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ABSTRACT 

 
This paper derives new results for the anti-synchronization of identical hyperchaotic Qi systems (2008), 

identical hyperchaotic Jha systems (2007) and non-identical hyperchaotic Qi and hyperchaotic Jha 

systems. Active nonlinear control is the method adopted to achieve the anti-synchronization of the identical 

and different hyperchaotic Qi and Jha systems. Our stability results derived in this paper are established 

using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the 

active nonlinear control method is effective and convenient to achieve anti-synchronization of the identical 

and different hyperchaotic Qi and hyperchaotic Jha systems. Numerical simulations are shown to validate 

and illustrate the effectiveness of the anti-synchronization results derived in this paper. 
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1. INTRODUCTION 

 
Chaotic systems are nonlinear dynamical systems that are highly sensitive to initial conditions. 

This sensitivity is popularly known as the butterfly effect [1].  Chaos is an interesting nonlinear 

phenomenon and has been extensively and intensively studied in the last two decades [1-23]. 

Chaos theory has been applied in many scientific disciplines such as Mathematics, Computer 

Science, Microbiology, Biology, Ecology, Economics, Population Dynamics and Robotics. 

 

Hyperchaotic system is usually defined as a chaotic system with more than one positive 

Lyapunov exponent. The first hyperchaotic system was discovered by O.E. Rössler ([2], 1979). 

Since hyperchaotic system has the characteristics of high capacity, high security and high 

efficiency, it has the potential of broad applications in nonlinear circuits, secure communications, 

lasers, neural networks, biological systems and so on. Thus, the studies on hyperchaotic systems, 

viz. control, synchronization and circuit implementation are very challenging problems in the 

chaos literature [3].  

 

In most of the chaos synchronization approaches, the master-slave or drive-response formalism 

has been used. If a particular chaotic system is called the master or drive system and another 

chaotic system is called the slave or response system, then the idea of anti-synchronization is to 

use the output of the master system to control the slave system so that the states of the slave 
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system have the same amplitude but opposite signs as the states of the master system 

asymptotically. 

 

In 1990, Pecora and Carroll [4] introduced a method to synchronize two identical chaotic systems 

and showed that it was possible for some chaotic systems to be completely synchronized. From 

then on, chaos synchronization has been widely explored in a variety of fields including physical 

[5], chemical [6], ecological [7] systems, secure communications 

[8-10], etc. 

 

Since the seminal work by Pecora and Carroll [4], a variety of impressive approaches have been 

proposed for the synchronization of chaotic systems such as OGY method [11], active control 

method [12-15], adaptive control method [16-20], backstepping method [21-22], sampled-data 

feedback synchronization method [23], time-delay feedback method [24], sliding mode control 

method [25-27], etc.  

 

In this paper, we derive new results for the anti-synchronization for identical and different 

hyperchaotic Qi and Jha systems using active nonlinear control. Explicitly, using active nonlinear 

control and Lyapunov stability theory, we achieve anti-synchronization for identical hyperchaotic 

Qi systems ([28], 2008), identical hyperchaotic Jha systems ([29], 2007) and non-identical 

hyperchaotic Qi and hyperchaotic Jha systems. 

 

This paper has been organized as follows. In Section 2, we give the problem statement and our 

methodology. In Section 3, we give a description of the hyperchaotic Qi and Jha systems. In 

Section 4, we discuss the anti-synchronization of two identical hyperchaotic Qi systems. In 

Section 5, we discuss the anti-synchronization of two identical hyperchaotic Jha systems ([29], 

2007). In Section 6, we discuss the anti-synchronization of non-identical hyperchaotic Qi and Jha 

systems. In Section 7, we summarize the main results of this paper. 

 

2. PROBLEM STATEMENT AND OUR METHODOLOGY 

 
Consider the chaotic system described by the dynamics 

( )x Ax f x= +&          (1) 

where 
n

x ∈R  is the state of the system, A is the n n×  matrix of the system parameters and 

: n n
f →R R is the nonlinear part of the system. We consider the system (1) as the master or 

drive system. 

As the slave or response system, we consider the following chaotic system described by the 

dynamics 

  ( )y By g y u= + +&           (2) 

where 
n

y ∈R is the state of the system, B is the n n× matrix of the system parameters, 

: n n
g →R R is the nonlinear part of the system and 

n
u ∈R is the active controller of the slave 

system. 

