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ABSTRACT

In this paper, we apply adaptive control method to derive new results for the global chaos
synchronization of 4-D chaotic systems, viz. identical Lorenz-Stenflo(LS) systems (Stenflo, 2001),
identical Qi systems (Qi, Chen and Du, 2005) and non-identical LS and Qi systems. In this paper, we
shall assume that the parameters of both master and slave systems are unknown and we devise adaptive
control schemes for synchronization using the estimates of parameters for both master and slave systems.
Our adaptive synchronization schemes derived in this paper are established using Lyapunov stability
theory. Since the Lyapunov exponents are not required for these calculations, the adaptive control
method is very effective and convenient to synchronize identical and non-identical LS and Qi systems.
Numerical simulations are shown to demonstrate the effectiveness of the proposed adaptive
synchronization schemes for the identical and non-identical, uncertain LS and Qi 4-D chaotic systems.
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1. INTRODUCTION

Chaotic systems are nonlinear dynamical systems that are highly sensitive to initial conditions.
The sensitive nature of chaotic systems is commonly called as the butterfly effect [1].

Chaos theory has been applied to a variety of fields such as physical systems [2-4], ecological
systems [5-6], chemical reactor [7], secure communications [8-10], etc. Since the seminal work
by Pecora and Carroll ([11], 1990), chaos synchronization problem has been studied extensively
and intensively in the chaos literature [11-29].

In most of the chaos synchronization approaches, the master-siave or drive-response formalism
is used. If a particular chaotic system is called the master or drive system and another chaotic
system is called the slave or response system, then the idea of the synchronization is to use the
output of the master system to control the slave system so that the output of the slave system
tracks the output of the master system asymptotically.

The problem of chaos synchronization is related to the observer problem in control theory. In
general, the designed controller makes the trajectories of the slave system to track the
trajectories of the master system.

Progress in the research activities on chaos synchronization has given birth to various methods
of synchronization such as PC method [11], OGY method [12], active control method [13-17],
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adaptive control method [18-20], time-delay feedback method [21], backstepping design
method [22-23], sampled-data feedback method [24], sliding mode control method [25-27], etc.

In this paper, we apply adaptive control method to derive new results for the global chaos
synchronization of identical Lorenz-Stenflo systems ([28], 2001), identical Qi systems ([29],
2005) and non-identical LS and Qi systems. We assume that the parameters of the master and
slave systems are unknown and we devise adaptive synchronizing schemes using the estimates
of the parameters for both master and slave systems.

This paper has been organized as follows. In Section 2, we give a description of LS and Qi 4-D
chaotic systems. In Section 3, we discuss the adaptive synchronization of identical LS systems.
In Section 4, we discuss the adaptive synchronization of identical Qi systems. In Section 5, we
discuss the adaptive synchronization of LS and Qi chaotic systems. In Section 6, we summarize
the main results obtained in this paper.

2. SYSTEMS DESCRIPTION
The Lorenz-Stenflo system ([28], 2001) is described by

X =a(x,—x)+yx,
X, =x(r—x)—x,
X = x,x, — fBx;

X, ==X, —0x,

)]

where x,,Xx,,x;,x, are the state variables and ¢, B, ¥, r are positive constant parameters of the

system.

The LS system (1) is chaotic when the parameter values are taken as
=20, =07, y=1.5 and r=26.0.

The state orbits of the chaotic LS system (1) are shown in Figure 1.

The Qi system ([29], 2005) is described by

X, =a(x, —x)+x,xx,
X, =b(x, +x,)—x,x;x, @
X, ==X, + XX, X,

X, =—dx, + x,x,x,

where x,,x,,x,,x, are the state variables and a,b,c,d are positive constant parameters of the

system.
The system (2) is hyperchaotic when the parameter values are taken as

a=30, b=10, ¢=1 and d=10.

The state orbits of the chaotic Qi system (2) are shown in Figure 2.
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Figure 1. State Orbits of the Lorenz-Stenflo Chaotic System
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Figure 2. State Orbits of the Qi Chaotic System
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3. ADAPTIVE SYNCHRONIZATION OF IDENTICAL LORENZ-STENFLO
SYSTEMS
3.1 Theoretical Results
In this section, we discuss the adaptive synchronization of identical Lorenz-Stenflo systems

([28], 2001), where the parameters of the master and slave systems are unknown.

