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ABSTRACT

This paper derives new adaptive results for the hybrid synchronization of hyperchaotic Xi systems (2009)
and hyperchaotic Li systems (2005). In the hybrid synchronization design of master and slave systems, one
part of the systems, viz. their odd states, are completely synchronized (CS), while the other part, viz. their
even states, are completely anti-synchronized (AS so that CS and AS co-exist in the process of
synchronization. The research problem gets even more complicated, when the parameters of the
hyperchaotic systems are unknown and we tackle this problem using adaptive control. The main results of
this research work are proved using adaptive control theory and Lyapunov stability theory. MATLAB
simulations using classical fourth-order Runge-Kutta method are shown for the new adaptive hybrid
synchronization results for the hyperchaoctic Xu and hyperchactic Li systems.
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1. INTRODUCTION

The hyperchaotic system was first discovered by the German scientist, O.E. Rossler ([1], 1979). It
is a nonlinear chaotic system having two or more positive Lyapunov exponents. Hyperchaotic
systems have many attractive features and hence they are applicable in areas like neural networks
[2], oscillators [3], communication [4-5], encryption [6], synchronization [7], etc.

For the synchronization of chaotic systems, there are many methods available in the chaos
literature like OGY method [8], PC method [9], backstepping method [10-12], dliding control
method [13-15], active control method [16-17], adaptive control method [18-19], sampled-data
feedback control [20], time-delay feedback method [21], etc.

In the hybrid synchronization of a pair of chaotic systems called the master and dave systems,
one part of the systems, viz. the odd states, are completely synchronized (CS), while the other
part of the systems, viz. the even states, are anti-synchronized so that CS and AS co-exist in the
process of synchronization of the two systems.

This paper focuses upon adaptive controller design for the hybrid synchronization of hyperchaotic
Xu systems ([22], 2009) and hyperchaotic Li systems ([23], 2005) with unknown parameters. The
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main results derived in this paper have been proved using adaptive control theory [24] and
Lyapunov stability theory [25].

2. ADAPTIVE CONTROL METHODOLOGY FOR HYBRID SYNCHRONIZATION

The master systemis described by the chaotic dynamics

%= Ax+ f (%) (1)

where Aisthe nxn matrix of the system parametersand f : R" - R"isthe nonlinear part.
The dave systemis described by the chaotic dynamics

y=By+g(y)+u )

where Bisthe nxnmatrix of the system parametersand g : R" — R"isthe nonlinear part
For the pair of chaotic systems (1) and (2), the hybrid synchronization error is defined as

ay, —x, if iisodd
€=0 e (3
oy, +%, if iiseven

The error dynamicsis obtained as

EZ('%V] —a,x)+g(y)- f,(x)+u ifiisodd
¢=0, @
EZ(Q;Y;”fam-><j)+gi(y)+fi(x)+ui if i iseven
74

The design goal isto find afeedback controller uso that

lim|e(t)| =0 foral e(0)OR" (5)

Using the matrix method, we consider a candidate Lyapunov function
V(e) =ePe, (6)

where P isapositive definite matrix. Itisnoted that V : R" — R isapositive definite function.
If we find afeedback controller uso that

V(e)=-€'Qe, @)
where Qis apositive definite matrix, then V : R" - R isanegative definite function.

Thus, by Lyapunov stability theory [25], the error dynamics (4) is globally exponentialy stable.
Hence, the states of the chaotic systems (1) and (2) will be globally and exponentialy

hybrid synchronized for all initial conditions x(0), y(0) 0 R". When the system parameters are
unknown, we use estimates for them and find a parameter update law using Lyapunov approach.
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3. HYPERCHAOTIC SYSTEMS

The hyperchaotic Xu system ([22], 2009) has the 4-D dynamics

)'(1 :a(xz_)(l)+x4
X, =bx, + XX
S 8
X =0 = XX
X, = X% —dX,
where a,b,c,r,d are constant, positive parameters of the system.
The Xu system (8) exhibits a hyperchaotic attractor for the parametric values

a=10, b=40, c=25 r=16, d=2 (9)
The Lyapunov exponents of the system (8) for the parametric valuesin (9) are
4,=1.0088, A4,=0.1063, A4,=0, 4,=-13.6191 (20)

Since there are two positive Lyapunov exponents in (10), the Xu system (8) is hyperchaotic for
the parametric values (9).

