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ABSTRACT 

In this paper, we apply adaptive control method to derive new results for the global chaos synchronization 

of identical Sprott J systems (Sprott, 1994), identical Sprott K systems (Sprott, 1994) and non-identical 

Sprott J and K systems. Our results are derived for the general case when the parameters of both master 

and slave systems are unknown and adaptive synchronizing schemes have been derived using the estimates 

of parameters for both master and slave systems. Our adaptive synchronization schemes derived in this 

paper are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for 

these calculations, the adaptive control method is very effective and convenient to synchronize identical 

and non-identical Sprott J and K chaotic systems. Numerical simulations are presented to validate and 

illustrate the effectiveness of the proposed adaptive synchronization schemes for the uncertain Sprott J and 

K chaotic systems addressed in this paper. 
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1. INTRODUCTION 

Chaotic systems are dynamical systems that are highly sensitive to initial conditions. The 

sensitive nature of chaotic systems is commonly called as the butterfly effect [1].  

The first chaotic system was experimentally discovered by Lorenz ([2], 1963), when he was 

studying weather patterns. Since then, chaos has been extensively interesting study area for many 

scientists and many chaotic systems were introduced by them such as Rössler system (Rössler, 

[3], 1976),  Chen system (Chen and Ueta, [4], 1999), Lü system (Lü and Chen, [5], 2002), Liu 

system (Liu et al., [6], 2004), etc. 

 

Synchronization of chaos is a phenomenon that may occur when two or more chaotic oscillators 

are coupled or one chaotic oscillator drives another chaotic oscillator. Because of the butterfly 

effect, which causes the exponential divergence of two identical chaotic systems started with 

nearly the same initial conditions, having two chaotic systems evolving in synchrony is a 

challenging research problem. It has been found that synchronization of chaos has important 

applications in engineering such are secure communication, data encryption, etc. 

 

Since the seminal work by Pecora and Carroll ([7], 1990), chaos synchronization problem has 

been studied extensively and intensively in the literature [8-34]. Chaos theory has been applied to 

a variety of fields such as physical systems [8], chemical systems [9], ecological systems [10], 

secure communications [11-12], etc. 
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In most of the chaos synchronization approaches, the master-slave or drive-response formalism is 

used. If a particular chaotic system is called the master or drive system and another chaotic 

system is called the slave or response system, then the idea of the synchronization is to use the 

output of the master system to control the slave system so that the output of the slave system 

tracks the output of the master system asymptotically. 

 

In the last two decades, various schemes have been successfully applied for chaos 

synchronization such as PC method [7], OGY method [13], active control method [14-20], 

adaptive control method [21-25], time-delay feedback method [26], backstepping design method 

[27-29], sampled-data feedback method [30], sliding mode control method [31-34], etc. 

 

In this paper, we apply adaptive control method to derive new results for the global chaos 

synchronization of identical Sprott J systems ([35], 1994), identical Sprott K systems ([35], 1994) 

and non-identical Sprott J and K systems. We assume that the parameters of the master and slave 

systems are unknown and we devise adaptive synchronizing schemes using the estimates of the 

parameters for both master and slave systems. 

 

This paper has been organized as follows. In Section 2, we give a description of Sprott J and K 

chaotic systems. In Section 3, we discuss the adaptive synchronization of identical Sprott J 

systems. In Section 4, we discuss the adaptive synchronization of identical Sprott K systems. In 

Section 5, we discuss the adaptive synchronization of Sprott J and K systems.  In Section 6, we 

summarize the main results obtained in this paper. 

 

2. SYSTEMS DESCRIPTION 

The Sprott J system ([35], 1994) is described by 

   

1 3

2 2 3

2

3 1 2 2

x ax

x bx x

x cx x x

=

= − +

= − + +

&

&

&

                     (1) 

where 1 2 3, ,x x x  are the state variables and , ,a b c are positive, constant parameters of the system.  