As the master system, we consider the LS dynamics described by

X =a(x,—x)+yx,
X, =x,(r—x;)—x, 3)

Xy = XX, _ﬂx3

X, =—x,—ax,

where x,,x,,x,,x,are the states and ¢, ﬂ, ¥, r are unknown real constant parameters of the

system.

As the slave system, we consider the controlled LS dynamics described by

n=a(y, = y)+yy, +u
Y, =0 (r=y) =y, +u,
Y3 =212, = By +u
o=y may, tuy

“4)

where y,,¥,,y;,y,are the states and u,,u,,u,,u, are the nonlinear controllers to be designed.
The chaos synchronization error is defined by

e=y,—x, (i=1234) (5)
The error dynamics is easily obtained as

e, =ale,—e)+ye, +u,

e, =—e, +r(e,—yy, +xx)+u,

. (6)
& =—Pfe;+ ¥y, —xx, +uy
e, =—e —ae,tu,
Let us now define the adaptive control functions
u (t)y=—ale,—e)—ye, — ke,
u, (1) = e, — (e, — y,y; + x,5,) —k,e, 7

143(1') = 1863 i) + XXy —k3€3
u,(t)=e +ae,— ke,
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where @&, [, 7and Fare estimates of «,f3,yand r,respectively, and k,,(i=1,2,3,4) are
positive constants.

Substituting (7) into (6), the error dynamics simplifies to

e = (6‘(—0?)(62 —e)+(y— 77)84 — ke,

é, =(r—r)(e,—y,y,+xx)—kye,

' ) ®)

&, =—(B—Pe;—kse,

é, =—(ax—-e, —k,e,
Let us now define the parameter estimation errors as

e, =a—2a, eﬁ:ﬁ—ﬁ, e, =y—¥ and e =r-F. )
Substituting (9) into (8), we obtain the error dynamics as

e =e,(e,—e)+ee, —ke

é,=e (e — +xx,)—k,e

2 1 TN T XX 26 (10)

€, =—ege, — k,e,

e, =—ee,— ke,

For the derivation of the update law for adjusting the estimates of the parameters, the Lyapunov
approach is used.

We consider the quadratic Lyapunov function defined by
I S N S S S S S S
V(el,ez,exz,e4,e0(,e[,,,ey,er)—E(e1 +e, +e; t+e,; +ea+eﬁ+ey+er) (11)

which is a positive definite function on R®.

We also note that

A

é,=-a, éﬁ,z—ﬂ, é7=—77 and ¢é =-7 (12)
Differentiating (11) along the trajectories of (10) and using (12), we obtain

V =—ke] —k,ei —kel —k,el +e, [el(e2 —e)—e; —5{]+eﬁ [—e32 —ﬂA}
) (13)
te, [6164 - 7]+er I:ez(el — Vs +x1x3)_f]
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In view of Eq. (13), the estimated parameters are updated by the following law:

a=e(e,—e)—e; +ke,

B: —632 +kéeﬂ

: (14)
V=ee, +ke,
F= e, (e, —y,y, +x,x;) +kge,
where ki, kg, k;and kg are positive constants.
Substituting (14) into (12), we obtain
V =—ke] —k,el —kel —k,e; —ksel — kée; - k7e§ —kye? (15)

which is a negative definite function on R 5.

Thus, by Lyapunov stability theory [30], it is immediate that the synchronization error
e.,(i=12,3,4)and the parameter estimation error €,,€5.€,.€, decay to zero exponentially

with time.
Hence, we have proved the following result.

Theorem 1. The identical hyperchaotic Lorenz-Stenflo systems (3) and (4) with unknown
parameters are globally and exponentially synchronized by the adaptive control law (7), where

the update law for the parameter estimates is given by (14) and k,,(i=1,2,...,8) are positive

constants. B

3.2 Numerical Results

For the numerical simulations, the fourth-order Runge-Kutta method with time-step & =10is
used to solve the 4-D chaotic systems (3) and (4) with the adaptive control law (14) and the
parameter update law (14) using MATLAB.
We take k, =2for i=12,...,8.
For the Lorenz-Stenflo systems (3) and (4), the parameter values are taken as

a=20, =07, y=15 and r=26.0.
Suppose that the initial values of the parameter estimates are

a(0)=3, b(0)=5, #(0)=8, d(0)=4.