The strange attractor of the hyperchaotic Xu system is displayed in Figure 1.
The hyperchagtic Li system ([23], 2005) has the 4-D dynamics

X =a(X,=%)+X,
X, =0% — +7X
.2 X XX Y% (11)
X =%+ XX
Xy = XX HEX,
where a, f,7,0,& areconstant, positive parameters of the system.
The Li system (11) exhibits a hyperchaotic attractor for the parametric values
a=35 =3 y=12, 6=7, ¢=0.58 (12)
The Lyapunov exponents of the system (11) for the parametric valuesin (12) are
4,=05011 4,=01858 4,=0, 4,=-26.1010 (13)

Since there are two positive Lyapunov exponents in (13), the Li system (11) is hyperchaotic for
the parametric values (12).

The strange attractor of the hyperchaotic Li system isdisplayed in Figure 2.
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Figure 2. The State Portrait of the Hyperchaotic Li System

4. ADAPTIVE CONTROL DESIGN FOR THE HYBRID SYNCHRONIZATION OF
HYPERCHAOTIC XU SYSTEMS

In this section, we design an adaptive controller for the hybrid synchronization of two identical
hyperchaotic Xu systems (2009) with unknown parameters.
The hyperchaotic Xu system istaken as the master system, whose dynamicsis given by

Xl:a(xz_xl)"'XA
X, =bx + X%

X =706 X%
Xy = X%~ dX,

(14)

where a,b,c,d,r are unknown parameters of the system and x[J R*isthe state of the system.
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The hyperchaotic Xu system is also taken as the slave system, whose dynamicsis given by

Vi=aly, =)+ Y, +u
Y, =by, +ry,y; +u,

Vs =CY; V1Yot

Yo = YiYs —dy, tu,

(15

where y[OR"is the state and u,U,,Us,,U, are the adaptive controllers to be designed using

estimates a(t), B(t), c(t), d (t), F(t) of the unknown parameters a,b, c,d,r , respectively.
For the hybrid synchronization, the error eis defined as

E=Y X 6T, T X, =YX, € =Y, TX, (16)
A simple calculation gives the error dynamics

g=a(y, =% -g)+e —2x,+y
& =b(y, +x) +r(y,Ys + %X%) +U,

A a7
€ =-C6 VY, Y, t XX, U,
& = _d% Y Yt XX+,
Next, we choose a nonlinear controller for achieving hybrid synchronization as
U = _é-(t)(Y2 =% _e.l.) —e +2x, - k161
U, = =b(t)(y, + %) = FO(Y,Ys +X%) — K€, a18)

Uy = C(t)e; + Y, = %X, —kigy
u, = d(t)G? WY TXX T k4e4

In Eq. (18), k, (i =1,2,3,4) are positive gains and a(t), b(t), &(t), d(t), F (t) are estimates of the
unknown parameters a,b,c,d,r , respectively.
By the substitution of (18) into (17), the error dynamicsis simplified as

& =@-a[)(y,-%-&)-ke
&, = (b=b®)(y; +x)+(r = FO)(WYs +%%) — k.,
&, =-(c-&(t)e, —ke,

g, =—(d-d(t)e -k,
Next, we define the parameter estimation errors as

(19)

e, (t) =a-a(t), g(t) =b-b(t), e(t) =c—¢(t), &) =d-d(t), g (1) =r -F(t) (20)
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Differentiating (20) with respect to t, we get
&,(t) =-a(t), () =-b(t), &(t) =—C(t), &) =-d(t), &(t)=-r() (21)
Inview of (20), we can ssimplify the error dynamics (19) as