If A B= and ,f g= then x  and y are the states of two identical chaotic systems. If A B≠ or 

,f g≠ then x and y are the states of two different chaotic systems.  
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In the active control method, we design a feedback controller ,u which anti-synchronizes the 

states of the master system (1) and the slave system (2) for all initial conditions (0), (0) .n
x y ∈R  

If we define the anti-synchronization error as 

  ,e y x= +          (3) 

then the error dynamics is obtained as 

            ( ) ( )e By Ax g y f x u= + + + +&              (4) 

Thus, the anti-synchronization problem is essentially to find a feedback controller u so as to 

stabilize the error dynamics (4) for all initial conditions (0) .n
e ∈R  

Hence, we find a feedback controller u so that 

   lim ( ) 0
t

e t
→∞

=  for all (0)e ∈R n
                          (5) 

We take as a candidate Lyapunov function 

            ( ) ,T
V e e Pe=                                                      (6) 

where P is a positive definite matrix.  

Note that : n
V →R R is a positive definite function by construction.  

We assume that the parameters of the master and slave system are known and that the states of 

both systems (1) and (2) are measurable. 

If we find a feedback controller u so that 

           ( ) ,T
V e e Qe= −&                                                    (7) 

where Q is a positive definite matrix, then : n
V →& R R  is a negative definite function.  

Thus, by Lyapunov stability theory [30], the error dynamics (4) is globally exponentially stable 

and hence the condition (5) will be satisfied. Hence, the states of the master system (1) and the 

slave system (2) will be globally and exponentially anti-synchronized. 

 

3. SYSTEMS DESCRIPTION 

 
In this section, we describe the hyperchaotic systems studied in this paper, viz. hyperchaotic Qi 

system ([28], 2008) and hyperchaotic Jha system ([29], 2007). 

The hyperchaotic Qi system ([28], 2008) is described by the dynamics 
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1 2 1 2 3

2 1 2 1 3

3 3 4 1 2

4 4 3 1 2

( )

( )

x a x x x x

x b x x x x

x cx x x x

x dx fx x x

ε

= − +

= + −

= − − +

= − + +

&

&

&

&

          (8) 

where 1 2 3 4, , ,x x x x are the states and  , , , , ,a b c d fε are constant, positive parameters of the 

system. 

The Qi system (8) exhibits a hyperchaotic attractor (see Figure 1), when the parameter values are 

taken as  

50,a =   24,b =   13,c =   8,d =   33,ε =   30f =       (9) 

 

Figure 1. The Phase Portrait of the Hyperchaotic Qi System 

The hyperchaotic Jha system ([29], 2007) is described by the dynamics  

 

1 2 1 4

2 1 3 1 2

3 1 2 3

4 1 3 4

( )x x x x

x x x x x

x x x x

x x x x

α

β

γ

δ

= − +

= − + −

= −

= − +

&

&

&

&

         (10) 

where 1 2 3 4, , ,x x x x are the states and  , , ,α β γ δ are constant, positive parameters of the system. 
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The Jha dynamics (10) exhibits a hyperchaotic attractor (see Figure 2), when the parameter values 

are taken as  

10,α =   28,β =   8 / 3,γ =    1.3δ =       (11) 

 

Figure 2. The Phase Portrait of the Hyperchaotic Jha System 

 

4. ANTI-SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC QI SYSTEMS BY 

ACTIVE CONTROL 

 
4.1 Theoretical Results  

 
In this section, we apply the active nonlinear control method for the anti-synchronization of two 

identical hyperchaotic Qi systems (2008). 

 

Thus, the master system is described by the hyperchaotic Qi dynamics 
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1 2 1 2 3

2 1 2 1 3

3 3 4 1 2

4 4 3 1 2

( )

( )

x a x x x x

x b x x x x

x cx x x x

x dx fx x x

ε

= − +

= + −

= − − +

= − + +

&

&

&

&

                         (12) 

where 1 2 3 4, , ,x x x x are the state variables and , , , , ,a b c d fε are positive parameters of the system. 

The slave system is described by the controlled hyperchaotic Qi dynamics 

   

1 2 1 2 3 1

2 1 2 1 3 2

3 3 4 1 2 3

4 4 3 1 2 4

( )

( )

y a y y y y u

y b y y y y u

y cy y y y u

y dy fy y y u

ε

= − + +

= + − +

= − − + +

= − + + +

&

&

&

&

             (13) 

where 1 2 3 4, , ,y y y y are the state variables and 1 2 3 4, , ,u u u u are the active nonlinear controls to be 

designed. 

