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ABSTRACT 

 
This paper investigates the design problem of observers for nonlinear descriptor systems described by 

Takagi-Sugeno (TS) system; Depending on the available knowledge on the premise variables two cases are 

considered. First a TS descriptor system with measurables premises variables are proposed. Second, an 

observer design which satisfying the Lipschitz condition is proposed when the premises variables are 

unmeasurables. The convergence of the state estimation error is studied using the Lyapunov theory and the 

stability conditions are given in terms of Linear Matrix Inequalities (LMIs). Examples are included to 

illustrate those methods. 

 

KEYWORDS 

 
Descriptor TS system, Lipschitz Condition, Unmeasurable Premise Variable & Observer Design.  

 

1. INTRODUCTION 

 
Since more than two decades ago, Takagi–Sugeno (T–S) fuzzy models have attracted wide 

attention from scientists and engineers, essentially because the well-known fuzzy models can 

effectively approximate a wide class of nonlinear systems. Relaxed sufficient conditions for fuzzy 

controllers and fuzzy observers are proposed in via a multiple Lyapunov function approach [1]. 

 

System modeling by descriptor method has an important use in the literature since it represents 

many class of non linear system. The enhancement of the modeling ability is due to the structure 

of the dynamic equation which encompasses not only dynamic equations, but also algebraic 

relations [2].Since both TS and descriptor formalism are attractive in the field of modeling, the 

TS representation has been generalized to descriptor systems. The stability and the design of 

state-feedback controllers for T-S descriptors systems are characterized via LMI in [3], [4]. 

 

System modeling by descriptor method has an important use in the literature since it represents 

many class of non linear system.    

 

In other hand, many problems in decision making, control and monitoring require a state 

estimation based on a dynamic system model. A generic method for the observer design, valid for 
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all types of nonlinear systems, has not yet been developed. This problem received considerable 

attention in the last three decades; it is of great importance in theory and practice, since there are 

many situations where premise variable are inaccessible.  

 

In this paper, we propose to design a state observer to estimate exactly the descriptor’s states. For 

a TS fuzzy model, well-established methods and algorithms can be used to design observers that 

estimate measurable states. Several types of such observers have been developed for TS fuzzy 

systems, among which: fuzzy Thau–Luenberger observers reduced-order observers and sliding-

mode observers. In general, the design methods for observers also lead to an LMI feasibility 

problem [5], [6], [7], [8]. 

 

For the unmeasurables premises variables many searchers studied the observer design for non 

linear descriptor system with lipschitz constraint [9] [10][11][12].The fuzzy TS systems are 

studied in [13]. The main objective of this paper is to develop an observer design for TS 

descriptor system with lipschitz constraint. Under some sufficient conditions, the design of the 

observer is reduced to the determination of a matrix. The choice of this parameter is performed by 

solving strict LMIs (linear matrix inequalities).  

 

The outline of the paper is as follows. First, the class of studied systems and observer are given. 

Second problem formulation for observer with measurable variables is dealt. Third the Lipschitz 

observer will be studied. Finally we present an example to illustrate the effectiveness of the 

proposed method. Concluding remarks finish this paper. 

  

 2.  SYSTEM DESCRIPTION AND PRELIMINARIES 

 
2.1. Descriptor System 

 
Let us consider the class of non linear descriptor system which is defined as: 

 

 

( )( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

E x t x t A x t x t B x t u t

y t C x t x t

= +
=

&

                                                                                  (1) 

  Where ( ) n
x t R∈ , ( ) q

u t R∈  and ( ) m
y t R∈  represent respectively the state, the control input and 

the output vectors; ( )( ) ( )( ), n n
A x t E x t R

×∈ , ( )( ) n m
B x t R

×∈  and ( )( ) q n
C x t R

×∈  are non linear 

matrices functions. For simplicity, we should always consider that ( )( )E x t  is regular for each

( ) n
x t R∈ .  