The initial values of the master system (3) are taken as

%(0)=16, x,(0)=12, x,(0)=20, x,(0)=35.
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The initial values of the slave system (4) are taken as
»(0)=22, y,(0)=16, y,(0)=15, y,(0)="7.

Figure 3 depicts the complete synchronization of the identical LS systems (3) and (4). Figure 4

shows that the estimated values of the parameters, viz. @, 3, 7and 7 converge to the system

parameters & =2.0, f=0.7, y=1.5and r=26.0.
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Figure 3. Complete Synchronization of the Lorenz-Stenflo Systems
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Figure 4. Parameter Estimates Q/(t), B(t), (1), 7 (1)
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4. ADAPTIVE SYNCHRONIZATION OF IDENTICAL QI SYSTEMS
4.1 Theoretical Results
In this section, we discuss the adaptive synchronization of identical Qi systems ([29], 2005),

where the parameters of the master and slave systems are unknown.

As the master system, we consider the Qi dynamics described by

X, =a(x, —x)+x,x,%,

X, =b(x; +x,)— x,x;x, 16)

Xy = —CXy + X, X, X,

X, =—dx, +x,x,x,

where Xx,,x,,x;,x,are the states and a,b,c,d are unknown real constant parameters of the
system.

As the slave system, we consider the controlled Qi dynamics described by

)'71 = a(yz - y1)+ Vo Y3yy Ty
Yo =b(y, + )= Y3y, +u,

Y3 ==Cyst )Y, Y, t s
Yy =—dy,+ Yy, +u,

a7)

where y,,¥,,y;,y,are the states and u,,u,,u,,u, are the nonlinear controllers to be designed.
The chaos synchronization error is defined by

e=y—x, (i=1234) (18)
The error dynamics is easily obtained as

e =ale, =)+ y, Y3y, — XX, X, +u,

e, =b(e +e,)—y,y;y, t x,xx, +u,

) (19)
e, =—ce; + YV, ¥, — XX, X, + U,
e, =—de, +y,y,y, — X, X,X; +u,
Let us now define the adaptive control functions
u, (t)y=—d(e, — €)= y,y;y, + x,x%,x, — ke,
u t):—l;(e +e,)+ —xx.x, —k,e
o( L Te)+ Yy, — X xx, — ke, 20)

u,(t) =ce; — y,y,y, + x,x,x, —kse,

u,(t)=de, —y,y,y, + x,x,x; —k,e,
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where &,l;,@and d are estimates of a,b,cand d,respectively, and k,,(i=1,2,3,4) are

positive constants.

Substituting (20) into (19), the error dynamics simplifies to

é, =(a—a)e,—e)—ke,

¢, =(b—b)(e, +e,)—kye,

. N (21
e, =—(c—0C)e; — ke,
¢, =—(d—d)e, —k,e,
Let us now define the parameter estimation errors as
e,=a—d, eb:b—l;, e, =c—C and ed:d—c?. (22)
Substituting (22) into (21), we obtain the error dynamics as
e =e,(e,—¢e)—ke,
e, =¢(e+e)—ke
2 =66 T6 262 (23)

e; =—e.e; —kye,

e, =—ee,—kye,

For the derivation of the update law for adjusting the estimates of the parameters, the Lyapunov
approach is used.

We consider the quadratic Lyapunov function defined by
1
Ve, e,.e5,e,,¢,,¢,,e..¢,) :5(612 te;+e; te,+e +e, +e +e§) (24)

which is a positive definite function on R®.

We also note that

A A

é =—d, ¢,=—b, ¢ =—¢ and é,=—d (25)
Differentiating (24) along the trajectories of (23) and using (25), we obtain

V= —klel2 - kzef - k3e32 - k4ef +e, [6’1 (e,—¢)— &J

A . A (26)
+e, [ez(e1 +e2)—bJ +e, [—e32 —6J+ed [ef —d}
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In view of Eq. (26), the estimated parameters are updated by the following law:

a=e/(e,—e)+kse,

b=e,(e +e,)+ke,

(27
¢=—e +kpe,
d= e; +kee,
where k, kg, k;and kg are positive constants.
Substituting (27) into (26), we obtain
V =—kel —k,el —k,ei —k,e; —kse? —kee} —k,e> —kee’ (28)

which is a negative definite function on R 5

Thus, by Lyapunov stability theory [30], it is immediate that the synchronization error
e,(i=1,2,3,4)and the parameter estimation error e,,e,,e e, decay to zero exponentially

with time.
Hence, we have proved the following result.