The system (1) is chaotic when the parameter values are taken as    2,   2a b= =   and   1.c =                                       

The state orbits of the Sprott J chaotic system (1) are shown in Figure 1. 

The Sprott K system ([35], 1994) is described by 

 

1 1 2 3

2 1 2

3 1 3

x x x x

x x x

x x x

α

β

γ

= −

= −

= +

&

&

&

               (2) 

where 1 2 3, ,x x x  are the state variables and , ,α β γ are positive, constant parameters of the 

system.  

The system (2) is chaotic when the parameter values are taken as 1,α = 1β = and 0.3.γ =  
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The state orbits of the Sprott K chaotic system (2) are shown in Figure 2. 

 

  

Figure 1.  State Orbits of the Sprott J Chaotic System 

     

Figure 2.  State Orbits of the Sprott K Chaotic System 
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3. ADAPTIVE SYNCHRONIZATION OF IDENTICAL SPROTT J SYSTEMS 

3.1 Theoretical Results 

In this section, we discuss the adaptive synchronization of identical Sprott J systems ([35], 1994), 

where the parameters of the master and slave systems are unknown. 

As the master system, we consider the Sprott J dynamics described by 

  

1 3

2 2 3

2

3 1 2 2

x ax

x bx x

x cx x x

=

= − +

= − + +

&

&

&

          (3) 

where 
1 2 3, ,x x x are the states and , ,a b c are unknown real constant parameters of the system. 

As the slave system, we consider the controlled Sprott J dynamics described by 

              

1 3 1

2 2 3 2

2

3 1 2 2 3

y ay u

y by y u

y cy y y u

= +

= − + +

= − + + +

&

&

&

         (4) 

where 1 2 3, ,y y y are the states and 1 2 3, ,u u u are the nonlinear controllers to be designed. 

The chaos synchronization error is defined by 

        ,   ( 1,2,3)i i ie y x i= − =             (5) 

The error dynamics is easily obtained as 

        

1 3 1

2 2 3 2

2 2

3 1 2 2 2 3

e ae u

e be e u

e ce e y x u

= +

= − + +

= − + + − +

&

&

&

        (6) 

Let us now define the adaptive control functions  

         

1 3 1 1

2 2 3 2 2

2 2

3 1 2 2 2 3 3

ˆ( )

ˆ( )

ˆ( )

u t ae k e

u t be e k e

u t ce e y x k e

= − −

= − −

= − − + −

         (7) 

where ˆˆ,a b and ĉ are estimates of ,a b and ,c respectively, and , ( 1,2,3)ik i = are positive 

constants. 
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Substituting (7) into (6), the error dynamics simplifies to 

   

1 3 1 1

2 2 2 2

3 1 3 3

ˆ( )

ˆ( )

ˆ( )

e a a e k e

e b b e k e

e c c e k e

= − −

= − − −

= − − −

&

&

&

         (8) 

Let us now define the parameter estimation errors as 

             

ˆ

ˆ

ˆ

a

b

c

e a a

e b b

e c c

= −

= −

= −

                            (9) 

Substituting (9) into (8), we obtain the error dynamics as 

  

1 3 1 1

2 2 2 2

3 1 3 3

a

b

c

e e e k e

e e e k e

e e e k e

= −

= − −

= − −

&

&

&

                       (10) 

For the derivation of the update law for adjusting the estimates of the parameters, the Lyapunov 

approach is used. 

We consider the quadratic Lyapunov function defined by 

   ( )2 2 2 2 2 2

1 2 3 1 2 3

1
( , , , , , )

2
a b c a b cV e e e e e e e e e e e e= + + + + +      (11) 

which is a positive definite function on 
6.R  

We also note that 

  ˆˆ,  a be a e b= − = −
&&& &    and   ˆ

ce c= − &&         (12) 

Differentiating (11) along the trajectories of (10) and using (12), we obtain 

       
2 2 2

1 1 2 2 3 3 3 1 2 2 1 3
ˆˆ ˆ

a b cV k e k e k e e e x a e e x b e e x c    = − − − + − + − − + − −     

&& &&         (13) 

