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ABSTRACT 

This paper investigates the problem of output regulation of Sprott-G chaotic system, which is one of the 

classical chaotic systems discovered by J.C. Sprott (1994). Explicitly, for the constant tracking problem, 

new state feedback control laws regulating the output of the Sprott-G chaotic system have been derived 

using the regulator equations of C.I. Byrnes and A. Isidori (1990). The output regulation of the Sprott-G 

chaotic system has important applications in Electronics and Communication Engineering. Numerical 

simulations are shown to illustrate the effectiveness of the control schemes proposed in this paper for the 

output regulation of the Sprott-G chaotic system. 
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1. INTRODUCTION 

The output regulation problem is one of the important problems in control systems literature. 

Basically, the output regulation problem is to control a fixed linear or nonlinear plant so that the 

output of the plant tracks reference signals produced by some external generator (the 

exosystem). For linear control systems, the output regulation problem has been solved by 

Francis and Wonham ([1], 1975). For nonlinear control systems, the output regulation problem 

was solved by Byrnes and Isidori ([2], 1990) generalizing the internal model principle obtained 

by Francis and Wonham [1]. Using Centre Manifold Theory [3], Byrnes and Isidori derived 

regulator equations, which characterize the solution of the output regulation problem of 

nonlinear control systems satisfying some stability assumptions. 

The output regulation problem for nonlinear control systems has been studied extensively by 

various scholars in the last two decades [4-14]. In [4], Mahmoud and Khalil obtained results on 

the asymptotic regulation of minimum phase nonlinear systems using output feedback. In [5], 

Fridman solved the output regulation problem for nonlinear control systems with delay using 

centre manifold theory. In [6-7], Chen and Huang obtained results on the robust output 

regulation for output feedback systems with nonlinear exosystems. In [8], Liu and Huang 

obtained results on the global robust output regulation problem for lower triangular nonlinear 

systems with unknown control direction.  

In [9], Immonen obtained results on the practical output regulation for bounded linear infinite-

dimensional state space systems.  In [10], Pavlov, Van de Wouw and Nijmeijer obtained results 

on the global nonlinear output regulation using convergence-based controller design. In [11], Xi 

and Dong obtained results on the global adaptive output regulation of a class of nonlinear 

systems with nonlinear exosystems. In [12-14], Serrani, Isidori and Marconi obtained results on 

the semi-global and global output regulation problem for minimum-phase nonlinear systems.   
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In this paper, we solve the output regulation problem for the Sprott-G chaotic system ([15], 

1994). We derive state feedback control laws solving the constant regulation problem of the 

Shimizu-Morioka chaotic system using the regulator equations of Byrnes and Isidori (1990). 

The Sprott-G chaotic system is a classical three-dimensional chaotic system discovered by J.C. 

Sprott (1994). It has important applications in Electronics and Communication Engineering. 

This paper is organized as follows. In Section 2, we provide a review the problem statement of 

output regulation problem for nonlinear control systems and the regulator equations of Byrnes 

and Isidori [2], which provide a solution to the output regulation problem under some stability 

assumptions. In Section 3, we present the main results of this paper, namely, the solution of the 

output regulation problem for the Sprott-G chaotic system for the important case of constant 

reference signals (set-point signals). In Section 4, we describe the numerical simulations for the 

state feedback controllers solving the output regulation problem for the Sprott-G chaotic system. 

In Section 5, we summarize the main results obtained in this paper. 

2. REVIEW OF THE OUTPUT REGULATION PROBLEM FOR NONLINEAR 

CONTROL SYSTEMS 

In this section, we consider a multi-variable nonlinear control system described by  

         ( ) ( ) ( )x f x g x u p x ω= + +�                 (1a) 

         ( )sω ω=�                     (1b) 

         ( ) ( )e h x q ω= −                (2) 

Here, the differential equation (1a) describes the plant dynamics with state x  defined in a 

neighbourhood X of the origin of 
nR and the input u takes values in 

mR subject to te effect of a 

disturbance represented by the vector field ( ) .p x ω  The differential equation (1b) describes an 

autonomous system, known as the exosystem, defined in a neighbourhood W of the origin of 

,k
R which models the class of disturbance and reference signals taken into consideration. The 

equation (2) defines the error between the actual plant output ( ) p
h x R∈ and a reference signal 

( ),q ω which models the class of disturbance and reference signals taken into consideration.  

