
International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.3, November 2011

DOI : 10.5121/ijist.2011.1302 11

REDUCING THE COMPLEXITIES IN THE

COGNITION OF ONTOLOGY KNOWLEDGE

REPRESENTATION

R. Sivakumar
1
 and P.V. Arivoli

2

1
Associate Professor, Department of Computer Science,

A.V.V.M. Sri Pushpam College, Bharathidasan University, Trichirappalli, India
rskumar.avvmspc@gmail.com

2
Project

Fellow, Department of Computer Science, A.V.V.M. Sri Pushpam College,

Bharathidasan University, Trichirappalli, India
pva.tvr@gmail.com

ABSTRACT

Cognitive assistance in knowledge engineering is a growing concern and information visualization is a

very useful means to address this. This paper identifies some requirements for ontology visualization tools

offering cognitive assistance and presents solutions with simple knowledge representations. This paper also

identifies some of its features and describes areas need to be improved for effective visualization.

KEYWORDS

Cognitive science, Protégé tools, Knowledge engineering, Ontologies.

1. INTRODUCTION

Knowledge capture and knowledge representation are the hot emerging areas of research in the

discipline of information technology [1]. Ontology development and semantic web play the vital

role to support the research in knowledge representations. In recent years, number of ontology

tools have been designed and implemented with the support of visualization. The area of

cognitive assistance much requires of visualization techniques for its improvement in

performance. An ontology is a conceptualization of a domain into machine readable format [2].

They are becoming increasingly popular modelling schemas for knowledge representation

services and applications.

A number of visualization techniques have also been described over the years such as spanning

tree layouts, tree-maps [3], fisheye views [4], hyperbolic [5], and 3D hyperbolic layouts [6],

aiming to help comprehend and analyze complex information structures. Preference of

visualization models vary according to users needs and query context [7]. It is also dependent on

the type and extent of the visualized network. One can get benefit by the use of combining the

integrated visualization of different types [8].

Is it easier to create proper ontologies? Definitely it is a complex task. To break this complexity,

it requires enhanced ability to perceive and estimate created ontology. There exists a number of

ways to achieve this enhanced ability to represent ontologies via tree or a graph [9]. The

complexity of human interpretation with tree structures increases when a class with many parents

appear multiple times in the hierarchy. On the other hand, graph based visualization seemed to be

a better choice.

International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.3, November 2011

12

Protégé tools like Jambalaya [10] and OWLviz [11] were implemented as plug-in using graph

based visualizations. However the cognitive ability of visualization of various properties via

edges with labels is poor due to overlapping of those labels. The main reason here is the

representation of classes with big square symbols that requires a lot of display space. In

Jambalaya, the visualization is based on a hierarchy and when it gets degenerated, the human

cognitive ability becomes complex due to the fact of its inability to represent or display all

relations at once. GrOWL [12] is an another solution for problem with Jambalaya but the problem

here is its heavy library dependencies. Hence in this paper, a set of notations for ontology

visualization is proposed to overcome the reported difficulties and the ontologies stored using

OWL DL dialect of OWL language and accessed by including java based OWL Application

Process Interface. The purpose of this interface is to reduce the heavy library dependencies.

The remaining part of the paper is organized as follows: Section 2 presents and overview of

knowledge representations in various plug-ins of protégé tool. Next, section 3 proposes a

simplified version of notations to represent classes, properties, individuals and data types in order

to improve the cognitive ability of the users of the visualized ontologies. Finally section 4

concludes with future direction in the research.

2. REPORT OF EXISTING VISUALIZATION METHODS

A group of the protégé ontology visualization methods were selected for this study because it

offers a range of different characteristics. Furthermore, protégé is a very widely used ontology

tool and its open source environment provides many possibilities for further improvement or

extension of additional functionalities in the form of plug-ins.

2.1. Class browser

It [13] is a simple visualization technique that offers a windows explorer-like view of the

ontology. In this view, the taxonomy of the ontology is represented as a tree. Here the class

hierarchy is displayed as follows: the lower level nodes are organized as a list and placed under

their parent. Since it supports multiple inheritance property, classes with more than one parents

appear under all their parents. The lists of child nodes may be expanded on demand by clicking

on their parent. The instances of a selected class are displayed in a separate pane to the right of

the class browser.[Figure. 2.1]

Figure 2.1. The Protégé Class Browser.