In view of Eq. (13), the estimated parameters are updated by the following law: 

        

3 1 4

2 2 5

1 3 6

ˆ

ˆ

ˆ

a

b

c

a e x k e

b e x k e

c e x k e

= +

= − +

= − +

&

&

&

          (14) 

where 4 5,k k and 6k are positive constants. 
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Substituting (14) into (12), we obtain 

         
2 2 2 2 2 2

1 1 2 2 3 3 4 5 6a b cV k e k e k e k e k e k e= − − − − − −&               (15) 

which is a negative definite function on 
6.R  

Thus, by Lyapunov stability theory [36], it is immediate that the synchronization error 

, ( 1,2,3)ie i = and the parameter estimation error , ,a b ce e e decay to zero exponentially with time.  

This shows that the identical Sprott J uncertain chaotic systems are globally synchronized and the 

parameter estimation error also globally decays to zero exponentially with time. 

Hence, we have proved the following result. 

Theorem 1. The identical Sprott J chaotic systems (3) and (4) with unknown parameters are 

globally and exponentially synchronized by the adaptive control law (7), where the update law for 

the parameter estimates is given by (14) and , ( 1,2, ,6)ik i = K are positive constants. 

3.2 Numerical Results 

For the numerical simulations, the fourth-order Runge-Kutta method with time-step 
610h −= is 

used to solve the hyperchaotic systems (3) and (4) with the adaptive control law (14) and the 

parameter update law (14) using MATLAB. We take 3ik = for 1,2, ,6.i = K  

For the Sprott J chaotic systems (3) and (4), the parameter values are taken as 

            2,   2a b= =   and   1.c =              

Suppose that the initial values of the parameter estimates are 

 ˆˆ ˆ(0) 10,   (0) 6,  (0) 8.a b c= = =  

The initial values of the master system (3) are taken as 

          1 2 3(0) 12,   (0) 24,   (0) 18.x x x= = =  

The initial values of the slave system (4) are taken as 

          1 2 3(0) 8,   (0) 29,   (0) 30.y y y= = =  

Figure 3 depicts the complete synchronization of the identical hyperchaotic Lorenz systems (3) 

and (4).  

Figure 4 shows that the estimated values of the parameters, viz. ˆˆ,a b and ĉ converge to the system 

parameters   

2,   2a b= =  and 1.c =  
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Figure 3.  Complete Synchronization of the Sprott J Systems 

 

 Figure 4.   Parameter Estimates ˆˆ ˆ, ,a b c  
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4. ADAPTIVE SYNCHRONIZATION OF IDENTICAL SPROTT K SYSTEMS 

4.1 Theoretical Results 

In this section, we discuss the adaptive synchronization of identical Sprott K systems ([35], 

1994), where the parameters of the master and slave systems are unknown. 

As the master system, we consider the Sprott K dynamics described by 

  

1 1 2 3

2 1 2

3 1 3

x x x x

x x x

x x x

α

β

γ

= −

= −

= +

&

&

&

          (16) 

where 1 2 3, ,x x x are the states and , ,α β γ are unknown real constant parameters of the system. 

As the slave system, we consider the controlled Sprott K dynamics described by 

     

1 1 2 3 1

2 1 2 2

3 1 3 3

y y y y u

y y y u

y y y u

α

β

γ

= − +

= − +

= + +

&

&

&

                 (17) 

where 1 2 3, ,y y y are the states and 1 2 3, ,u u u are the nonlinear controllers to be designed. 