We also assume that all the constituent mappings o the system (1) and the error equation (2), 

namely, , , , ,f g p s h and q are continuously differentiable mappings vanishing at the origin, i.e. 

     (0) 0,  (0) 0,  (0) 0,  (0) 0,  (0) 0f g p s h= = = = =  and  (0) 0.q =  

Thus, for 0,u = the composite system (1) has an equilibrium ( , ) (0,0)x ω = with zero error (2).  

A state feedback controller for the composite system (1) has the form 

                    ( ),u xρ ω=                                       (3) 

where ρ  is a continuously differentiable mapping defined on X W×  such that (0,0) 0.ρ =  
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Upon substitution of the feedback control law (3) into (1), we get the closed-loop system  

         
( ) ( ) ( , ) ( )

( )

x f x g x x p x

s

ρ ω ω

ω ω

= + +

=

�

�
       (4) 

The purpose of designing the state feedback controller (3) is to achieve both internal stability 

and output regulation of the given nonlinear control system (1).   Formally, we can summarize 

these requirements as follows. 

State Feedback Regulator Problem [2]: 

Find, if possible, a state feedback control law ( ),u xρ ω=  such that the following conditions 

are satisfied. 

(OR1) [Internal Stability] The equilibrium 0x = of the dynamics 

            ( ) ( ) ( ,0)x f x g x xρ= +�  

is locally exponentially stable. 

(OR2) [Output Regulation] There exists a neighbourhood U X W⊂ ×  of ( ), (0,0)x ω =  

such that for each initial condition ( )(0), (0) ,x Uω ∈ the solution ( )( ), ( )x t tω  of the 

closed-loop system (4) satisfies 

             [ ]lim ( ( )) ( ( )) 0.
t

h x t q tω
→∞

− =                                                                   � 

Byrnes and Isidori [2] solved the output regulation problem stated above under the following 

two assumptions. 

(H1) The exosystem dynamics   ( )sω ω=� is neutrally stable at 0,ω = i.e. the exosystem 

is Lyapunov stable in both forward and backward time at 0.ω =  

(H2) The pair ( )( ), ( )f x g x has a stabilizable linear approximation at 0,x =  i.e. if  

                
0x

f
A

x =

∂ 
=  ∂ 

   and  
0

,
x

g
B

x =

∂ 
=  ∂ 

 

then ( , )A B  is stabilizable. � 

Next, we recall the solution of the output regulation problem derived by Byrnes and Isidori [2]. 

Theorem 1. [2] Under the hypotheses (H1) and (H2), the state feedback regulator problem is 

solvable if and only if there exist continuously differentiable mappings ( )x π ω= with (0) 0π =  

and ( )u ϕ ω= with (0) 0,ϕ = both defined in a neighbourhood of 
0

W W⊂ of 0ω = such that 

the following equations (called the regulator equations) are satisfied: 
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(1) ( ) ( ( )) ( ( )) ( ) ( ( ))s f g p
π

ω π ω π ω ϕ ω π ω ω
ω

∂
= + +

∂
 

(2) ( )( ) ( ) 0h qπ ω ω− =  

When the regulator equations (1) and (2) are satisfied, a control law solving the state feedback 

regulator problem is given by 

        ( )( )u K xϕ ω π ω= + −     

where K  is any gain matrix such that A BK+  is Hurwitz.  � 

3.  OUTPUT REGULATION OF THE SPROTT-G CHAOTIC SYSTEM 

In this section, we solve the output regulation problem for the Sprott-G system ([15], 1994), 

which is one of the paradigms of the 3-dimensional chaotic systems described by the dynamics 

              

1 1 3

2 1 3 2

3 1 2

x ax x

x x x bx u

x x x

= +

= − +

= − +

�

�

�

                                                    (5) 

where 1 2 3, ,x x x are the states of the system, ,a b are positive, constant parameters of the system 

and u is the scalar control. 