Theorem 2. The identical Qi systems (16) and (17) with unknown parameters are globally and
exponentially synchronized by the adaptive control law (20), where the update law for the

parameter estimates is given by (27) and k;,(i =1,2,...,8) are positive constants. B

4.2 Numerical Results

For the numerical simulations, the fourth-order Runge-Kutta method with time-step A = 107%s
used to solve the chaotic systems (16) and (17) with the adaptive control law (14) and the
parameter update law (27) using MATLAB. We take k, =2 for i =1,2,...,8.
For the Qi systems (16) and (17), the parameter values are taken as
a=30, b=10, ¢c=1 and d=10.

Suppose that the initial values of the parameter estimates are

40)=6, b(0)=2, é0)=9, d0)=14
The initial values of the master system (16) are taken as

x,(0)=12, x,(0)=26, x,(0)=42, x,(0)=16.
The initial values of the slave system (17) are taken as

»(0)=18, »,(0)=7, y;(0)=15, y,(0)=29.

10



International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.1, July 2011
Figure 5 depicts the complete synchronization of the identical Qi systems (16) and (17). Figure

6 shows that the estimated values of the parameters, viz. d, b éand d converge to the system
parameters a =30, b=10, ¢=1 and d =10.
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Figure 5. Complete Synchronization of the Qi Systems
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5. ADAPTIVE SYNCHRONIZATION OF NON-IDENTICAL LORENZ-STENFLO
AND QI SYSTEMS

5.1 Theoretical Results

In this section, we discuss the adaptive synchronization of non-identical Lorenz-Stenflo system
([28], 2001) and Qi system ([29], 2005), where the parameters of the master and slave systems
are unknown.

As the master system, we consider the LS dynamics described by

X =a(x,—x)+yx,
X, =x(r—x;)—x,
X, =xx, - Bx,

X, ==X, —0x,

(29)

where x,,x,,x;,x,are the states and «, B, 7, rare unknown real constant parameters of the
system.

As the slave system, we consider the controlled Qi dynamics described by

Vy=aly, = y)+ Yy, tu
Vo =b(y+ )=y, vy, +u,

Y3 ==Cy;+ Y1 Y, ¥y T Uy
Vy=—dy, +y,y,y;tu,

(30)

where y,,V,,Y,,y,are the states, a,b,c,d are unknown real constant parameters of the system

and u,u,,u,,u, are the nonlinear controllers to be designed.

The chaos synchronization error is defined by

e=y—x, (i=123,4) (31

1

The error dynamics is easily obtained as

e =a(y,=y)=a(x, —x)=yx, +y,y3y, +u,
€ =b(y,+y,)+X, =1 + XX — Y, Y3y, T U,
ey =—Cyy + S+ Y, Y, 0, — XX, t ity

e, =—dy,+ax, +x+y,y,y; +u,

(32)

12
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Let us now define the adaptive control functions

u (1) ==a(y, = y) + (X, = X))+ 7x, = ¥, 555, — ke,
u,(t)= —5(y1 +9,) =X, 7 — x4 Y, )y, — ke, (33)
Uy (1) = Cys — fxy — 3,3, ¥, + XX, —kqe,

u,()=dy, —ax, —x,— y,y,5; — ke,

where a,b,¢,d,Q,,Yand Fare estimates of a,b,c,d,a, 3,y and r,respectively, and
k,,(i=1,2,3,4) are positive constants.

Substituting (33) into (32), the error dynamics simplifies to

él = (a_&)(yz _yl)_(a_&)(xz _xl)_(?/_ j})x4 _klel
&, = (b=b)(y, + )~ (r=Px ~kye,

_ ) A (34)
éy=—(c=0)y; + (B~ P)x, —kye,
é,=—(d—-d)y,+(a—-a)x,—k,e,
Let us now define the parameter estimation errors as
e,=a-a, e,=b-b, e =c—¢, e,=d—d
A (35)
e,=a-a, e;=p-f, e,=y—y. e, =r—+
Substituting (35) into (32), we obtain the error dynamics as
e =e,(y,—y)—e,(x, _xl)_eyx4 — ke,
é,=e¢(y+y,)—ex —kye
» =6 T Y, 1 T K6 (36)

é,=—e.y,+ epX; — ke,

ey =€y, te, X, —k,e,

For the derivation of the update law for adjusting the estimates of the parameters, the Lyapunov
approach is used.

