
International Journal of Instrumentation and Control Systems (IJICS) Vol.2, No.2, April 2012 

 

DOI : 10.5121/ijics.2012.2205                                                                                                                       53 

 

ROBUST STABILIZATION OF A QUADROTOR UAV IN 

PRESENCE OF ACTUATOR AND SENSOR FAULTS 

 
Hicham Khebbache 

1
, Belkacem Sait 

2
, Naâmane Bounar 

3 
and Fouad Yacef 

4 

 
1,2

 Automatic Laboratory of Setif (LAS), Electrical Engineering Department,                

Setif University, ALGERIA 

 
khebbachehicham@yahoo.fr , sait_belkacem19@yahoo.fr 

 
3,4

 Automatic Laboratory of Jijel (LAJ), Automatic Control Department,                            

Jijel University, ALGERIA  

 
bounar18@yahoo.fr , yaceffouad@yahoo.fr  

 

 

ABSTRACT 
 
This paper deals with the stabilization problem of an underactuated quadrotor UAV system in presence of 

actuator and sensor faults. The dynamical model of quadrotor while taking into account various physical 

phenomena, which can influence the dynamics of a flying structure is presented. Subsequently, a new 

control strategy based on backstepping approach, taking into account the actuator and sensor faults is 

developed. Lyapunov based stability analysis shows that the proposed control strategy design keeps the 

stability of the closed loop dynamics of quadrotor UAV even after the presence of these faults. Simulations 

of the controlled system, illustrate that the proposed control strategy is able to maintain performance levels 

and to preserve stability under the occurrence of actuator and sensor faults. 
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1. INTRODUCTION 

 
Unmanned aerial vehicles (UAV's) offer challenging benchmark control problems and have been 

the focus for many researchers in the past few years [2]. They are being used more often for 

military and civilian purposes such as traffic monitoring, patrolling for forest fires, surveillance, 

and rescue, in which risks to pilots are often high. Moreover, small quadrotor helicopters possess 

a great maneuverability and are potentially simpler to manufacture. For these advantages, 

quadrotor helicopters have received much interest in UAV research. 

 

The quadrotors, has been studied recently by some authors [14], [8], [2], [15], [16], [11], [20], [3], 

[4], [1], [6], [12], [17], [10], [13], [9], [18], [7], [5]. These systems as many other dynamic 

systems, present constant or slowly-varying uncertain parameters, but these authors do not take 

into account the faults affecting the actuators and sensors of our system, wich makes them very 

limited and induces undesired behavior of quadrotor, or even to instability of the latter after 

occurence of actuator and sensor faults. 
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In this paper, the stabilization problem of the quadrotor aircraft in presence of actuator and sensor 

faults is considered. The dynamical model describing the quadrotor aircraft motions and taking 

into a account for various parameters which affect the dynamics of a flying structure is presented. 

Subsequently, a new control strategy based on backstepping approach taking into account the 

actuator and sensor faults is developed. This control strategy includes two compensation 

techniques, the first one is to use an integral compensation term, and the second technique by 

using an another compensation term containing "sign" function. Finally all synthesized control 

laws are highlighted by simulations which gave fairly satisfactory results despite the occurrence 

of simultaneous actuator and sensor faults. 

 

2. DYNAMICAL MODEL 

 
2.1. Quadrotor dynamic model 

 
The quadrotor have four propellers in cross configuration. The two pairs of propellers {1,3} and 

{2,4} as described in Figure. 1, turn in opposite directions. By varying the rotor speed, one can 

change the lift force and create motion. Thus, increasing or decreasing the four propeller’s speeds 

together generates vertical motion. Changing the 2 and 4 propeller’s speed conversely produces 

roll rotation coupled with lateral motion. Pitch rotation and the corresponding lateral motion; 

result from 1 and 3 propeller’s speed conversely modified. Yaw rotation is more subtle, as it 

results from the difference in the counter-torque between each pair of propellers.  