Then the TS descriptor system is given as: 

   ( )( ) ( )( )( )
1 1

( ) ( ) ( )

( ) ( )

l r

k k i i i

k i

v z t E x t h z t A x t B u t

y t Cx t
= =

= +

=

∑ ∑&
                                                                   (2) 

 Where z represent the premise variable; ( )( )ih z t and ( )( )kv z t represent respectively the right and 

the left activating function; r and l is respectively the right and the left number of fuzzy rules ; kE

iA , iB and C are constant matrices; 

Where 

( )( )
( )( )

( )( )
( )( ) ( )( )

1

1

  ,   
g

i

i i ij jr
i

i

i

w z t
h z t w z t F z t

h z t =

=

= = ∏
∑

                                                                    (3) 
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( )( )ih z t has also the same characteristic as ( )( )kv z t  and it satisfies: 

( )( ) ( )1   and  0   for  1,...,i ih z t h z i r= > =                                                                                  (4) 

The passage from the nonlinear system to the TS descriptor system is obtained by the sector 

nonlinearity approach. In this case, the TS descriptor matches exactly the nonlinear model in a 

compact set of the state variables . 

 

2.2. Descriptor observer  

 
In general a TS observer is defined by the interconnection between many locals Luenberger 

observers [14], [15]. It is written as: 

( )( ) ( )
1

ˆ ˆ ˆˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( )

r

j i i i

i

x t h z t A x t B u t L y t y t

y t Cx t
=

 = + − 

=

∑&
                                                                     (5) 

Where ( )x̂ t  and ( )ẑ t represent respectively the estimate state and the estimate premise variable; 

iL are the observer gain matrices.  

In this study, the proposed observer is in the descriptor form. Using the general TS descriptor 

form, it is possible to suppose a nonlinear observer based on this form: 

( )( ) ( )( ) ( )
1 1

ˆ ˆ ˆˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ( )  ( )

l r

k k j i i i

k j

v z t E x t h z t A x t B u t L y t y t

y t C x t
= =

 = + − 

=

∑ ∑&

                                              (6) 

There are two cases to define witch related to the accessibility of the premises variables. In the 

first time we assume that the variables ( )z t  are   real time available ( ) ( )ẑ t z t=  and thus so are 

the weighting functions ( )( ) ( )( )ˆ
i i

h z t h z t= and ( )( ) ( )( )ˆ
k k

v z t v z t= .But, in many practical 

situations, these premise variables depend on the state variables that are not always accessible.  
Then two cases are considered. 

- measurables premises variables 

- unmeasurables premises variables. 

 

3. OBSERVER DESIGN 

 
3.1. Measurables Premises Variables 

 
This section is devoted to the state estimation. In fact a descriptor form of observer will be 

considered. The following theorem presents the main result. 

  
Theorem1: The convergence of the error estimation between the system (2) and the observer (6) 

is ensured if there exist: 1 1 0T
P P= >   and 3P , iL , 3iY 1,..., 1,...,for i r and k l= =      such that: 

 

3 3 3 3

1 3 3 3 3 3

(*)
0

T T T T

i i i i

T T T T
k i i k k

A P C Y P A Y C

P E P P A Y C E P P E

 − + −
< 

− + − − −  
                                                                 (7) 

 

As usual, a star (*) indicates a transpose quantity in a symmetric matrix.  
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Proof: 

 

Away to obtain sufficient convergence conditions for descriptor fuzzy observer is to consider the 

error estimation as: 

 

( ) ( ) ( )ˆe t x t x t= −                                                                                                                         (8) 

Its time derivative is given by: 

( ) ( ) ( )ˆe t x t x t= − && &                                                                                                                         (9) 

According to equation (2) equation (6) becomes: 

( )( ) ( )( ) ( ) ( )( )
1 1

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
l r

k k i i i i
k i

v z t E x t h z t A x t B u t L Cx t Cx t
= =

= + + −∑ ∑&                                 (10) 

The difference between this last equations and equation (2) is given by: 

( )( ) ( )( )( )
1 1

( ) ( )
l r

k k i i i
k i

v z t E e t h z t A L C e t
= =

= −∑ ∑&                                                                           (11) 

Let us consider the augmented error vector is given by: 

( ) ( ) ( )
T

T T
e t e t e t =  &                                                                                                                (12) 

Equations (11) can be written: 