& =¢6(Y,~%-&)-ke
& =6,V + %) +& (VY5 +XX%) — K&,

. (22)
& =66 -kg
& =66~ k4e4
We take the quadratic Lyapunov function
Ve(erereire vl re e+ +e), @
which is a positive definite function on R°.
When we differentiate (22) along the trgjectories of (19) and (21), we get
V =k ~k& ke —ke +e [y, % —6)-aHre, (% +x) ~bg
. 5 . (24)
t& B'esz _éH+ed E_eze4 —-d E"'er %(ylyB +X%;) ~ fH
Inview of Eq. (24), we take the parameter update law as
a=e(y,~%-8)+ke, b=e(y+x)+ke, E=-e+ke )

d=-ee, +ke,, F=6(Y,Ys+ %) +ke

Theorem 4.1 The adaptive control law (18) along with the parameter update law (25), where
k,(i=12,...,9) are positive gains, achieves global and exponential hybrid synchronization of
theidentical hyperchaotic Xu systems (14) and (15), where a(t), B(t), c(t), d (t),1(t) are etimates
of the unknown parameters a,b,c,d,r, respectively. Moreover, al the parameter estimation
errors converge to zero exponentially for al initial conditions.

Proof. We prove the above result using Lyapunov stability theory [25].
Substituting the parameter update law (25) into (24), we get

V= _kielz - kz%z - ks%z - k4e42 - k5€§ - kee: - k7ec2 - keej - k9er2 (26)

which is a negative definite function on R°.
This shows that the hybrid synchronization errors g (t),e,(t),&(t),€,(t) and the parameter
estimation errors €, (t),e,(t),e.(t),e,(t),e (t) are globaly exponentialy stable for all initial

conditions.
22
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This completes the proof.

Next, we demonstrate our hybrid synchronization results with MATLAB simulations.
The classical fourth order Runge-K utta method with time-step h =107 has been applied to solve
the hyperchaotic Xu systems (14) and (15) with the adaptive nonlinear controller (18) and the
parameter update law (25). The feedback gainsaretakenas k =5, (i =1,2,...,9).
The parameters of the hyperchaotic Xu systems are taken as in the hyperchaotic case, i.e.
a=10, b=40, c=25 r=16, d=2
For simulations, the initial conditions of the hyperchaotic Xu system (14) are chosen as
%(0) =11, %,(0)=7, %,(0)=9, x,(0)=-5
Also, theinitial conditions of the hyperchaotic Xu system (15) are chosen as
%:1(0) =3, y,(0) =4, y,(0)=-6, y,(0)=12
Also, theinitial conditions of the parameter estimates are chosen as
4(0)=4, b(0)=11 ¢&0)=-2, d(0)=-5, f(0)=16

Figure 3 depicts the hybrid synchronization of the identical hyperchaotic Xu systems.
Figure 4 depicts the time-history of the hybrid synchronization errors €, €,,€,,€,.

Figure 5 depicts the time-history of the parameter estimation errors €,,§,,€.,€,,€,.

Time {sec)

Figure 3. Hybrid Synchronization of Identical Hyperchaotic Xu Systems
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Figure 5. Time-History of the Parameter Estimation Errors €,,§,,€.,€,,€

5. ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION
DESIGN OF HYPERCHAOTIC LI SYSTEMS

In this section, we design an adaptive controller for the hybrid synchronization of two identical
hyperchaotic Li systems (2005) with unknown parameters.

The hyperchaotic Li system is taken as the master system, whose dynamicsis given by

X =a(X=X)+X,
X, = 0% = XX T X,
X3 = =X+ %%,

Xy = XX T EX,

(27)

where «, ., 7,9, & are unknown parameters of the system and x [ R*isthe state of the system.
The hyperchaotic Li system is also taken as the dave system, whose dynamicsis given by
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A =a(y2_y1)+y4+u1
V, =0V, — + +Uu

¥2 Vi~ WY 7Y, tU; (28)
Vs ==BYs+ V1Yo tU;

Ya=YoYs ey, tu,

where yOR*is the state and u;,U,,U,, U, are the adaptive controllers to be designed using
estimates G (t), A(t), 7(t), 5(t), &(t) of the unknown parameters a, 8, 7,5, ¢, respectively.

