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ABSTRACT 

 

In this paper we introduce an approach to increase density of field-effect transistors framework a CMOS 

power amplifier. Framework the approach we consider manufacturing the inverter in heterostructure with 

specific configuration. Several required areas of the heterostructure should be doped by diffusion or ion 

implantation. After that dopant and radiation defects should by annealed framework optimized scheme. We 

also consider an approach to decrease value of mismatch-induced stress in the considered heterostructure. 

We introduce an analytical approach to analyze mass and heat transport in heterostructures during manu-

facturing of integrated circuits with account mismatch-induced stress. 
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1. INTRODUCTION 

 

In the present time several actual problems of the solid state electronics (such as increasing of 

performance, reliability and density of elements of integrated circuits: diodes, field-effect and 

bipolar transistors) are intensively solving [1-6]. To increase the performance of these devices it 

is attracted an interest determination of materials with higher values of charge carriers mobility 

[7-10]. One way to decrease dimensions of elements of integrated circuits is manufacturing them 

in thin film heterostructures [3-5,11]. In this case it is possible to use inhomogeneity of hetero-

structure and necessary optimization of doping of electronic materials [12] and development of 

epitaxial technology to improve these materials (including analysis of mismatch induced stress) 

[14-16]. An alternative approaches to increase dimensions of integrated circuits are using of laser 

and microwave types of annealing [17-19]. 

 

In this paper we introduce an approach to manufacture field-effect heterotransistors framework a 

CMOS power amplifier [20] to decrease their dimensions with increasing their density. We also 

consider possibility to decrease mismatch-induced stress in a heterostructures to decrease quantity 

of defects, generated due to the stress. To solve the aims we consider a heterostructure, which 

consist of a substrate and an epitaxial layer (see Fig. 1). We also consider a porous buffer layer 

between the substrate and the epitaxial layer. The epitaxial layer includes into itself several sec-

tions, which were  manufactured  by  using  other   materials. These sections  have been doped  by  
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diffusion or ion implantation to manufacture the required types of conductivity (p or n). These 

areas became sources, drains and gates (see Fig. 1). After this doping it is required optimized an-

nealing of dopant and/or radiation defects. 

 

2. METHOD OF SOLUTION 

 

To solve our aim we determine and analyzed spatio-temporal distribution of concentration of do-

pant in the considered heterostructure. We determine the distribution by solving the second Fick's 

law in the following form [1,21-24] 
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Fig. 1a. Structure of the CMOS power amplifier [20] 
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Fig. 1b. Heterostructure with a substrate, epitaxial layers and buffer layer (view from side) 
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The first, the second and the third terms of right side of the equation describing thermal diffusion 

of dopant. The forth and the fifth terms of the side correspond to dopant diffusion under influence 

of mismatch-induced stress. The sixth, the seventh and the eighth terms of right side of the Eq.(1) 

correspond to dopant diffusion under influence of modification of porosity of materials. The 

Eq.(1) should be complemented by boundary and initial conditions. Boundary (correspond to ab-

sent of dopant flow through external boundary of heterostructure) and initial conditions for the 

Eq.(1) could be written as 
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Here C(x,y,z,t) is the spatio-temporal distribution of concentration of dopant; Ω is the atomic vo-

lume of dopant; ∇s is the symbol of surficial gradient; ( )∫
zL

zdtzyxC
0

,,,  is the surficial concentra-

tion of dopant on interface between layers of heterostructure (in this situation we assume, that Z-

axis is perpendicular to interface between layers of heterostructure); µ1(x,y,z,t) and µ2(x,y,z,t) are 

the chemical potential due to the presence of mismatch-induced stress and porosity of material; D 
and DS are the coefficients of volumetric and surficial diffusions. Values of dopant diffusions 

coefficients depends on properties of materials of heterostructure, speed of heating and cooling of 

materials during annealing and spatio-temporal distribution of concentration of dopant. Depen-

dences of dopant diffusions coefficients on parameters could be approximated by the following 

relations [25-27] 
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Here DL (x,y,z,T) and DLS (x,y,z,T) are the spatial (due to accounting all layers of heterostruicture) 

and temperature (due to Arrhenius law) dependences of dopant diffusion coefficients; T is the 

temperature of annealing; P (x,y,z,T) is the limit of solubility of dopant; parameter γ depends on 

properties of materials and could be integer in the following interval γ ∈[1,3] [25]; V (x,y,z,t) is 

the spatio-temporal distribution of concentration of radiation vacancies; V
*
 is the equilibrium dis-

tribution of vacancies. Concentrational dependence of dopant diffusion coefficient has been de-
scribed in details in [25]. Spatio-temporal distributions of concentration of point radiation defects 

have been determined by solving the following system of equations [21-24,26,27] 
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with boundary and initial conditions 
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Here I (x,y,z,t) is the spatio-temporal distribution of concentration of radiation interstitials; I* is 
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the same aim as in Eq.(1); kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y,z,T) are the parameters of recombi-
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Here α, β and χ are the average distances between centers of pores in directions x, y and z; l, m 

and n are the quantity of pores inappropriate directions. 