J.C. Sprott ([15], 1994) showed that the system (5) has chaotic behaviour when   0.4,a =  1b =   

and  0.u =  The state orbits of the chaotic system (5) are illustrated in Figure 1.  

 

Figure 1.  State Orbits of the Sprott-G Chaotic System 
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In this paper, we consider the output regulation problem for the tracking of constant reference 

signals (set-point signals). 

In this case, the exosystem is given by the scalar dynamics 

                 0ω =�                 (6) 

We note that the assumption (H1) of Theorem 1 holds trivially. 

Linearizing the dynamics of the Sprott-G chaotic system (5) at 0,x = we obtain 

            

0 1

0 0

1 1 0

a

A b

 
 = − 
 − 

     and   

0

1 .

0

B

 
 =  
  

        (7) 

Using Kalman’s rank test for controllability ([16], p738), it can be easily seen that the pair 

( , )A B is completely controllable.    

Thus, it follows that the pair ( , )A B is stabilizable. 

Thus, the assumption (H2) of Theorem 1 also holds.  

Hence, Theorem 1 can be applied to solve the constant regulation problem for the Sprott-G 

chaotic system (5). 

3.1 The Constant Tracking Problem for 1x  

Here, the tracking problem for the Sprott-G chaotic system (5) is given by 

            

1 1 3

2 1 3 2

3 1 2

1

x ax x

x x x bx u

x x x

e x ω

= +

= − +

= − +

= −

�

�

�
                                                (8) 

By Theorem 1, the regulator equations of the system (8) are obtained as 

       

2 3

1 3 2

1 2

1

                     ( ) ( ) 0

( ) ( ) ( ) ( ) 0

                   ( ) ( ) 0

                             ( ) 0

a

b

π ω π ω

π ω π ω π ω ϕ ω

π ω π ω

π ω ω

+ =

− + =

− + =

− =

       (9) 

Solving the regulator equations (9) for the system (8), we obtain the unique solution as 

         1 2 3( ) ,   ( ) ,   ( ) aπ ω ω π ω ω π ω ω= = = −   and  ( ) ( ).b aϕ ω ω ω= +     (10) 

Using Theorem 1 and the solution (10) of the regulator equations for the system (8), we obtain 

the following result which provides a solution of the output regulation problem for (8). 
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Theorem 2. A state feedback control law solving the output regulation problem for the Sprott-G 

chaotic system (8) is given by  

                      [ ]( ) ( ) ,u K xϕ ω π ω= + −           (11) 

where   ( ),  ( )ϕ ω π ω  are defined as in (10) and  K is chosen so that A BK+ is Hurwitz. � 

3.2 The constant Tracking Problem for 2x  

Here, the tracking problem for the Sprott-G chaotic system (5) is given by 

              

1 1 3

2 1 3 2

3 1 2

2

x ax x

x x x bx u

x x x

e x ω

= +

= − +

= − +

= −

�

�

�
                         (12) 

 By Theorem 1, the regulator equations of the system (12) are obtained as 

       

2 3

1 3 2

1 2

2

                     ( ) ( ) 0

( ) ( ) ( ) ( ) 0

                   ( ) ( ) 0

                             ( ) 0

a

b

π ω π ω

π ω π ω π ω ϕ ω

π ω π ω

π ω ω

+ =

− + =

− + =

− =

       (13) 

Solving the regulator equations (13) for the system (12), we obtain the unique solution as 

         1 2 3( ) ,   ( ) ,   ( ) aπ ω ω π ω ω π ω ω= = = −   and  ( ) ( ).b aϕ ω ω ω= +     (14) 

Using Theorem 1 and the solution (14) of the regulator equations for the system (12), we obtain 

the following result which provides a solution of the output regulation problem for (12). 