International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.3, November 2011

13

2.2. Jambalaya

Jambalaya [14] is visualization plug-in for the protégé ontology tool that uses simple hierarchical

multi-perspective 2D visualization technique. It uses a nested graph view and the concept of

interchangeable views, combined with interchangeable views, combined with geometric, fisheye

and semantic zooming. Here sub classes are nested inside parent classes. The nested nodes are

used to represent the inherited relations between the classes. Nested nodes are also used to

represent instances with their respective classes in the graph. [Figure. 2.2].

Figure 2.2. The Jambalaya tab in Protégé.

2.3. TGViz Tab

It [15] is also known as touch graph visualization Tab. It uses a spring-layout technique. Here

nodes repel one another whereas the edges (represent links) attract them. This displays nodes with

similar meaning appear close to one another. Figure.2.3 shows the interface of the TGVizTab. It

uses three structures to represent ontologies. It displays classes and instances as nodes with

different colours. Links with labels are used to represent relations. The is-a links are denoted as

‘sub’ links on the other hand role links use a label with the name of the relation they represent.

The size of the graph parts may be altered. The instances of a selected class may also be

presented in the instance browser on the left.

Figure 2.3. The Protégé TGVizTab.

2.4. OntoViz
It [16] is also a protégé visualization plug-in. It uses a very simple 2D graph visualization

method. Here the ontology taxonomy is a 2D graph. It has the capability for each class to present,

apart from name, its attributes slots and inheritance and role relations.. Different colors are used

to display instances. Zooming is possible with right click option. [Figure. 2.4].

International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.3, November 2011

14

Figure 2.4. Protégé OntoViz Visualization.

2.5. OWL Viz

It [11] is designed to be used with the protégé OWL plug-in. The taxonomy used here is graph. It

uses the same colour scheme so that primitive and defined classes can be distinguished and

inconsistent concepts can be highlighted in red. Primitive classes are coloured yellow and defined

classes are in orange. Selected classes are coloured blue and the edges between selected classes

are indicated by light grey colour. In this context, super class edges are represented by green

colour and sub classes edges by purple colour. Expansion arrows are used here to indicate that a

particular class has some classes that are not shown in the display. [Figure 2.5]

Figure 2.5. Protégé OWLViz plug-in.

2.6. GrOWL

It [12] is based on the prefuse library [17] and implemented as a java applet plug-in and a stand-

alone java application. The taxonomy used here is graph. The diagrams from figure 2.6 to 2.13

illustrate the various notations used in ontology representation while the figure 2.14 shows the

GrOWL in editing mode. Figure 2.7 and Figure 2.8 provide simple examples that illustrate idioms

for axioms SameIndividual and DifferentIndividuals.

International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.3, November 2011

15

Figure 2.6. Graphic idioms for association about individuals.

Figure 2.7. Representation of axiom Same Individual

(AI Artificial Intelligence).

Figure 2.8. Representation of axiom Different Individual

(JohnWSmithJhonSmith).

In figures 2.9, 2.10 and 2.11, the node labelled BN(C1) is a base node of class C2.

They need not have to be of any shape permissible for base nodes.

Figure 2.9. Graph G (C1 ⊆ C2).

Figure 2.10. Graph G (C1 = C2).

Figure 2.11. Graph G (a:C1).

Figure 2.12. Mapping of OWL class axioms EquivalentClasses (C1 C2 C3) and

DisjointClasses (C1 C2 C3).

International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.3, November 2011

16

Figure 2.13. The separate diagrams generated by the object property specification.

Figure 2.14.GrOWL in editing mode.

Figure 2.10 describes the mapping on the “subclass of” axioms next, figure 2.12 represents the

mapping of OWL class axioms.Figure 2.13 shows separate diagrams generated by the object

property specification.

Thus it is understood that Protégé tools like Jambalaya and OWLViz were implemented as plug-

in using graph based visualizations. However the cognitive ability of visualization of various

properties via edges with labels is poor due to overlapping of those labels. The main reason here

is the representation of classes with big square symbols that requires a lot of display space. In

Jambalaya, the visualization is based on a hierarchy and when it gets degenerated, the human

cognitive ability becomes complex due to the fact of its inability to represent or display all

relations at once. GrOWL is an another solution for problem with jambalaya but the problem here

is its heavy library dependencies. Hence in this paper, a set of notations for ontology visualization

is proposed to overcome the reported difficulties and the ontologies stored using OWL DL dialect

of OWL language and accessed by including java based OWL Application Process Interface. The

purpose of this interface is to reduce the heavy library dependencies.

