. Takens’ theorem states that under certain assumptions, phase 

space of a dynamical system can be reconstructed through the time-delayed versions of the 

original scalar measurements. This new state space is commonly referred   to in the literature as 

Reconstructed Phase Space (RPS), and has been proven to be topologically equivalent to the 

original phase space of the dynamical system. 

 

Packard et al. [27] first proved the concept of phase space reconstruction in 1980. Soon after, 

Takens showed that a delay-coordinate mapping from a generic state space to a space of higher 

dimension preserves the topology [28]. This theorem provides important theoretical justification 

for the use of RPS’s for system identification and pattern classification. Because the topology of 

the RPS is identical to the topology of the underlying system’s phase space, we can expect the 

shape and density of the RPS attractor to provide valuable information of the system that 

generates a signal. 

 



International Journal of Advanced Information Technology (IJAIT) Vol. 2, No.5, October 2012 

18 

 

According to Takens’ embedding theorem a reconstructed phase space can be produced for a 

measured state variable  xn,  where n = 1, 2, 3, 4,…..,N, via the method of delays by creating 

vectors given by 

 

�� = �		�� ���� 	�	+2�		 … . . ���(���)�� 
 

Where d is the embedding dimension and τ is the chosen time delay value. The row vector, Xn, 

defines the single point in the RPS. The row vectors then can be compiled into a matrix called a 

trajectory matrix to completely define the dynamics of the system and create a reconstructed 

phase space as 
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A speech signal with amplitude values can be treated as a dynamical system with 1D 

dimensional time series data. Based on the above theory, this study investigates a method to 

model a Reconstructed Phase Space for vowels through the use of time delay versions of the 

original scalar measurements. Here trajectory matrix X1 with embedding dimension d = 2 and 

time delay τ =1 and   X2 with embedding dimension  d = 3 and time delay τ =1 are constructed by 

considering the speech amplitude values xn as one dimensional time series data. The matrices X1 

and X2 thus obtained are given below. 
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Next session describes the visual representation of the system dynamics by plotting the row 

vectors of the trajectory matrix constructed from speech signals. 

 

2.3. Reconstructed Phase Space Distribution  

 
The Reconstructed Phase Space Distribution plots (scatter graph) in two dimensions are 

constructed for five vowels /a/, /e/, /i/, /o/, and /u/ as follows. The normalized N sample 

values for the vowel sound is considered as the scalar time series xn, where                n=1, 

2, …….. N. For each speech signal, a trajectory matrix is formed with dimension d=2 and 

time delay τ=1. Figure 1 shows the Reconstructed Phase Space (RPS) for vowel /a/ with 

d=2 and τ =1. 
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Figure 1.  Reconstructed Phase Space (RPS) for the vowel /a/ with d=2 and τ =1  

 

 
 

Figure 2.  Reconstructed Phase Space (RPS) for five English vowels spoken by a single speaker. 

We have analyzed the RPSs of a single vowel spoken by the same speaker and different 

speakers. The visual analysis of RPSs shows that the plots corresponding to the system dynamics 

of a particular vowel spoken by a single speaker are similar in nature and the RPSs of the same 

vowel spoken by different speakers differs considerably. This shows the credibility of the 

proposed features for speaker identification. Figure 3 shows the plots of RPSs of the vowel /a/ 

spoken by a single speaker. Figure 4 shows the plots of RPSs of the vowel /a/ spoken by five 

different speakers. 

 

 
 

Figure 3.  Reconstructed Phase Space (RPS) for five samples of the  vowel /a/ spoken by a single speaker. 

 

 
 

Figure 4.  Reconstructed Phase Space (RPS) for vowel /a/ spoken by five different speakers. 

 

Further a scatter plot named Reconstructed Phase Space Distribution is generated by plotting the 

row vectors of the above constructed trajectory matrix. (i.e. by plotting Xn versus Xn+1). Figure 5 

shows the reconstructed phase space distribution plot for vowel /a/ with d=2 and τ =1.  Figure 6 

shows the reconstructed phase space distribution plot for five different vowels spoken by a single 

speaker. 
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Figure 5.  Scatter Plot for the vowel /a/ with d=2 and τ =1 

 

 

Figure 6. Scatter plots for 5 different vowels spoken by a single speaker 

 

Figure 7 (a-e) shows the scatter plots of vowel /a/ spoken by five different speakers. Similar to 

RPSs the visual analysis of the scatter plots also shows that the plots corresponding to a particular 

vowel spoken by a single speaker are similar in nature and scatter plots of the same vowel spoken 

by different speakers differs considerably. 

 

 
 

Figure 7.  Scatter plot for vowel /a/ spoken by five different speakers  

 

2.4. Phase Space Distribution Parameter  

 
The complexity of RPS based approach due to the higher dimensionality of data can be reduced 

by extracting selected parameters from the reconstructed phase space. Here RPS is divided into 

grid with 400 uniform locations as indicated in Figure 5, and the number of phase space points 

distributed in each location is calculated. For this purpose, the RPS is divided into grid with    20 

X 20 boxes. The box defined by coordinates (-1, 1), (-1, 0.9), (-0.9, 1) and (-0.9, 0.9) is taken as 

location 1. Box just right side to it is taken as location 2 and is extended towards X direction, 

with the last box with the coordinates (0.9, 1) (0.9, 0.9), (1, 0.9) and (1, 1) as location 20. This is 

repeated for the next row, taking the starting box as location 21 and repeated for all other rows. 