Spatio-temporal distributions of divacancies ΦV (x,y,z,t) and diinterstitials ΦI (x,y,z, t) could be 
determined by solving the following system of equations [26,27] 
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with boundary and initial conditions 
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ΦI (x,y,z,0)=fΦI  (x,y,z), ΦV (x,y,z,0)=fΦV  (x,y,z).         (6) 
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and surficial diffusions of complexes of radiation defects; kI(x,y,z,T) and kV(x,y,z,T) are the para-

meters of decay of complexes of radiation defects; other terms of Eqs.(5) have the same aim as in 

Eq.(1). 
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where σ is Poisson coefficient; ε0 = (as-aEL)/aEL is the mismatch parameter; as, aEL are lattice dis-

tances of the substrate and the epitaxial layer; K is the modulus of uniform compression; β is the 

coefficient of thermal expansion; Tr is the equilibrium temperature, which coincide (for our case) 

with room temperature. Components of displacement vector could be obtained by solution of the 

following equations [22] 
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Conditions for the system of Eq. (8) could be written in the form 
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We determine spatio-temporal distributions of concentrations of dopant and radiation defects by 

solving the Eqs.(1), (3) and (5) framework standard method of averaging of function corrections 

[29]. Previously we transform the Eqs.(1), (3) and (5) to the following form with account initial 

distributions of the considered concentrations 
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Farther Eqs. (1a), (3a) and (5a) have been solved by method of averaging of function corrections 
[29] by using the second-order approximation of all considered approximations. Farther we de-

termine solutions of Eqs.(8), i.e. components of displacement vector. To determine the solutions 

we used the method of averaging of function corrections again framework the second-order ap-
proximation. The approximation is usually enough good approximation to make qualitative anal-

ysis and to obtain some quantitative results. All obtained results have been checked by compari-

son with results of numerical simulations. 

 

3. DISCUSSION 

 

In this section we analyzed dynamics of redistributions of dopant and radiation defects during 
annealing and under influence of mismatch-induced stress and modification of porosity. Typical 

distributions of concentrations of dopant in heterostructures are presented on Figs. 2 and 3 for 

diffusion and ion types of doping, respectively. The-se distributions have been calculated for the 
case, when value of dopant diffusion coefficient in doped area is larger, than in nearest areas. The 

figures show, that inhomogeneity of heterostructure gives us possibility to increase compactness 

of concentrations of dopants and at the same time to increase homogeneity of dopant distribution 
in doped part of epitaxial layer. However framework this approach of manufacturing of bipolar 

transistor it is necessary to optimize annealing of dopant and/or radiation defects. Reason of this 

optimization is following. If annealing time is small, the dopant did not achieve any interfaces 

between materials of heterostructure. In this situation one cannot find any modifications of distri-

bution of concentration of dopant. If annealing time is large, distribution of concentration of do-

pant is too homogenous. We optimize annealing time framework recently introduces approach 

[30-38]. Framework this criterion we approximate real distribution of concentration of dopant by 

step-wise function (see Figs. 4 and 5). Farther we determine optimal values of annealing time by 

minimization of the following mean-squared error 
 

 

Fig.2. Distributions of concentration of infused dopant in heterostructure from Fig. 1 in direction, which is 

perpendicular to interface between epitaxial layer substrate. Increasing of number of curve corresponds to 

increasing of difference between values of dopant diffusion coefficient in layers of heterostructure under 

condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than value of dopant diffu-

sion coefficient in substrate 
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Fig.3. Distributions of concentration of implanted dopant in heterostructure from Fig. 1 in direction, which 

is perpendicular to interface between epitaxial layer substrate. Curves 1 and 3 corresponds to annealing 

time Θ = 0.0048(Lx
2
+Ly

2
+Lz

2
)/D0. Curves 2 and 4 corresponds to annealing time Θ = 0.0057(Lx

2 

+Ly
2
+Lz

2
)/D0. Curves 1 and 2 corresponds to homogenous sample. Curves 3 and 4 corresponds to hetero-