The chaos synchronization error is defined by 

  ,   ( 1,2,3)i i ie y x i= − =             (18) 

The error dynamics is easily obtained as 

           

1 3 1 2 1 2 1

2 1 2 2

3 1 3 3

e e y y x x u

e e e u

e e e u

α

β

γ

= − + − +

= − +

= + +

&

&

&

         (19) 

Let us now define the adaptive control functions  

1 3 1 2 1 2 1 1

2 1 2 2 2

3 1 3 3 3

ˆ( )

ˆ( )

ˆ( )

u t e y y x x k e

u t e e k e

u t e e k e

α

β

γ

= − + −

= − + −

= − − −

        (20) 

where ˆˆ,α β and γ̂ are estimates of ,α β and γ respectively, and , ( 1,2,3)ik i = are positive 

constants. 
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Substituting (20) into (19), the error dynamics simplifies to 

           

1 3 1 1

2 2 2 2

3 3 3 3

ˆ( )

ˆ( )

ˆ( )   

e e k e

e e k e

e e k e

α α

β β

γ γ

= − − −

= − − −

= − −

&

&

&

          (21) 

Let us now define the parameter estimation errors as 

ˆˆ,   e eα βα α β β= − = −   and  ˆeγ γ γ= −               (22) 

Substituting (22) into (21), we obtain the error dynamics as 

  

1 3 1 1

2 2 2 2

3 3 3 3   

e e e k e

e e e k e

e e e k e

α

β

γ

= − −

= − −

= −

&

&

&

                    (23) 

For the derivation of the update law for adjusting the estimates of the parameters, the Lyapunov 

approach is used. 

We consider the quadratic Lyapunov function defined by 

           ( )2 2 2 2 2 2

1 2 3 1 2 3

1
( , , , , , )

2
V e e e e e e e e e e e eα β γ α β γ= + + + + +     (24) 

which is a positive definite function on 
6.R  

We also note that 

  ˆˆ,   e eα βα β= − = −
&&& &   and   ˆ eγ γ= − &&         (25) 

Differentiating (24) along the trajectories of (23) and using (25), we obtain 

         
2 2 2 2 2

1 1 2 2 3 3 1 3 2 3
ˆˆ ˆV k e k e k e e e e e e e eα β γα β γ    = − − − + − − + − − + −     

&& &&       (26) 

In view of Eq. (26), the estimated parameters are updated by the following law: 

        

1 3 4

2

2 5

2

3 6

ˆ

ˆ

ˆ

e e k e

e k e

e k e

α

β

γ

α

β

γ

= − +

= − +

= +

&

&

&

          (27) 

where 
4 5,k k and 

6k are positive constants. 
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Substituting (27) into (26), we obtain 

         
2 2 2 2 2 2

1 1 2 2 3 3 4 5 6V k e k e k e k e k e k eα β γ= − − − − − −&               (28) 

which is a negative definite function on 
6.R  

Thus, by Lyapunov stability theory [30], it is immediate that the synchronization error 

, ( 1, 2,3)ie i = and the parameter estimation error , ,e e eα β γ decay to zero exponentially with time.  

Hence, we have proved the following result. 

Theorem 2. The identical Sprott K systems (16) and (17) with unknown parameters are globally 

and exponentially synchronized by the adaptive control law (20), where the update law for the 

parameter estimates is given by (27) and , ( 1, 2, ,6)ik i = K are positive constants.  

 

4.2 Numerical Results 

For the numerical simulations, the fourth-order Runge-Kutta method with time-step 
610h

−= is 

used to solve the hyperchaotic systems (16) and (17) with the adaptive control law (14) and the 

parameter update law (27) using MATLAB. We take 3ik = for 1,2, ,6.i = K  

For the Sprott K systems (16) and (17), the parameter values are taken as 

          1,   1,   0.3.α β γ= = =               

Suppose that the initial values of the parameter estimates are 

           ˆˆ ˆ(0) 2,   (0) 5,   (0) 8.α β γ= = =  

The initial values of the master system (16) are taken as 

          1 2 3(0) 1,   (0) 2,   (0) 5.x x x= = =  

The initial values of the slave system (17) are taken as 

          
1 2 3(0) 4,   (0) 6,   (0) 3y y y= = =  

Figure 5 depicts the complete synchronization of the identical Sprott K systems (16) and (17). 