3. PROPOSED NOTATIONS TO INCREASE HUMAN’S COGNITIVE ABILITY

To define ontology elements and its restrictions, OWL language specification permits wide usage

of its concepts. It is the responsibility of visualization software to synchronize between ontology

definition and its visualization. The human’s cognitive ability of the visualized image needs to be

improved still better. This is possible by the way of introducing much simple notations to

represent classes, properties and data types. Hence this paper proposes a set of simplified

notations to represent classes, properties and data types in ontology visualization.

3.1. Proposed notations

The following are the proposed simplified notations used to synchronize ontology representations

with visualization for human’s effective knowledge understanding.

International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.3, November 2011

17

• Class – a rectangle shape with round edges

• Properties – a rectangle shape with highlighted round edges

• Data type - a rectangle shape with round edges

• Individual - a rectangle shape

In complex class description, another problem with cognitive ability is representation of

anonymous classes. The solution to this problem is the proposed circle notation containing

meaningful character inside.

• Anonymous class -

The mathematical symbols ∩,¬,∪ and Ν can be used to represent intersection, complementary,

union and cardinality. Further the following symbols can be used as follows.

• “SameAs” relation - “=”

• allDifferent

• differentfrom - “≠”

The following notations are introduced for the representation of relations “allValuesFrom” and

“someValuesFrom”.

• allValuesFrom

• someValuesFrom

Lines with different shafts can be used to represent simple relations. In UML, “subclass” and

“subproperty” relations are normally represented by an arrow with an empty shaft and the same is

followed here also. But by the meantime, the following changes are suggested for edges that

represent “equivalent” and “disjoint” relations as follows.

“equivalent”

“disjoint” – shafts pointed in opposite directions stressing the reversibility of that relations

Class

Property

Data type

Individual

AC

∀ hasproperty

∃ hasproperty

International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.3, November 2011

18

The property definition “inversely” is marked by light red colour of the arrow and marked in two

different ways depending on the fact whether given property is symmetric or asymmetric. Then

how to distinguish equality of classes and properties?

Equality of classes – dark blue colour

Equality of properties –light blue colour

Similarly to distinguish “range” and “domain” relations attached to a property, two additional

shafts were introduced [Figure 3.1 to 3.12].

Figure 3.1. Anonymous Class

Figure 3.2. Intersection

Figure 3.3. Min and Max cardinality

Figure 3.4. SameAs relation

Figure 3.5. all different relation

AIDS

Symptoms Available Test

AIDS

∩

Monitoring N

∃: has id

1

100

Symptoms Early

Symptoms =

Symptoms Early

Symptoms ≠

Later

Symptoms

International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.3, November 2011

19

Figure 3.6. someValuesFrom and allValuesFrom relations representation

Figure 3.7. rdfs:subclassOf

Figure 3.8. instanceOf

Figure 3.9. owl:equivalentClass

Figure 3.10. owl:disjointWith

Figure 3.11. rdfs:domain

Figure 3.12. rdfs

AIDS Symptoms

Symptoms Disease name

has id

∀:has id

∃:has id

AIDS

AIDS
Treatment

100 to 200

Symptoms Early Symptoms

Early Symptoms

Later Symptoms

Has id AIDS

Disease

name

Symptoms

International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.3, November 2011

20

The following section presents the formal description of algorithm for graph visualizing ontology.

3.2. Algorithm – Formal Description

Step 1 Start

Step 2 Input classes, properties, individuals.