( ) ( )ikEe t A e t=&                                                                                                                          (13) 

With 

00

0 0
ik

i i k

II
E A

A L C E

  
= =    − −   

  and                                                                                   (14) 

In order to find an asymptotic convergence error, we consider the Lyapunov candidate function

( )( ) ( ) ( ) , ,
T T n n

V e t e t EPe t P P P R
×= = ∈  with: 

1 2

1 1 2

3 4

0, , 0 0T T
P P

EP P E P P P P
P P

 
= > = = > = 

 
   and                                                              (15) 

The negativity of the Lyapunov function is assumed by: 

( )( ) ( ) ( ) ( ) { ( ) 0
T

T T

P E

V e t e t EPe t e t EP e t= + <& & &
                                                                            (16) 

In others words, obviously, with (14), the condition (16) becomes: 

( ) ( ) ( ) 0
T T T

ik ike t A P P A e t+ <
                                                                                                  (17)

 

Then for  1,...,  and for  1,...,    i r k l= = we obtain: 

 

( ) 1 1 3

3 4 4

0 00
* * 0

0

T T T

i i

TT
i i kk

P IP PA L C

P P A L C EPI E

   −    
+ <      − − −        

                                           (18) 

 

3 3 3 3

1 3 4 4 4 4

(*)
0

T T T T T
i i i i

T T T T T
k i i k k

A P C L P P A P L C

P E P P A P L C E P P E

 − + −
< 

− + − − −  

  

                                                            (19) 
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In order to solve strict LMIs, we suppose that
4 3P P= , then 

3 3 3 3

1 3 3 3 3 3

(*)
0

T T T T T

i i i i

T T T T T
k i i k k

A P C L P P A P L C

P E P P A P L C E P P E

 − + −
< 

− + − − −  

  

                                                      (20) 

 

To have terms of Linear Matrix Inequalities we consider a bijectif changement
3 3

T

i iY P L= : 

 

3 3 3 3

1 3 3 3 3 3

(*)
0

T T T T

i i i i

T T T T
k i i k k

A P C Y P A Y C

P E P P A Y C E P P E

 − + −
< 

− + − − −  

  

                                                             (21) 

 

 

3.2 Unmeasurables Premises Variables  

 
This part addresses the issues of observer design for a class of descriptor systems with Lipschitz 

constraint.The general form for the TS descriptor system is in the form of equation (2).To avoid 

to have a complex equation, we will suppose that all the 1,...,kE E k l= =  for     .Then we have a 

new form of TS descriptor system given as below: 

( )( )( )
1

( ) ( ) ( )

( ) ( )

r

i i i

i

Ex t h z t A x t B u t

y t Cx t
=

= +

=

∑&

                                                                                         (22) 

Then the observer corresponds to this extension of TS descriptor system will be defined as: 

( )( ) ( )
1

ˆ ˆ ˆˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ( )  ( )

r

j i i i

j

Ex t h z t A x t B u t L y t y t

y t C x t
=

 = + − 

=

∑&

                                                                (23) 

In this section, the purpose is to suggest a method for the design of observer for TS descriptor 
system. The following hypothecs and lemma will be used in the development.  

Hypothec 1: The activating function is lipschitz: 

 

( )( ) ( )( ) ( ) ( )ˆ ˆ
i i ih x t h x t x t x tγ− ≤ −

                                                                                         (24)  

( )( ) ( ) ( )( ) ( ) ( ) ( )ˆ ˆ ˆ
i i ih x t x t h x t x t m x t x t− ≤ −

                                                                         (25) 

Where iγ  and im  positives scalars Lipschitz constants. 