The anti-synchronization error e is defined by 

  ,   ( 1,2,3,4)i i ie y x i= + =           (14) 

The error dynamics is obtained as 

  

1 2 1 2 3 2 3 1

2 1 2 1 3 1 3 2

3 3 4 1 2 1 2 3

4 4 3 1 2 1 2 4

( )

( )

e a e e y y x x u

e b e e y y x x u

e ce e y y x x u

e de fe y y x x u

ε

= − + + +

= + − − +

= − − + + +

= − + + + +

&

&

&

&

            (15) 

We choose the active nonlinear controller as 

    

1 2 1 2 3 2 3 1 1

2 1 2 1 3 1 3 2 2

3 3 4 1 2 1 2 3 3

4 4 3 1 2 1 2 4 4

( )

( )

u a e e y y x x k e

u b e e y y x x k e

u ce e y y x x k e

u de fe y y x x k e

ε

= − − − − −

= − + + + −

= + − − −

= − − − −

           (16) 

where the gains ,  ( 1,2,3,4)ik i = are positive constants. 

Substituting (16) into (15), the error dynamics simplifies to 
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1 1

2 2

3 3

4 4

1

2

3

4

e k e

e k e

e k e

e k e

= −

= −

= −

= −

&

&

&

&

                                                               (17) 

Next, we prove the following result. 

Theorem 4.1. The identical hyperchaotic Qi systems (12) and (13) are globally and exponentially 

anti-synchronized for all initial conditions with the active nonlinear controller defined by (16).    

 

Proof. We consider the quadratic Lyapunov function defined by 

  ( )2 2 2 2

1 2 3 4
( )

1 1
,

2 2

T
V e e e e e e e= = + + +                        (18) 

which is a positive definite function on 
4.R  

Differentiating (18) along the trajectories of (17), we get 

   
2 2 2 2

1 1 2 2 3 3 4 4( )V e k e k e k e k e= − − − −&                                       (19) 

which is a negative definite function on 
4.R  

Thus, by Lyapunov stability theory [30], the error dynamics (17) is globally exponentially stable. 

Hence, the identical hyperchaotic Qi systems (12) and (13) are globally and exponentially  

anti-synchronized for all initial conditions with the active controller defined by (16).    

This completes the proof.   � 

 

4.2 Numerical Results 

  

For simulations, the fourth-order Runge-Kutta method with time-step 
8

10h
−

= is used to solve the 

differential equations (12) and (13) with the active nonlinear controller (16).  

The feedback gains used in the equation (16) are chosen as  

1 2 3 45,   5,   5,   5k k k k= = = =  

The parameters of the hyperchaotic Qi systems are chosen as 

        50,a =   24,b =   13,c =   8,d =   33,ε =   30f =    

The initial conditions of the master system (12) are chosen as 

       1 2 3 4(0) 8,   (0) 26,   (0) 20,   (0) 15x x x x= = = − = −  
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The initial conditions of the slave system (13) are chosen as 

       1 2 3 4(0) 30,   (0) 5,   (0) 15,   (0) 22y y y y= = − = = −  

Figure 3 shows the anti-synchronization of the identical hyperchaotic Qi systems.  

Figure 4 shows the time-history of the anti-synchronization errors 
1 2 3 4, , , .e e e e  

 

Figure 3. Anti-Synchronization of the Identical Hyperchaotic Qi Systems 
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Figure 4. Time-History of the Anti-Synchronization Error 

5. ANTI- SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC JHA SYSTEMS 

BY ACTIVE CONTROL 

 
5.1 Theoretical Results  

 
In this section, we apply the active nonlinear control method for the anti-synchronization of two 

identical hyperchaotic Jha systems (2007). Thus, the master system is described by the 

hyperchaotic Jha dynamics 

 

     

1 2 1 4

2 1 3 1 2

3 1 2 3

4 1 3 4

( )x x x x

x x x x x

x x x x

x x x x

α

β

γ

δ

= − +

= − + −

= −

= − +

&

&

&

&

                          (20) 

where 
1 2 3 4, , ,x x x x are the state variables and , , ,δα β γ are positive parameters of the system. 

The slave system is described by the controlled hyperchaotic Jha dynamics 
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1 2 1 4 1

2 1 3 1 2 2

3 1 2 3 3

4 1 3 4 4

( )y y y y u

y y y y y u

y y y y u

y y y y u

α

β

γ

δ

= − + +

= − + − +

= − +

= − + +

&

&

&

&

             (21) 

where 1 2 3 4, , ,y y y y are the state variables and 1 2 3 4, , ,u u u u are the active nonlinear controls to be 

designed. 