For the hybrid synchronization, the error eis defined as

E=Y "X =Y, X, =Y, X, § =Y, T X, (29)

A simple calculation gives the error dynamics
& =a(y, =% —€)+e—2x,+u,
& =0(V+X)+ 76— ViYs — XX +U, (30)
& ==+ V1Y, — XX +U;
€, =6 T Y, Y, X%+,

Next, we choose a nonlinear controller for achieving hybrid synchronization as

u = _&(t)(yz % _e.l.) —€,+2X,~ k:l.e.l.
U, ==Y, +%) = 7(1)& + V15 + XX — K€, 31)
Uy = B(1)e; — VoY, + %% — ke,
u, = _é(t)e4 =Y, Y5 = %X K€,
InEq. (31), k, (i =1,2,3,4) are positive gains.
By the substitution of (31) into (30), the error dynamicsis simplified as
& =(a-a()(y,~x-&)-ke
& =(0-oM)Y, +x)+(y —7()e, ~ ke (32)
& =—(8-B)e —kse,

&, =(e-&(t))e, —ke,

Next, we define the parameter estimation errors as

e, () =a-a(), et)=4-A), e ) =y-7(t) @
& (1) =5-5(1), e,(t) =&~ &(t)

Differentiating (33) with respect to t, we get

25
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e, () =-a(), &t)=-41), ) =-7(t), &) =-0(1), &t)=-2(t) (39
In view of (33), we can simplify the error dynamics (32) as

a=e(y,~x-a)-ke
& zea(y1+)(1)+eyez_k2e2
%:_ ﬁes_k3%

e4 =€¢g _k4e4

(35)

We take the quadratic Lyapunov function
1
V:E(ef+e§+e§+ef+e§+e§+ef+e§+ef), (36)

which is a positive definite function on R®.
When we differentiate (35) along the trgjectories of (32) and (33), we get

Vv =_k1e12_k2%2_k3e§_k4ef+ea %(yz_xz_el)_&a"'eﬁ é'ej_,éE

ve [&-7re, Bn+x)-oHre B -4F

Inview of Eq. (37), we take the parameter update law as

(37)

a=e(y,~x%-e)+tke,  f=-€+ke, 7=€+ke

5 . (38)
5 =&(y+%)+ke;, £=€ tke,

Theorem 5.1 The adaptive control law (31) along with the parameter update law (38), where
k,(i=12,...,9) are positive gains, achieves global and exponential hybrid synchronization of

the identical hyperchaotic Li systems (27) and (28), where &(t), A(t), 7(t),5(t), é(t) are
estimates of the unknown parameters a, f5,7,0, €, respectively. Moreover, al the parameter
estimation errors converge to zero exponentially for all initial conditions.

Proof. We prove the above result using Lyapunov stability theory [25].
Substituting the parameter update law (38) into (37), we get

V =k — k& — kil — k& —keef —ke€) — ki€l ko] ko€l (39)
which is a negative definite function on R°.

This shows that the hybrid synchronization errors g (t),e,(t),&(t),e,(t) and the parameter
estimation errors €, (t),€,(t), e, (t),e;(t),e,(t) are globaly exponentidly stable for al initial
conditions. This completes the proof. W
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Next, we demonstrate our hybrid synchronization resultswith MATLAB simulations.

The classical fourth order Runge-K utta method with time-step h =107 has been applied to solve
the hyperchaotic Li systems (27) and (28) with the adaptive nonlinear controller (31) and the
parameter update law (38). The feedback gainsaretakenas k =5, (i =1,2,...,9).
The parameters of the hyperchaotic Li systems are taken asin the hyperchaotic case, i.e.
a=35 f=3 y=12, 6=7, £=0.58
For simulations, the initial conditions of the hyperchaotic Li system (27) are chosen as
%(0)=6, x,(0)=-7, %(0) =15, x,(0)=-22
Also, theinitial conditions of the hyperchaotic Li system (28) are chosen as
%:(0)=12, y,(0)=4, y;(0)=9, y,(0)=-6
Also, theinitial conditions of the parameter estimates are chosen as
4(0)=7, B(0)=8, 7(0)=-2, 5(0)=-9, #(0)=12

Figure 6 depicts the hybrid synchronization of the identical hyperchaotic Li systems.
Figure 7 depicts the time-history of the hybrid synchronization errors €, €,,€,,€,.