 

 

 

 

 

 

Figure 1.  Quadrotor configuration  

The quadrotor model (position and orientation dynamic) obtained is given like in [3], [4], [5] by: 
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with 
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u1, u2, u3 and u4 are the control inputs of the system which are written according to the angular 

velocities of the four rotors as follows: 
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From (2) it easy to show that : 
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2.2. Rotors dynamic model 

 
The dynamics of a DC motor is given by the following differential equations: 
 

 { }, 1,2,3,4r i i iJ Q iω τ= − ∈&                                                 (5) 

 

With Qi =dωi
2
 is the reactive torque generated, in free air, by the rotor i due to rotor drag, and  τi 

is the input torque.  
 

A control law for the input torque τi is developed in [20], it is given by: 
 

 ,i i r d i i i
Q J kτ ω ω= + −& %                                                      (6) 

 

where ki, iϵ{1,…,4} are four positive parameters, ωd,i, iϵ{1,…,4} are the desired speed of each 

rotor and ,i i d i
ω ω ω= −% .   

In fact, applying (6) to (5) leads to 

 i
i i

r

k

J
ω ω= −&% %                                                               (7) 

which shows the exponential convergence of ωi 
to ωd,i

 
and hence the convergence of the airframe 

torques to the desired values leading to the attitude stabilization of the quadrotor aircraft. 

In our application, the DC motors are voltage controlled. Assuming that the motor inductance is 

small and taking into consideration the gear ratio, one can obtain the voltage to be applied to each 

motor as follows [20]: 
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 { }, 1,2,3,4a

i i m g i

m g

R
v k k i

k k
τ ω= + ∈                                        (8) 

 
where Ra is the motor resistance, km is the motor torque constant, and kg is the gear ratio.  

 

3. CONTROL STRATEGY OF QUADROTOR WITH ACTUATOR FAULTS 

The complete model resulting by adding the actuator and sensor faults in the model (1) can be 

written in the state-space form: 
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 With ( ) n
x t ∈ℜ is the state vector of the system, ( ) p

y t ∈ℜ is the measured output vector,  

( ) m
u t ∈ℜ is the input control vector, ( ) aq

af t ∈ℜ is the resultant vector of actuator faults related to 

quadrotor motions and ( ) sq

sf t ∈ℜ is the sensor faults vector, such as: 
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& & & & & &                                  (10) 

Remark 1: In our contribution, only the velocity sensor faults are considered. 

From (1), (10) and considering the actuator and velocity sensor faults, we obtain : 
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with 
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The following assumptions are needed for the analysis, 

Assumption 1: The velocity sensor faults are slowly varying in time, as follows: 

( ) [ ]0,   i 1,2,3,4,5,6sif t ≈ ∈&                                                       (13) 

Assumption 2: The resultant of actuator faults related to quadrotor motions and velocity sensor 

faults are bounded, 

( ) ( ) [ ] [ ] and   ,    i 1,2,3,4  and  j 1,2,3,4,5,6
ai ai sj sj

f t f f t f
+ +≤ ≤ ∈ ∈                   (14) 

where {fa1
+, fa2

+, fa3
+, fa4

+} and {fs1
+, fs2

+, fs3
+, fs4

+, fs5
+, fs6

+} are positive constants. 

Assumption 3: The unknowns parts γai(x, fai, t) including the resultants of actuator faults related 

to quadrotor motions, and γsi(x, fsi, t) related to velocity sensor faults are also bounded, 

( ) ( ) ( ) [ ] [ ], , ,  and , , , i 1,2,3,4  and  j 1,2,3,4,5,6ai ai i ai ai sj sj sjx f t g x t f k x f t kγ γ+≤ < < ∈ ∈    (15) 

where {ka1, ka2, ka3, ka4} and {ks1, ks2, ks3, ks4, ks5, ks6}are also positive constants. 