Figure 6 shows that the estimated values of the parameters, viz. ˆˆ ,α β and γ̂ converge to the 

system parameters  

1,  1α β= =  and  0.3.γ =  
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Figure 5.  Complete Synchronization of the Sprott K Systems 

 

 Figure 6.  Parameter Estimates ˆˆ ˆ, ,α β γ  
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5. ADAPTIVE SYNCHRONIZATION OF NON-IDENTICAL SPROTT J AND K 

SYSTEMS 

5.1 Theoretical Results 

In this section, we discuss the adaptive synchronization of non-identical Sprott J and K systems, 

where the parameters of the master and slave systems are unknown. 

As the master system, we consider the Sprott J dynamics described by 

          

1 3

2 2 3

2

3 1 2 2

x ax

x bx x

x cx x x

=

= − +

= − + +

&

&

&

              (29) 

where 1 2 3, ,x x x are the states and , ,a b c are unknown real constant parameters of the system. 

As the slave system, we consider the controlled Sprott K dynamics described by 

        

1 1 2 3 1

2 1 2 2

3 1 3 3

y y y y u

y y y u

y y y u

α

β

γ

= − +

= − +

= + +

&

&

&

                (30) 

where 1 2 3, ,y y y are the states, , ,α β γ are unknown real constant parameters of the system and 

1 2 3, ,u u u are the nonlinear controllers to be designed. 

The chaos synchronization error is defined by 

        ,   ( 1, 2,3)i i ie y x i= − =             (31) 

The error dynamics is easily obtained as 

         

1 3 3 1 2 1

2 1 2 2 3 2

2

3 1 1 3 2 2 3

e y ax y y u

e y y bx x u

e y cx y x x u

α

β

γ

= − − + +

= − + − +

= + + − − +

&

&

&

        (32) 

Let us now define the adaptive control functions  

         

1 3 3 1 2 1 1

2 1 2 2 3 2 2

2

3 1 1 3 2 2 3 3

ˆ ˆ( )

ˆˆ( )

ˆˆ( )

u t y ax y y k e

u t y y bx x k e

u t y cx x x x k e

α

β

γ

= + − −

= − + − + −

= − − − + + −

        (33) 

where ˆ ˆˆˆ ˆ, , , ,a b c α β and γ̂ are estimates of , , , ,a b c α β  and γ , respectively, and , ( 1,2,3)ik i = are 

positive constants. 



International Journal of Instrumentation and Control Systems (IJICS) Vol.1, No.2, October 2011 

 

25 

 

Substituting (33) into (32), the error dynamics simplifies to 

          

1 3 3 1 1

2 2 2 2 2

3 1 3 3 3

ˆ ˆ( ) ( )

ˆˆ( ) ( )

ˆˆ( ) ( )

e y a a x k e

e y b b x k e

e c c x y k e

α α

β β

γ γ

= − − − − −

= − − + − −

= − + − −

&

&

&

        (34) 

Let us now define the parameter estimation errors as 

          

ˆˆ ˆ,   ,   

ˆˆ ˆ,   ,   

a b ce a a e b b e c c

e e eα β γα α β β γ γ

= − = − = −

= − = − = −
                  (35) 

Substituting (35) into (32), we obtain the error dynamics as 

           

1 3 3 1 1

2 2 2 2 2

3 1 3 3 3

a

b

c

e e y e x k e

e e y e x k e

e e x e y k e

α

β

γ

= − − −

= − + −

= + −

&

&

&

                           (36) 

We consider the quadratic Lyapunov function defined by 

           ( )2 2 2 2 2 2 2 2 2

1 2 3

1

2
a b c

V e e e e e e e e eα β γ= + + + + + + + +      (37) 

which is a positive definite function on 
9.R  

We also note that 

      ˆ ˆˆ ˆˆ ˆ,  ,   ,   ,   ,   a b ce a e b e c e e eα β γα β γ= − = − = − = − = − = −
& && && && & & & & &      (38) 