Figure 8 depicts the time-history of the parameter estimation errors €, e

,,€,,6;,6,.

Time {sec)

Figure 6. Hybrid Synchronization of Identical Hyperchaotic Li Systems
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Figure 7. Time-History of the Hybrid Synchronization Errors€,, €,,€;,€,
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Figure 8. Time-History of the Parameter Estimation Errors €, ,€
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6. ADAPTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION
DESIGN OF HYPERCHAOTIC XU AND HYPERCHAOTIC LI SYSTEMS

In this section, we design an adaptive controller for the hybrid synchronization of hyperchaotic
Xu system (2009) and hyperchaotic Li system (2005) with unknown parameters.
The hyperchaotic Xu system is taken as the master system, whose dynamicsis given by

X =a(X, = x)+X,
X, =X, + X%

X5 = —CXy = X%,
X, = %X = dX,

(40)

where a,b, c,d, r are unknown parameters of the system.
The hyperchaotic Li system is also taken as the dave system, whose dynamicsis given by
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o=a(Y, = Y) t Y, tu
Y, =0y~ WYstrY, tu,
Ya==BY;t V1Y, tUy
Ya=YoYstey, tu,

(41)

where «, ,7,0,¢ are unknown parameters and u;, U, , Uy, U, are the adaptive controllers.

For the hybrid synchronization, the error eis defined as

E=V1 X E=Y,tX, =Y, =X, =Y, tX,
A simple calculation gives the error dynamics
& =a(y,~ ) -al,=X)+Yy,~ X +y
& =0y, tyY, thX + XX~y Y; U,
&= _ﬁys TOG TV Y, XX +U
&, =Y, G+ Y, Y, + XX +U,
Next, we choose a nonlinear controller for achieving hybrid synchronization as
U ==a(t)(y, = ¥) +at)(%, = %) ~ ¥, + X, ~keg
U, = =6y, = 7(t)y, —b(t)x = F(t)X% + Y,¥; ~k;&,
Us = B1)Ys —C()X; — V1Y, = X%, —Kse,
u, = _é(t)y4 (U)X, — Y,Y; — X% —K.e,
where k, (i =1,2,3,4) arepositive gains.
By the substitution of (44) into (43), the error dynamicsis simplified as
& =(a-at)(y,~y) - (@-aM)(x, -x)-ke
& = (-0 +(r — 7))y, +(b=b(t))x +(r = F (1)) x%; ~ k&,
& =~(B-pM0)Yy, +(c-Et)x —kee,
& =(e—&@)y,—(d-d®)x, —k,eg,
Next, we define the parameter estimation errors as
e () =a-a(t), gt)=b-b(t), e(t)=c-&t), &t)=d-d()

g () =r-rf(t), e () =a-a(), eﬂ(t)=ﬂ-ﬁ(t), e t)=r-y(t)
e, (t)=5-5(t), e () =e-4(t)

Differentiating (46) with respect to t, we get

(42)

(43)

(44)

(45)

(46)
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&,(t) =-4(), (1) =-b(t), &.(1) = ~(0), &) =-d(1), & () =—F()

: 2 : A , (47)
&, (1) =-a(t), &) =-A(t), & 1) =-7(t), &) =-5(), &(t)=-£@)

In view of (46), we can simplify the error dynamics (45) as

s ea(yz —Y) e (% —x)—ke
% :eé'yl+eyy2 TEX TEXX —k262
=€ Y, teX kse,

& =6y, &% ~Keg

(48)

We take the quadratic Lyapunov function
1
v =§(ef+e§+e§+e§+e§+e§+e§+e§+e?+e§ re+ed+ere), (49

which is a positive definite function on R".
When we differentiate (48) along the trgjectories of (45) and (46), we get

Vv =—klef—k2e§—k3e§—k4ef+ea H‘el(xz_xl)—éﬁ'l'eo %le—t;%+ec %Xs_éE
+te, E— 4X2—a5+er B‘axlxg—r*%ea %(yz—yl)—é%eﬁ %Q"y3_'§5 (50)
T€ %yZ_;H'Fe& %yl—é%eg &4)/4‘55