Hypothec 2: The control input u (t) is bounded:   

( ) 1 1, 0u t β β≤ >
                                                                                                                      (26) 

Lemma1  

For all matrices X and Y,  λ  a positive scalar, the following property is given as:   
 

1
,   >0

T T T T
X Y Y X X X Y Yλ λ λ−+ ≤ +                                                                                       (27)

 

 The following theorem shows the most important result.  
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 Theorem2: The convergence of the error estimation between the system (22) and the observer 

(23) tend asymptotic to zero is ensured if there exist: n nP R ×∈  and n n
Q R

×∈   symmetric positive 

defined, the matrix  1
n q

iK R
×∈   and  positives scalars 1λ , 2λ  such that: 

0 0
T T T

i iA P PA C K K C Q+ − − < −
                                                                                              

(28) 
 

2
1

T
1

2

2

0 0
0

0 0

0 0

i i i i

i

T

i

i

Q m I PA PB n I

A P I

B P I

n I I

λ γ

λ

λ

γ λ

 − +
 

− 
< 

− 
 −                                                                                    (29) 

 

1 2 0γ β λ− ≥                                                                                                                                (30) 
 

0
T

EP P E= >                                                                                                                             (31) 
 

The gain of the observer is given by: 
1

i iL P K
−=                                                                                                                                   (32) 

 

Proof: 

The basic idea is to concept a descriptor observer which verifies Lipschitz condition by 

introducing some change in the system. Hence,the matrices  ,  i i iA B and C  will be written as : 
 

0 0

1

,   
r

i i i

i

A A A A A
=

= = −∑
                                                                                                           (33) 

 

0 0

1

,   
r

i i i

i

B B B B B
=

= = −∑
                                                                                                           (34) 

0 0

1

,   
r

i i i

i

C C C C C
=

= = −∑
                                                                                                          (35)

 

The system (23) will be written as: 

( ) ( ) ( ) ( )( )( )0 0

1

( ) ( )

( )  ( )

r

i i i

i

Ex t A x t B u t h x t A x t B u t

y t C x t
=

= + + +

=

∑&

                                                      (36)

 

Then the observer equation will be changed as: 

( ) ( ) ( ) ( )( )( ) ( ) ( )( )0 0

1

ˆ ˆ ˆ ˆ ˆ( ) ( )

ˆ̂ ˆ( )  ( )

r

i i i i

i

Ex t A x t B u t h x t A x t B u t L y t y t

y t C x t
=

= + + + −

=

∑&

                              
(37) 

The estimation error is given as: 
 

( ) ( ) ( )ˆe t x t x t= −
                                                                                                                      

(38)
 

Consequently, the augmented state estimation error obeys to the following nonlinear system: 
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( ) ( )( )( ) ( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )0

1 1

ˆ ˆ ˆ ˆ( ) ( )   ( )
r r

i i i i i i i i

i i

Ee t h x t A L C e t A h x t x t h x t x t B h x t h x t u t
= =

= − + − + −∑ ∑&

                                                                                                                                                   (39) 

To show the effeteness of hypothecs we suppose as below: 
 

( ) ( )( ) ( ) ( )( ) ( )
( ) ( )( ) ( )( )
( ) 0

ˆ ˆ

ˆ
i i i

i i i

i i

t h x t x t h x t x t

t h x t h x t

t A L C

δ = −


∆ = −
Φ = −


                                                                                          (40) 

Then the dynamic error will be defined as:  

( ) ( )( ) ( ) ( ) ( ) ( )
1 1

ˆ   ( )
r r

i i i i i i

i i

Ee t h x t t e t A t B t u tδ
= =

= Φ + + ∆∑ ∑&

                                                     (41) 
 

In order to find an asymptotic convergence error, we consider the quadratic Lyapunov function 

( )( ) ( ) ( ) , ,
T T n n

V e t e t EPe t P P P R
×= = ∈  with:

 0
T

EP P E= >  

Then the time derivative of the Lyapunov function will be written as:  
 

( )( ) ( ) ( ) ( ) { ( )
T

T T

P E

V e t e t EPe t e t EPe t= +& & &

                                                                                    (42) 

Then 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )( )

T T

1

ˆ                 + 

r
T T TT

i i i i i i i i

i
T TT

i i i

V e t t A Pe t e t PA t t B Pe t e t PB t

h x t e t Pe t e t P e t

δ δ
=

= + + ∆ + ∆

Φ + Φ

∑&

                 (43)

 

The derivative of the Lyapunov function is composed of quadratic terms in ( )e t and of terms 

crossed in ( )e t  ,
 

( )i tγ and ( )i t∆ .In order to express ( )( )V e t  in a quadratic form in ( )e t  .We 

proceed as follows:  