We consider the quadratic Lyapunov function defined by
L o 2 2 2 2 2 2, 2 2, 2. 2
Vv :5(€1 te, te;te, te, e +e +e, te, teste, te, ) 37

which is a positive definite function on R 2
We also note that

A . A

¢, ==d, &, ==b, ¢, == é,=~d, éy=—0, é;=—P, ¢, ==F, ¢,==F (38

13
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Differentiating (37) along the trajectories of (36) and using (38), we obtain

V= _k1e12 _k2€§ _k3€32 _k4€j te, |:€1(y2 - )ﬁ)“ﬂ"‘eh [ez()ﬁ +,) _I;}

A

+e, [—e3y3 —é]+ed [—eéty4 —d}+ea [—el(x2 -x)+e.x, —OA{]

A

+ey |:€3x3 - ﬂ} te, [—e1x4 - f/] +e, [—ele - ?]

In view of Eq. (39), the estimated parameters are updated by the following law:

a=e(y,—y)+kse,,

S
Il

e, (3, +y,) +kqe,,

c=—ey,+kie.,

d=-ey, +kse,,

where kg, kg, k;, kg, ky,k,, k, and k, are positive constants.

Substituting (40) into (39), we obtain

(39)

(40)

V =—ke] —k,e; —ke: —k,e; —kse —k.e; —k,e’ —kee: —kye> — kloe; —kuei —k,e’ (41)

which is a negative definite function on R'.

Thus, by Lyapunov stability theory [30], it is immediate that the synchronization error
e.,(i=1,2,3,4) and the parameter estimation error decay to zero exponentially with time.

Hence, we have proved the following result.

Theorem 3. The non-identical Lorenz-Stenflo system (29) and Qi system (30) with unknown
parameters are globally and exponentially synchronized by the adaptive control law (33), where

the update law for the parameter estimates is given by (40) and k;,(i =1,2,...,12) are positive

constants. &

5.2 Numerical Results

For the numerical simulations, the fourth-order Runge-Kutta method with time-step & =10"is
used to solve the chaotic systems (29) and (30) with the adaptive control law (27) and the
parameter update law (40) using MATLAB. We take k, =2for i =1,2,...,12.

For the Lorenz-Stenflo system (29) and Qi system (30), the parameter values are taken as

a=30, b=10, c=1, d=10, a=2.0, f=0.7, y=1.5, r=26.

(42)

14
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Suppose that the initial values of the parameter estimates are

a0y =5, l;(O) =10, ¢(0) =2, c?(O) =4, a(0)=6, ,8(0) =9, (0)=17, 7F(0)=5
The initial values of the master system (29) are taken as

x,(0)=32, x,(0)=14, x,0)=25, x,(0)=27.
The initial values of the slave system (30) are taken as

»(0)=14, y,(0)=17, y,(0)=30, y,(0)=20.

Figure 7 depicts the complete synchronization of the non-identical Lorenz-Stenflo and Qi
systems. Figure 8 shows that the estimated values of the parameters, viz. d,b,¢,d,&, [, ¥ and

F converge to the original values of the parameters given in (42).

1.8

1.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time (sec)

Figure 7. Complete Synchronization of Lorenz-Stenflo and Qi Systems
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Figure 8. Parameter Estimates &(t),l;(t), (), ci(t), an), ﬁA(I), (1), F(t)

5. CONCLUSIONS

In this paper, we have applied adaptive control method for the global chaos synchronization of
identical Lorenz-Stenflo systems (2001), identical Qi systems (2005) and non-identical LS and
Qi systems with unknown parameters. The adaptive synchronization results derived in this
paper are established using Lyapunov stability theory. Since the Lyapunov exponents are not
required for these calculations, the adaptive control method is a very effective and convenient
for achieving chaos synchronization for the uncertain hyperchaotic systems discussed in this
paper. Numerical simulations are shown to demonstrate the effectiveness of the adaptive
synchronization schemes derived in this paper for the synchronization of identical and non-
identical uncertain LS and Qi systems.
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