structure under condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than value 

of dopant diffusion coefficient in substrate 
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where ψ (x,y,z) is the approximation function. Dependences of optimal values of annealing time 

on parameters are presented on Figs. 6 and 7 for diffusion and ion types of doping, respectively. It 

should be noted, that it is necessary to anneal radiation defects after ion implantation. One could 
find spreading of concentration of distribution of dopant during this annealing. In the ideal case 

distribution of dopant achieves appropriate interfaces between materials of heterostructure during 

annealing of radiation defects. If dopant did not achieves any interfaces during annealing of radia-
tion defects, it is practicably to additionally anneal the dopant. In this situation optimal value of 

additional annealing time of implanted dopant is smaller, than annealing time of infused dopant. 
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Fig. 4. Spatial distributions of dopant in heterostructure after dopant infusion. Curve 1 is idealized distribu-

tion of dopant. Curves 2-4 are real distributions of dopant for different values of annealing time. Increasing 

of number of curve corresponds to increasing of annealing time 
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Fig. 5. Spatial distributions of dopant in heterostructure after ion implantation. Curve 1 is idealized distribu-

tion of dopant. Curves 2-4 are real distributions of dopant for different values of annealing time. Increasing 

of number of curve corresponds to increasing of annealing time 

Farther we analyzed influence of relaxation of mechanical stress on distribution of dopant in 

doped areas of heterostructure. Under following condition ε0< 0 one can find compression of dis-

tribution of concentration of dopant near interface between materials of heterostructure. Contrary 

(at ε0>0) one can find spreading of distribution of concentration of dopant in this area. This 

changing of distribution of concentration of dopant could be at least partially compensated by 
using laser annealing [38]. This type of annealing gives us possibility to accelerate diffusion of 

dopant and another processes in annealed area due to inhomogenous distribution of temperature 

and Arrhenius law. Accounting relaxation of mismatch-induced stress in heterostructure could 
leads to changing of optimal values of annealing time. At the same time modification of porosity 

gives us possibility to decrease value of mechanical stress. On the one hand mismatch-induced 

stress changing of optimal values of annealing time. At the same time modification of porosity 

gives us possibility to decrease value of mechanical stress. On the one hand mismatch-induced 

stress could be used to increase density of elements of integrated circuits. On the other hand could 

leads to generation dislocations of the discrepancy. Figs. 8 and 9 show distributions of concentra-

tion of vacancies in porous materials and component of displacement vector, which is perpendi-
cular to interface between layers of heterostructure. 
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Fig.6. Dependences of dimensionless optimal annealing time for doping by diffusion, which have been ob-

tained by minimization of mean-squared error, on several parameters. Curve 1 is the dependence of dimen-

sionless optimal annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant 

diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless optimal 

annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 is the dependence of dimension-

less optimal annealing time on value of parameter ξ for a/L=1/2 and ε = γ = 0. Curve 4 is the dependence of 

dimensionless optimal annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0 

 

0.0 0.1 0.2 0.3 0.4 0.5
a/L, ξ, ε, γ

0.00

0.04

0.08

0.12

Θ
 D

0
 L

-2

3

2

4

1

 
Fig.7. Dependences of dimensionless optimal annealing time for doping by ion implantation, which have 

been obtained by minimization of mean-squared error, on several parameters. Curve 1 is the dependence of 

dimensionless optimal annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of 

dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless op-

timal annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 is the dependence of di-

mensionless optimal annealing time on value of parameter ξ for a/L=1/2 and ε = γ = 0. Curve 4 is the de-

pendence of dimensionless optimal annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0 
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Fig. 8. Normalized dependences of component uz of displacement vector on coordinate z for nonporous 

(curve 1) and porous (curve 2) epitaxial layers 
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Fig. 9. Normalized dependences of vacancy concentrations on coordinate z in unstressed (curve 1) and 

stressed (curve 2) epitaxial layers 

4. CONCLUSIONS 

In this paper we model redistribution of infused and implanted dopants with account relaxation 

mismatch-induced stress during manufacturing field-effect heterotransistors framework a CMOS 

power amplifier. We formulate recommendations for optimization of annealing to decrease di-

mensions of transistors and to increase their density. We formulate recommendations to decrease 

mismatch-induced stress. Analytical approach to model diffusion and ion types of doping with 

account concurrent changing of parameters in space and time has been introduced. At the same 

time the approach gives us possibility to take into account nonlinearity of considered processes. 
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