( ) ( )
( ) ( )
( ) ( )

1

i i

i i

k i

t m e t

t n e t

t e t

δ

β

ψ γ

≤

∆ ≤

≤ &
                                                                                                                

(44)
 

By applying the lemma1 we lead to the following inequalities:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

T TT 1 T
1 1

2 1 T
1 1                                                     

T T

i i i i i i i i
T T

i i i

t A Pe t e t PA t t t e t PA A Pe t

m e t e t e t PA A Pe t

δ δ λ δ δ λ

λ λ

−

−

+ ≤ +

≤ +
                          (45) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1
2 2

2 2 1
2 1 2                                                      

T T T TT T
i i i i i i i i

T T T
i i i

t B Pe t e t PB t t t e t PB B Pe t

n e t e t e t PB B Pe t

λ λ

λ β λ

−

−

∆ + ∆ ≤ ∆ ∆ +

≤ +
                    (46)

 

The derivative of the Lyapunov function became:   
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( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )( )

T T

1

ˆ                 + 

r
T T TT

i i i i i i i i

i
T TT

i i i

V e t t A Pe t e t PA t t B Pe t e t PB t

h x t e t Pe t e t P e t

δ δ
=

= + + ∆ + ∆

Φ + Φ

∑&

                 (47)

 

( )( ) ( ) ( )( )( ) ( ) ( )
2 2 2

1 2 1
1 T 1

1 1 2

ˆ
r T

T ii i i i
T

i i i i i

h x t P P m n I
V e t e t e t

PA A P PB B P

λ λ β

λ λ− −
=

 Φ + Φ + +
≤   + + 
∑&

                                   (48)

 

The stability of this last equation is assured, for 1...,i r=
 
:   

( ) ( )( )( ) ( )( ) ( )2 2 2 1 T 1
1 2 1 1 2

ˆ 0
T T T

ii i i i i i i ie t h x t P P m n I PA A P PB B P e tλ λ β λ λ− −Φ + Φ + + + + <
     (49)

 This leads to the following conditions: 

( ) ( )0 0

T

i iA L C P P A L C Q− + − < −
                                                                                            (50)

 

( )2 2 2 1 T 1
1 2 1 1 2 0

T
i i i i i iQ m n I PA A P PB B Pλ λ β λ λ− −− + + + + <

                                                       (51)
 

Then we suppose variable changement i iK PL=   and the complement Schur . Then it will be 

defined as below:   

0 0
T T T

i iA P PA C K K C Q+ − − < −                                                                                               (52) 

( )2 2 2
1 2 1

T
1 1 2

2

0 0   , 0  0

0

i i i i

i

T

i

Q m n I PA PB

A P I et

B P I

λ λ β

λ λ λ

λ

 − + +
 
 − < > >
 
 −
                                                 (53)

 

To have an effective choice we can take the input as a variable to be determined which one will 

call ρ .
  

By using the complement Schur, inequality (52) will be written:  
 

2
1 2

T
1

1 2

2

2 2

0 0
0,   , 0  0

0 0

0 0

i i i i

i

T

i

i

Q m I PA PB n I

A P I
et

B P

n I I

λ λ ρ

λ
λ λ

λ

λ ρ λ

 − +
 

− 
< > > 

− 
 −                                                 (54) 

 

The presence of the product 2λ ρ  leads to a nonlinear inequality. To rewrite it in form LMI, we 

pose 2γ λ ρ=   :   

0 0
T T T

i iA P PA C K K C Q+ − − < −
                                                                                              (55) 

  

2
1

T
1

2

2

0 0
0

0 0

0 0

i i i i

i

T
i

i

Q m I PA PB n I

A P I

B P

n I I

λ γ

λ

λ

γ λ

 − +
 

− 
< 

− 
 −                                                                                    (56)
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Knowing γ  and 2λ   we can deduce the value
 2

γ
ρ

λ
=  

4. DESIGN EXAMPLES 

 
4.1. Example 1  

 
This section is dedicated to illustrate the efficiency of the proposed approach. We consider the 

following example witch illustrate the first theorem: 
 