The adopted control strategy is based on two loops (internal loop and external loop). The internal 

loop contains four control laws: control of roll, control of pitch, control of yaw and control of 

altitude. The external loop includes two control laws of positions x and y. The external control 

loop generates a desired of roll (ϕd) and pitch (θd) through the correction block (illustrated by 

equation (4)). This block corrects the rotation of the roll and pitch depending on the desired yaw 

(ψd). The synoptic scheme below shows this control strategy: 
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Figure 2.  Synoptic scheme of the proposed control strategy 

Basing on backstepping approach, a recursive algorithm is used to synthesize the control laws 

forcing the system to follow the desired trajectory in presence of actuator and velocity sensor 

faults, we simplify all stages of calculation concerning the tracking errors and Lyapunov 

functions in the following way: 
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The corresponding lyapunov functions are given by: 

 
[ ] [ ]

[ ]

2 2

2

1

1 1
        i 1,3,5,7,9,11 and j 1,...,6

2 2

1
         i 2,4,6,8,10,12

2

i fj

i

i i

e e

V

V e−


+ ∈ ∈

= 
 + ∈


                    (18) 

such as 

[ ] [ ]

[ ] [ ]

[ ]

[ ] [ ]'

                  i 1, 3, 5, 7 , 9 ,1 1  an d  j 1, . .., 6

0         i 1, 3, 5 , 7 , 9 ,1 1  an d  j 1, ..., 6
1 0

0                             i 2 , 4 , 6 , 8,1 0 ,1 2  

   j 1, 2 , 3, 6  an d  j ' 1, .. ., 4

  

f j s j i

i i

j

i

s j a j

i

s j

e f

c k

c

k k
k

k

ς= − ∈ ∈

 
ϒ = > ∈ ∈ 

 

> ∈

+ ∈ ∈
>

[ ]
[ ] i 2 , 4 , 6 , 8,1 0 ,1 2  

          j 4 , 5








    ∈ 
 ∈  

                    (19) 

The synthesized stabilizing control laws are as follows: 
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• Proof 

For i =1: 
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and 

 ( ) ( )1 1 1 1 1 1 2 1 1 1 1( )f f s d fV e e e e e y f x e ς= + = − − + −& & & &&                                    (22) 

The stabilization of e1 can be obtained by introducing a new virtual control y2 

 ( )2 1 1 1 1 1 1 0dd
y x c e cα ς= = − + >&                                                (23) 

Consequently, 

( ) ( )1 1 1 1 1 1 1f fV e c e e e ς= − − + −& &                                                    (24) 

In order to compensate the effect of the velocity sensor fault of roll motion, an integral term is 

introduced which can eliminate the tracking error. We take: 
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c1 and k1 are chosen so as to make the matrix ϒ1 positive definite, which means that, 
1 0V ≤&  

For i =2: 
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We know a priori from (15) and (19.d)  that:  
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The stabilization of (e1,e2) can be obtained by introducing the input control u2 
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It result that 
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In order to compensate the unknown parts (γa1+ γs1), a “sign” function is introduced. We take: 
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By using the compensation term (32) and the equation (31) it comes  

2

2 1 1 1 2 2 2 2 1 1( ) 0T

a s
V e e c e e k γ γ≤ − ϒ − − − + ≤&                                           (33) 

The same steps are followed to extract u3, u4, ux, uy and u1.  

It is well known that sliding mode control signal is discontinuous in nature on the switching 

manifold, which in duces a chattering phenomenon. To avoid the effect of this phenomenon, the 

sign function can be replaced by another function called “saturation function sat(.)”, it’s is given 

by: 
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Figure. 3.  Saturation function “sat(.)”.   

    

4. SIMULATION RESULTS 
 

In order to see the performances of the controller developed in this paper, two tests are treated.  

1- Results without faults are shown in Figure. 4, Figure. 6, Figure. 8 and Figure .10.a. 

2- Results with four sensor faults {fs1, fs2, fs3, fs6} added in angular velocities and linear velocity 

of altitude with 50% of these maximum values and four resultants of actuator faults {fa1, fa2, 

fa3, fa4} related to roll, pitch, yaw and altitude motions with 20% of these maximum values at 

5s, 9s, 12s, 15s, 20s, 24s, 27s and 30s respectively are shown in Figure. 5, Figure. 7, Figure. 9 

and Figure.10.b. 

The simulation results are obtained based on the following real parameters in Table. 1: 

Table 1.  Quadrotor parameters. 