The reconstructed Phase Space Point Distribution (PSPD) parameter is calculated by estimating 

the number of Phase Space Points distributed in each location. This can be mathematically 

represented as follows. The Reconstructed Phase Space Distribution Parameter for location i in 

two dimensions can be defined as: 
 

)],,([)(
0

iXXiPSPD n

N

n

n Γ+

=

∑= δ  

)],,([ iXX nn Γ+
δ  = 1, if the phase space point defined by the row vector 

],[
Γ+nn XX  is   in the location i. 

                                                = 0, otherwise.  
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Generally, PSPD for location i in d dimension can be defined as:  
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0
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Where, 

  

)],,......,,,([ )1(2 iXXXX dnnnn Γ−+Γ+Γ+
δ  = 1, if the phase space point defined 

by the  row vector ],......,,,[ )1(2 Γ−+Γ+Γ+ dnnnn XXXX  is  in the  location ‘i’. 

                               = 0, otherwise. 

 

Figure 8 shows the PSPD plot for vowel /a/ with d=2 and τ =1.  Figure 9 shows the feature vector 

graph plotted for the five samples of vowel /a/ of a single speaker. From the graph it is evident 

that the proposed feature vectors representing different samples of a particular vowel are similar 

for the same speaker and hence can be effectively used for speaker identification purpose. Next 

session describes the recognition experiments conducted using the proposed PSPD parameters 

and artificial neural networks. 
 

 

Figure 8.  PSPD Plot for vowel /a/ with d=2 and τ =1 
 

 

Figure 9.  Feature vector graph plotted for the five samples of vowel /a/ of a  single speaker. 
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3. EXPERIMENTAL RESULTS 
 
Present study investigates the speaker identification capabilities of the proposed PSPD parameter 

and feed forward multilayer perceptron (FFMLP) based speaker identification system. The 

Reconstructed Phase Space (RPS) plots and its scatter plots obtained from five vowel samples of 

different users are thoroughly analysed.  It is observed that the RPS patterns obtained for repeated 

samples of a particular vowel uttered by a single speaker are similar in nature and it varies from 

speaker to speaker.  The PSPD parameters are extracted from five vowels uttered by 10 different 

speakers for the conduct of speaker identification experiments. Further, the multi layer feed 

forward neural network is simulated with the back propagation learning algorithm. A constant 

learning rate 0.01, is used (value of Ƞ was found to be optimum as 0.01 by trial and error 

method). The initial weights are obtained by generating random numbers ranging from 0.1to 1. 

The number of input layer is fixed according to the feature vector size and the five output nodes 

representing five vowels. The recognition experiment is repeated by changing the number of 

hidden layers and number of nodes in each hidden layer for obtaining the successful architecture. 

 

The network is trained using RPSDP feature and MFCC features extracted from the vowel 

samples of 10 speakers separately. Here we used a set of 50 samples each of five vowels spoken 

by 10 different speakers for iteratively computing the final weight matrix and disjoint set of 

vowels of same size from the database for identification purpose. The experiment is repeated by 

adding pitch and first formant frequency along with the MFCC feature and proposed PSPD 

parameters. The recognition accuracy obtained for ten different speakers based on above said 

features extracted from each of the five vowels using FFMLP classifier are tabulated in table 1. 

The experimental results indicate that although the accuracy of the phase space approach by itself 

is still currently below that of MFCC features, the combined feature approach is capable of 

considerably increasing the speaker identification accuracy. 

 
Table 1.  Speaker Recognition Results. 

 

 

Parameters used 

Size of the 

parameter 

Speaker identification accuracy (%) 

(for each vowel) 

Average 

(%) 

/a/ /e/ /i/ /o/ /u/  

MFCC 

 

12 

 
48.00 41.30 43.00 50.97 47.80 46.21 

PSPD 

 

20 

 
36.00 26.00 26.00 38.00 32.00 31.60 

PSPD + PITCH 

 

21 

 
40.92 33.00 31.00 46.00 39.00 37.98 

PSPD + PITCH 

+ FIRST FORMANT 

FREQUENCY 

 

 

22 

 

 

51.12 

 

 

42.00 

 

 

38.10 

 

 

58.00 

 

 

52.00 

 

48.24 

MFCC + PSPD 

+ PITCH 

+ FIRST FORMANT 

FREQUENCY 

 

 

34 

 

 

86.00 

 

 

76.00 

 

 

79.00 

 

 

92.00 

 

 

84.00 

 

 

83.40 
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3. CONCLUSIONS 

 
At present, the speaker identification systems produce acceptable results but it still lacks the 

necessary performance if they are to be used in commercial applications. In this work, we 

modelled the speaker identity based on the non-linear properties of the speech samples which are 

normally not considered in any of the conventional feature extraction methodologies. The speaker 

identification experiments are conducted based on the phase space distribution patterns derived 

from the Reconstructed Phase Space (RPS) of the speech signal named Phase Space Point 

Distribution (PSPD). The PSPD features obtained from five vowels are used for speaker 

identification purpose using the FFMLP. The experiment is repeated by taking different 

combination of PSPD, MFCC, pitch and first formant frequency. The experimental results 

indicate that the proposed phase space approach by itself is still below (31.60%) that of MFCC 

features (46.21%). The results further shows that the combined approach in which the PSPD 

features, when used with MFCC, pitch and first formant frequency, offers enormous improvement 

in speaker identification (on an average of 83.40%) accuracy.  
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