Theorem 3. A state feedback control law solving the output regulation problem for the Sprott-G 

chaotic system (12) is given by  

                      [ ]( ) ( ) ,u K xϕ ω π ω= + −           (15) 

where   ( ),  ( )ϕ ω π ω  are defined as in (14) and  K is chosen so that A BK+ is Hurwitz. � 

3.3  The Constant Tracking Problem for 3   x  

Here, the tracking problem for the Sprott-G chaotic system (5) is given by 

          

1 1 3

2 1 3 2

3 1 2

3

x ax x

x x x bx u

x x x

e x ω

= +

= − +

= − +

= −

�

�

�
                                          (16) 



International Journal of Instrumentation and Control Systems (IJICS) Vol.1, No.1, July 2011 

26 

 

By Theorem 1, the regulator equations of the system (16) are obtained as 

       

2 3

1 3 2

1 2

3

                     ( ) ( ) 0

( ) ( ) ( ) ( ) 0

                   ( ) ( ) 0

                             ( ) 0

a

b

π ω π ω

π ω π ω π ω ϕ ω

π ω π ω

π ω ω

+ =

− + =

− + =

− =

       (17) 

Solving the regulator equations (13) for the system (12), we obtain the unique solution as 

         
1 2 3( ) ,   ( ) ,   ( )

a a

ω ω
π ω π ω π ω ω= − = − =   and  ( ) ( ).b

a

ω
ϕ ω ω= − −     (18) 

Using Theorem 1 and the solution (14) of the regulator equations for the system (12), we obtain 

the following result which provides a solution of the output regulation problem for (12). 

Theorem 4. A state feedback control law solving the output regulation problem for the Sprott-G 

chaotic system (16) is given by  

                      [ ]( ) ( ) ,u K xϕ ω π ω= + −           (15) 

where   ( ),  ( )ϕ ω π ω  are defined as in (18) and  K is chosen so that A BK+ is Hurwitz. � 

4. NUMERICAL SIMULATIONS 

For simulation, the parameters are chosen as the chaotic case of the Shimizu-Morioka system, 

viz. 0.4a = and 1.b =  

For achieving internal stability of the state feedback regulator problem, a feedback gain matrix 

K must be chosen so that A BK+ is Hurwitz.   

Suppose we wish to choose a gain matrix K such that the closed-loop system 

matrix A BK+ has stable eigenvalues{ }4, 4, 4 .− − −   

Since ( , )A B is controllable, we obtain the gain matrix K by Ackermann’s formula (MATLAB) 

as [ ]72.384 11.4 51.96 .K = − − −  

For the numerical simulations, the fourth order Runge-Kutta method with step-size 
610h

−=  is 

deployed to solve the systems of differential equations using MATLAB.  

4.1 Constant Tracking Problem for 1x  

Here, the initial conditions are taken as 

      1 2 3(0) 30,  (0) 4,  (0) 25x x x= = =    and  2.ω =  

The simulation graph is depicted in Figure 2 from which it is clear that the state trajectory 1( )x t  

tracks the constant reference signal 2ω =  in 4  seconds. 
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Figure 2. Constant Tracking Problem for 1x  

4.2 Constant Tracking Problem for 2  x  

 Here, the initial conditions are taken as 

      1 2 3(0) 8,  (0) 5,  (0) 10x x x= = =    and  2.ω =  

The simulation graph is depicted in Figure 3 from which it is clear that the state trajectory 1( )x t  

tracks the constant reference signal 2ω =  in 4 seconds. 

4.3 Constant Tracking Problem for 3  x  

 Here, the initial conditions are taken as 

        
1 2 3(0) 14,  (0) 6,  (0) 15x x x= = =  and  2.ω =  

The simulation graph is depicted in Figure 4 from which it is clear that the state trajectory 
1( )x t  

tracks the constant reference signal 2ω =  in 4 seconds. 
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Figure 3. Constant Tracking Problem for 2  x  

 

Figure 4. Constant Tracking Problem for 3  x  
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5. CONCLUSIONS 

In this paper, the output regulation problem for the Sprott-G chaotic system (1994) has been 

studied in detail and a complete solution for the output regulation problem for the Sprott-G  

chaotic system has been derived for the tracking of constant reference signals (set-point 

signals). The state feedback control laws achieving output regulation proposed in this paper 

were derived using the regulator equations of Byrnes and Isidori (1990). Numerical simulation 

results were presented in detail to illustrate the effectiveness of the proposed control schemes 

for the output regulation problem of Sprott-G chaotic system to track constant reference signals. 
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