The anti-synchronization error e is defined by 

  ,   ( 1, 2,3,4)i i ie y x i= + =           (22) 

The error dynamics is obtained as 

  

1 2 1 4 1

2 1 2 1 3 1 3 2

3 3 1 2 1 2 3

4 4 1 3 1 3 4

( )e e e e u

e e e y y x x u

e e y y x x u

e e y y x x u

α

β

γ

δ

= − + +

= − − − +

= − + + +

= − − +

&

&

&

&

            (23) 

We choose the active nonlinear controller as 

    

1 2 1 4 1 1

2 1 2 1 3 1 3 2 2

3 3 1 2 1 2 3 3

4 4 1 3 1 3 4 4

( )u e e e k e

u e e y y x x k e

u e y y x x k e

u e y y x x k e

α

β

γ

δ

= − − − −

= − + + + −

= − − −

= − + + −

            (24) 

where the gains ,  ( 1, 2,3,4)ik i = are positive constants. 

Substituting (24) into (23), the error dynamics simplifies to 

       

1 1

2 2

3 3

4 4

1

2

3

4

e k e

e k e

e k e

e k e

= −

= −

= −

= −

&

&

&

&

                                                               (25) 

Next, we prove the following result. 

Theorem 5.1. The identical hyperchaotic Jha systems (20) and (21) are globally and 

exponentially anti-synchronized for all initial conditions with the active nonlinear controller 

defined by (24).    

Proof. We consider the quadratic Lyapunov function defined by 
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  ( )2 2 2 2

1 2 3 4( )
1 1

,
2 2

T
V e e e e e e e= = + + +                        (26) 

which is a positive definite function on 
4.R  

Differentiating (26) along the trajectories of (25), we get 

   
2 2 2 2

1 1 2 2 3 3 4 4( )V e k e k e k e k e= − − − −&                                       (27) 

which is a negative definite function on 
4.R  

Thus, by Lyapunov stability theory [30], the error dynamics (25) is globally exponentially stable. 

Hence, the identical hyperchaotic Jha systems (20) and (21) are globally and exponentially anti-

synchronized for all initial conditions with the nonlinear controller defined by (24).    

This completes the proof.   � 

 

5.2 Numerical Results  

 

For simulations, the fourth-order Runge-Kutta method with time-step 
8

10h
−

= is used to solve the 

differential equations (20) and (21) with the active nonlinear controller (24).  

The feedback gains used in the equation (24) are chosen as  

1 2 3 45,   5,   5,   5k k k k= = = =  

The parameters of the hyperchaotic Jha systems are chosen as 

        10,α =   28,β =   8 / 3,γ =    1.3δ =   

 

The initial conditions of the master system (20) are chosen as 

       1 2 3 4(0) 8,   (0) 20,   (0) 18,   (0) 4x x x x= = = =  

The initial conditions of the slave system (21) are chosen as 

        1 2 3 4(0) 18,   (0) 24,  (0) 11,   (0) 22y y y y= − = = − =  

Figure 5 shows the anti-synchronization of the identical hyperchaotic Jha systems.  

Figure 6 shows the time-history of the anti-synchronization errors 1 2 3 4, , , .e e e e  
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Figure 5. Anti-Synchronization of the Identical Hyperchaotic Jha Systems 
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Figure 6. Time-History of the Anti-Synchronization Error 

 

6. ANTI- SYNCHRONIZATION OF NON-IDENTICAL HYPERCHAOTIC QI AND 

HYPERCHAOTIC JHA SYSTEMS BY ACTIVE CONTROL 

 
6.1 Theoretical Results  

 
In this section, we apply the active nonlinear control method for the anti-synchronization of the 

non-identical hyperchaotic Qi system (2008) and hyperchaotic Jha system (2007). 

 Thus, the master system is described by the hyperchaotic Qi dynamics 

     

1 2 1 2 3

2 1 2 1 3

3 3 4 1 2

4 4 3 1 2

( )

( )

x a x x x x

x b x x x x

x cx x x x

x dx fx x x

ε

= − +

= + −

= − − +

= − + +

&

&

&

&

                          (28) 

where 1 2 3 4, , ,x x x x are the state variables and , , , , ,a b c d fε are positive parameters of the system. 
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The slave system is described by the controlled hyperchaotic Jha dynamics 

   

1 2 1 4 1

2 1 3 1 2 2

3 1 2 3 3

4 1 3 4 4

( )y y y y u

y y y y y u

y y y y u

y y y y u

α

β

γ

δ

= − + +

= − + − +

= − +

= − + +

&

&

&

&

             (29) 

where 1 2 3 4, , ,y y y y are the state variables, , , ,δα β γ are positive parameters and 1 2 3 4, , ,u u u u are 

the active nonlinear controls to be designed. 