Differentiating (37) along the trajectories of (36) and using (38), we obtain 

       

2 2 2

1 1 2 2 3 3 1 3 2 2

3 1 1 3 2 2 3 3

ˆˆ

ˆˆ ˆˆ         +

a b

c

V k e k e k e e e x a e e x b

e e x c e e y e e y e e yα β γα β γ

  = − − − + − − + −    

     + − + − − + − − −       

&&&

&& &&

  (39) 

In view of Eq. (39), the estimated parameters are updated by the following law: 

        

1 3 4 1 3 7

2 2 5 2 2 8

3 1 6 3 3 9

ˆˆ ,     

ˆ ˆ,       

ˆˆ ,            

a

b

c

a e x k e e y k e

b e x k e e y k e

c e x k e e y k e

α

β

γ

α

β

γ

= − + = − +

= + = − +

= + = +

&&

& &

&&

        (40) 

where 5 6 7, ,k k k and 8k are positive constants. 
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Substituting (40) into (39), we obtain 

  
2 2 2 2 2 2 2 2 2

1 1 2 2 3 3 4 5 6 7 8 9a b cV k e k e k e k e k e k e k e k e k eα β γ= − − − − − − − − −&    (41) 

which is a negative definite function on 
12.R  

Thus, by Lyapunov stability theory [36], it is immediate that the synchronization error 

, ( 1,2,3)ie i = and the parameter estimation error decay to zero exponentially with time.  

Hence, we have proved the following result. 

Theorem 3. The non-identical Sprott J system (29) and Sprott K system (30) with unknown 

parameters are globally and exponentially synchronized by the adaptive control law (33), where 

the update law for the parameter estimates is given by (40) and , ( 1,2, ,9)ik i = K are positive 

constants.  

 

5.2 Numerical Results 

For the numerical simulations, the fourth-order Runge-Kutta method with time-step 
610h

−= is 

used to solve the chaotic systems (29) and (30) with the adaptive control law (27) and the 

parameter update law (40) using MATLAB. We take 3ik = for 1,2, ,9.i = K  

For the Sprott J system, the parameter values are taken as 

        2,   2a b= =   and   1.c =             (42) 

For the Sprott K system, the parameter values are taken as 

1,  1α β= =  and  0.3.γ =         (43) 

Suppose that the initial values of the parameter estimates are 

           ˆ ˆˆ ˆˆ ˆ(0) 3,  (0) 2,  (0) 7,   (0) 4,  (0) 2,  (0) 3  a b c α β γ= = = = = = . 

The initial values of the master system (29) are taken as 

          1 2 3(0) 8,   (0) 2,   (0) 3x x x= = =  

The initial values of the slave system (30) are taken as 

          1 2 3(0) 5,   (0) 6,   (0) 1y y y= = =  

Figure 7 depicts the complete synchronization of the non-identical Sprott J and K systems. 

 Figure 8 shows that the estimated values of the parameters, viz. ˆ ˆˆˆ ˆ, , , ,a b c α β and γ̂ converge to 

the original values of the parameters given in (42) and (43). 
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Figure 7.  Complete Synchronization of the Sprott J and K Systems 

 

 Figure 8.  Parameter Estimates ˆ ˆˆ ˆˆ ˆ, , , , ,a b c α β γ  

5. CONCLUSIONS 

In this paper, we have applied adaptive control method for the global chaos synchronization of 

identical Sprott J systems (1994), identical Sprott K systems (1994) and non-identical Sprott J 

and K systems with unknown parameters. The adaptive synchronization results derived in this 

paper are established using Lyapunov stability theory. Since the Lyapunov exponents are not 

required for these calculations, the adaptive control method is a very effective and convenient for 

achieving chaos synchronization for the uncertain chaotic systems discussed in this paper. 

Numerical simulations are shown to demonstrate the effectiveness of the adaptive 

synchronization schemes derived in this paper for the synchronization of identical and non-

identical uncertain Sprott J and K chaotic systems. 
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