( )( ) ( )( )( )
2 2

1 1

( ) ( ) ( )

( ) ( )

k k i i i

k i

v z t E x t h z t A x t B u t

y t Cx t
= =

= +

=

∑ ∑&  

With
0

1

1
x

 
=  
 

,
1

3 1

1 -1
A

− 
=  
 

,
2

-2 1

1 0
A

 
=  
 

,
1

2

1
B

− 
=  
 

,
2

1

1
B

 
=  
 

, [ ]1   1C = , 

1

1 0

0 2
E

 
=  
 

 and 
2

1 0

0 2.01
E

 
=  
 

. 

And the activating functions: 

( )( )1 11 tanh / 2h x= − , 2 11h h= −    and ( ) ( )1 1 2cos cosv x x=  , 2 11v v= − . 

According to the given procedure, we design the descriptor observer based on theorem 1 via the 

Matlab LMI toolbox. Then we obtain  
1P  : and  

3P : 

1

0.9875 -0.0266

-0.0266 1.2489
P

 
=  
 

      ,  
3

 0.2561    -0.0373

0.0394 0.3161
P

 
=  
 

. 

The corresponding observer gain matrices are: 

1

 -0.4898

  0.4323
L

 
=  
 

,  
2

0.5255

-0.1566
L

 
=  
  .

 

 

Figure1.  Error estimation for x1 
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We conclude from the simulation results that the observe design shows the essential aims of this 

method. The estimation error of 
1 1̂x x−  is shown in Figure 1 and the error of 

2 2
ˆx x−  in Figure 2 

are close to zero quickly.   

 
 

 

Figure2.  Error estimation for x2 

 

4.2. Example 2  

 
The theorem 2 is illustrated by this example: 

( )( )( )
3

1

( ) ( ) ( )

( ) ( )

i i i

i

Ex t h z t A x t B u t

y t Cx t
=

= +

=

∑&  

With  0

1

1

1

x

 
 =  
  

,
1

2 1 1

1 3 0

2 1 6

A

− 
 = − 
 − 

, 2

-3 2 -2

5 -3 0

0.5 0.5 -4

A

 
 =  
  

,
1

1

0.5

0.5

B

 
 =  
  

, 2

0.5

 1

0.5

B

 
 =  
  

,
1 1 1

1 0 1
C

 
=  
 

 and 

1 2 0

0 2 0

0 0 1

E

 
 =  
  

. 

And the activating functions: 

( )( )1 11 tanh / 2h x= − ,
2 11h h= − . 

According to the given procedure, we design the descriptor observer based on theorem 2 via the 

Matlab LMI toolbox. Then we obtain  : 

1.2594 0.2698 0.4471

0.2698 1.4447 -0.0991

0.4471 -0.0991 0.7367

P

 
 =  
  

and 

1.5534 -0.0000 -0.0300

-0.0000 1.5235 -0.0000 

-0.0300 -0.0000 1.5534

Q

 
 =  
  
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Figure3.  Error estimation for x1 

 

The corresponding observer gain matrices are: 

1

118.4894  0.3110

-101.6108 336.9255

-608.0136 908.4754

L

 
 =  
  

and 
2

-421.6323 106.0784

 93.6932 266.3481

-273.6247 165.1607

L

 
 =  
  

 

 
Figure4.  Error estimation for x2 

The scalars are of values: 1  0.5863λ =  ,  2  0.0094λ = and   0.1575γ = . 
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Figure5.  Error estimation for x3 

 

The results of simulation corresponding to the evolution of the state estimation error are presented 

in Figure 3, Figure 4 and Figure 5.   

 

5. CONCLUSIONS 

 
The design descriptor observer was studied in this paper. The considered systems are modeled in 

the Takagi-Sugeno descriptor structure with measurable and unmeasurable premise variables. The 

strategy is based on the use of the Lipschitz condition. The stability is studied with the Lyapunov 

theory and a quadratic function that allows to derive conditions ensuring the convergence of the 

state estimation error. The existence conditions are expressed in terms of LMIs that can be solved 

with LMIS Toolbox in Matlab. 
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