The anti-synchronization error e is defined by 

  ,   ( 1, 2,3,4)i i ie y x i= + =           (30) 

The error dynamics is obtained as 

  

1 2 1 4 2 1 2 3 1

2 1 2 1 2 1 3 1 3 2

3 3 3 4 1 2 1 2 3

4 4 4 3 1 3 1 2 4

( ) ( )

( )

e y y y a x x x x u

e y y b x x y y x x u

e y cx x y y x x u

e y dx fx y y x x u

α

β

γ ε

δ

= − + + − + +

= − + + − − +

= − − − + + +

= − + − + +

&

&

&

&

          (31) 

We choose the active nonlinear controller as 

     

1 2 1 4 2 1 2 3 1 1

2 1 2 1 2 1 3 1 3 2 2

3 3 3 4 1 2 1 2 3 3

4 4 4 3 1 3 1 2 4 4

( ) ( )

( )

u y y y a x x x x k e

u y y b x x y y x x k e

u y cx x y y x x k e

u y dx fx y y x x k e

α

β

γ ε

δ

= − − − − − − −

= − + − + + + −

= + + − − −

= − + − + − −

            (32) 

where the gains ,  ( 1, 2,3,4)ik i = are positive constants. 

Substituting (32) into (31), the error dynamics simplifies to 

       

1 1

2 2

3 3

4 4

1

2

3

4

e k e

e k e

e k e

e k e

= −

= −

= −

= −

&

&

&

&

                                                               (33) 

Next, we prove the following result. 

Theorem 6.1. The non-identical hyperchaotic Qi system (28) and hyperchaotic Jha  system (29) 

are globally and exponentially anti-synchronized for all initial conditions with the active 

nonlinear controller defined by (32).    
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Proof. We consider the quadratic Lyapunov function defined by 

  ( )2 2 2 2

1 2 3 4
( )

1 1
,

2 2

T
V e e e e e e e= = + + +                        (34) 

which is a positive definite function on 
4.R  

Differentiating (34) along the trajectories of (33), we get 

   
2 2 2 2

1 1 2 2 3 3 4 4( )V e k e k e k e k e= − − − −&                                       (35) 

which is a negative definite function on 
4.R  

Thus, by Lyapunov stability theory [30], the error dynamics (33) is globally exponentially stable. 

Hence, the non- identical hyperchaotic Qi system (28) and hyperchaotic Jha system (29) are 

globally and exponentially anti-synchronized for all initial conditions with the active nonlinear 

controller defined by (32).   This completes the proof.   � 

 

6.2 Numerical Results  

 

For simulations, the fourth-order Runge-Kutta method with time-step 
8

10h
−

= is used to solve the 

differential equations (28) and (29) with the active nonlinear controller (32).  

The feedback gains used in the equation (32) are chosen as  

1 2 3 45,   5,   5,   5k k k k= = = =  

The parameters of the hyperchaotic Qi systems are chosen as 

        50,a =   24,b =   13,c =   8,d =   33,ε =   30f =    

The parameters of the hyperchaotic Jha systems are chosen as 

        10,α =   28,β =   8 / 3,γ =    1.3δ =   

The initial conditions of the master system (28) are chosen as 

       1 2 3 4(0) 25,   (0) 15,   (0) 18,   (0) 6x x x x= − = = = −  

The initial conditions of the slave system (29) are chosen as 

        1 2 3 4(0) 8,   (0) 24,  (0) 7,   (0) 33y y y y= = = − =  

Figure 7 shows the anti-synchronization of the hyperchaotic Qi and hyperchaotic Jha systems.  

Figure 8 shows the time-history of the synchronization errors 1 2 3 4, , , .e e e e  
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Figure 7. Anti-Synchronization of Hyperchaotic Qi and Hyperchaotic Jha Systems 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Time-History of the Anti-Synchronization Error 
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7. CONCLUSIONS 

 
In this paper, we have used active nonlinear control method and Lyapunov stability theory to 

achieve anti-synchronization for the identical hyperchaotic Qi systems (2008), identical 

hyperchaotic Jha systems (2007) and non-identical hyperchaotic Qi and hyperchaotic Jha 

systems. Since the Lyapunov exponents are not required for these calculations, the active 

nonlinear control method is very effective and convenient to achieve anti-synchronization for the 

three master-slave pairs of hyperchaotic systems studied in this paper. Numerical simulations 

have been shown to illustrate the effectiveness of the anti-synchronization schemes derived in this 

paper for the hyperchaotic Qi and hyperchaotic Jha systems. 
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