Inview of Eq. (50), we take the parameter update law as

A=-g(x-x)+ke, b=ex+ke, E=ex +ke,
d =-ex +ke,, F =exx +ke, a=e(y,-y) +kee,,
/[} =&Y +k11eﬂ’ ;:ezyz +k12ey’ 5 =6y, +k€;, (51)

£= €Y, * I(14eg
Theorem 6.1 The adaptive control law (44) along with the parameter update law (51), where
k,(i=12,...,14) are positive gains, achieves global and exponential hybrid synchronization of
the hyperchaotic Xu system (40) hyperchaotic Li system (41), where &(t), b(t), &(t), d(t), f (t),
a(t), [}(t), 7(t), g(t), £(t) are estimates of the unknown parameters a,b,c,d,r, a,3,7.6,¢,

respectively. Moreover, all the parameter estimation errors converge to zero exponentially for al
initial conditions.

Proof. We prove the above result using Lyapunov stability theory [25].
Substituting the parameter update law (51) into (50), we get
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V= _kle_lz - k2e§ - k3e32 - k4e§ - k5€‘§ - kee§ - k7ec2 - kﬂej - kger2

(52)
- kmei - kne; - kizeyz - kise(? - k14ef~

which is anegative definite function on R*.

This shows that the hybrid synchronization errors g (t),e,(t),&(t),€,(t) and the parameter
esimation errors g, (t),§,(t),&.(t),& (t),& (t), e,(t).e;(t),e (t),e(t),e.(t) ae globaly
exponentially stable for al initial conditions. This completesthe proof. |

Next, we demonstrate our hybrid synchronization resultswith MATLAB simulations.
The classical fourth order Runge-K utta method with time-step h =107 has been applied to solve
the hyperchaotic Li systems (27) and (28) with the adaptive nonlinear controller (31) and the
parameter update law (38). The feedback gainsaretakenas k =5, (i =1,2,...,9).
The parameters of the hyperchaotic Xu and Li systems are taken asin the hyperchaotic case, i.e.
a=10,b=40,c=25r=16,d=2, =35 =3, y=12, 6 =7, £ =0.58
For smulations, theinitial conditions of the hyperchaotic Xu system (27) are chosen as
x(0) =12, x,(0)=-4, x,(0)=8, x,(0)=-20
Also, theinitia conditions of the hyperchaotic Li system (28) are chosen as
¥:(0) =21 y,(0)=7, y,(0) =19, y,(0) =-12

Also, theinitial conditions of the parameter estimates are chosen as

4(0)=-7, b(0)=14, &0)=12, d(0)=-8, F(0)=15
4(0)=12, B(0)=5, 7(0)=4, &(0)=11 £(0)=-6

Figure 9 depicts the hybrid synchronization of hyperchaotic Xu and hyperchaotic Li systems.
Figure 10 depicts the time-history of the hybrid synchronization errors €, €,,€;,€,.

Figure 11 depicts the time-history of the parameter estimation errors €,,€,,€,,€,.
Figure 12 depicts the time-history of the parameter estimation errors €,,€;,€,,€;,€,.
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Figure 9. Hybrid Synchronization of Hyperchaotic Xu and Lu Systems
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Figure 11. Time-History of the Parameter Estimation Errors €,,6,, €., €,
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Time {sec)

Figure 12. Time-History of the Parameter Estimation Errors €, ,€

,.€,,6;,€,

7. CONCLUSIONS

In this paper, using adaptive control method, we derived new results for the adaptive controller
design for the hybrid synchronization of hyperchaotic Xu systems (2009) and hyperchaotic Li
systems (2005) with unknown parameters. Using Lyapunov control theory, adaptive control laws
were derived for globally hybrid synchronizing the states of identical hyperchaotic Xu systems,
identical hyperchaotic Li systems and non-identical hyperchaotic Xu and Li systems. MATLAB
simulations were displayed in detail to demonstrate the adaptive hybrid synchronization results
derived in this paper for hyperchaotic Xu and Li systems.
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