Parameter Value 

m 0.486 kg 

g 9.806 m/s
2 

l 0.25 m 

b 2.9842 × 10
−5

 N/rad/s 

d 3.2320 × 10−7 N.m/rad/s 

Jr 2.8385 × 10−5 kg.m
2 

I(x,y,z) diag (3.8278, 3.8278, 7.1345) × 10−3 kg.m
2 

Kfa(x,y,z) diag (5.5670, 5.5670, 6.3540) × 10
−4

 N/rad/s 

Kft(x,y,z) diag (0.0320, 0.0320, 0.0480) N/m/s 

km 4.3 × 10−3 N.m/A 

kg 5.6 

Ra 0.67 Ω 
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Figure. 4.  Tracking simulation results of angular and linear velocities, Test 1. 
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Figure. 5.  Tracking simulation results of angular and linear velocities, Test 2. 
 

Figure. 4 and Figure. 5 represents the quadrotor velocities, It can be seen a good tracking of the 

desired velocities in Figure. 4, with tracking deviation in the measurements of angular velocities 

and linear velocity of altitude with 50% of her maximum values in Figure. 5 (illustrated 

respectively by (a), (b), (c), and (f)) due after occurrence of these corresponding sensor faults, we 

can see also from this figure a transient peaks in roll, pitch and altitude velocities caused by the 

appearance of velocity sensor fault of altitude at 15s and resultants of actuator faults related to 

altitude motion at 30s, which gives us a wrong information of velocities of our system. 
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Figure. 6.  Tracking simulation results of trajectories along roll (ϕ), pitch (θ), yaw angle (ψ) and (X,Y,Z) 

axis, Test 1.   
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Figure. 7.  Tracking simulation results of trajectories along roll (ϕ), pitch (θ), yaw angle (ψ) and  (X,Y,Z) 

axis, Test 2. 
 

Figure. 6 and Figure. 7 represents the quadrotor trajectories. From these figures, we can see well a 

good tracking of the desired trajectories, with small transient deviations in roll, pitch, yaw and 

altitude motions given by Figure. 7 (illustrated respectively by (a), (b), (c), and (f)) caused by 

appearance of the corresponding velocity sensor faults, we can see also from this figure another 

deviations in roll and pitch motions due after occurrence of the resultant of actuator faults related 

to altitude motion. Despite that, the trajectories tracking of our system is assured. 
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Figure. 8.  Simulation results of all controllers, Test 1.  
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Figure. 9.  Simulation results of all controllers, Test 2.  

Figure. 8 and Figure. 9 represents the inputs control {u1, u2, u3, u4} of our system. From   Figure. 

9, it is clear to see the transient peaks in all controllers, especially in inputs control u2 and u3 

(illustrated by (b) and (c)). Furthermore, we can see well a considerable deviation in evolution of 

inputs control u4 and u1 (illustrated by (d) and (a)) after 27s and 30s caused by occurrence of the 

resultant of actuator faults related respectively to yaw and altitude motions. Despite that, the 

stability of the closed loop dynamics of quadrotor is guaranteed. We can see also that the obtained 

input control signals given by this control strategy are acceptable and physically realizable. 
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Figure. 10.  Global trajectory of quadrotor in 3D. 

Figure. 10 represents the 3D position of quadrotor aircraft during the flight. The simulation 

results given by this figure shows a good performances and robustness towards stability and 

tracking even after occurrence of actuator and velocity sensor faults, which explains the 

efficiency of control strategy developed in this paper. 

 

5. CONCLUSIONS AND FUTUR WORKS 

 
In this paper, we proposed a new control strategy based on robust integral backstepping using 

sliding mode and taking into account the actuator and sensor faults. Firstly, we presented the 

dynamical model of the quadrotor taking into account the different physics phenomena which can 

influence the evolution of our system in the space. Secondly, we synthesized a stabilizing control 

laws in presence of simultaneous actuator and sensor faults. The simulation results have shown 

high efficiency of this control strategy, its main advantage is to keep at same time the stability 

and the performances of quadrotor during a malfunction of these actuators and velocity sensors. 

As prospects we hope to implement this control strategy on a real system. 
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