Step 3 For each fact begin

Step 4 If property fact begin

 // functional, inverse functional, symmetric, transitive//

Step 5 Add anonymous node

Step 6 Add links between nodes

Step 7 Endif

Step 8 If individual fact begin *//different, all different, same individuals//*

Step 9 Add anonymous node

Step 10 Add links between nodes

Step 11 Endif

Step 12 If class fact begin

Step 13 If description fact begin

 //equivalent classes, subclass, disjoint class//

Step 14 Call procedure include details

Step 15 Endif

Step 16 Add links between nodes

Step 17 Endif

Step 18 Endfor

Step 19 Add OWL: Thing element

Step 20 Link not super classes with OWL:Thing

Step 21 Procedure Includedetails

Step 22 begin

Step 23 If SomeValuesFrom or allValuesFrom or haveValues or

Cardinality fact begin

Step 24 Add property usage node

Step 25 Add edges

Step 26 Call procedure Includedetails

Step 27 Endif

Step 28 If set type fact begin *// Union Of , intersection Of, Complement Of//*

Step 29 For each description node begin

Step 30 Call procedure Includedetails

Step 31 Endfor

Step 32 If class or individual begin

Step 33 Add links

Step 34 Endif

Step 35 Endif

Step 36 Stop

3.3. Algorithm Informal description

The aim of this algorithm is to visualize all classes, properties and individuals as nodes. Then it

will create proper anonymous classes and insert respective edges. This is possible by scanning all

facts and relations related to classes, properties and individuals. At the end this algorithm will add

properties with quantifiers such as ∀ and ∃. The algorithm will first accept all inputs like classes,

properties and individuals and scan through facts like classes, properties, individuals and

International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.3, November 2011

21

descriptions. The property fact will contain the following cases: functional, inverse, symmetric

and transitive. Similarly the relations will take the different forms including inverse property,

equivalent and sub property. On the other hand the relations between individuals may take

different forms like different, allDifferent and sameIndividuals.

Complex class description can be defined using the following relations between classes:

equivalentclasses, subclass and disjointclasses. For fact represents has value, someValuesFrom or

allValuesFrom relation with the case as individual, first an anonymous class will be inserted into

a graph. Then if require, the cardinality restriction will be added. Similarly a fact defines a set of

classes then the following are to be added wherever required: union, intersection and

complement.

4. CONCLUSION

In spite of availability of number of plug-ins that supports visualizations in ontology tools, there

exist still challenges for easier representation of visualization. In this work a study of various

protégé plug-ins for ontology visualization is presented by analyzing various characteristics and

notations. Also this work proposed a simplified version of various notations to represent classes,

properties and individuals for visualization that synchronizes ontology representations. The future

work may incorporate audios with different notations that will definitely improve the cognitive

ability of the users.

 ACKNOWLEDGEMENTS

This work has been financed by University Grants Commission Major Research Project – Ref.

No. 38-4/2009(SR) (India).

REFERENCES

[1]. Allen, M. M., (2003) “Empirical evaluation of a visualization tool for knowledge engineering,” M.

Sc., University of Victoria,.

[2]. Guarino, N., Giaretta, P., (1995) “Ontologies and Knowledge bases: towards a terminological

clarification”, Towards Very Large Knowledge Bases: Knowledge Building and Knowledge Sharing,

IOS, pp25-32.

[3]. Johnson, B., Shneiderman, B., (1991), “Treemaps: a space-filling approach to the visualisation of

hierarchical in-formation structures”, Proc. 2nd Int. IEEE Visualization Conference, San Diego.

[4]. Furnas, G. W., (1986), “The FISHEYE view: A new look at structured files”, Proc. of the Conf. on

Human Factors in Computing Systems ACM, pp 16-23.

[5]. Lamping, J., Rao, R., Pirolli, P., (1995) “A focus + context Technique based on Hyperbolic Geometry

for Visual-izing Large Hierarchies”, ACM Conference on Human Factors in Computing Systems

(CHI'95), New York, ACM Press, pp 404-408.

[6]. Munzner, T., (1997), “H3 Laying Out Large Directed Graphs in 3D Hyperbolic Space”, Proc. of the

IEEE Symp. on Information Visualisation., Phoenix, USA.

[7]. Graham, M., Kennedy, J., Benyon, D., (2000), “Towards a Methodology for Developing

Visualizations”, Int. J. of Human-Computer Studies Vol. 53, No. 5, pp 789-807.

[8]. Risden, K., Czerwinski, M.P., Munzner, T., Cook, D., (2000 “An initial examination of ease of use

for 2D and 3D information visualizations of web content”, Int. J. of Human-Computer Studies 53, pp

695-714.

[9]. Katifori, A. Halatsis, C. Lepouras, G. Vassilakis. C, Giannopoulou, E., (2007) “Ontology

Visualization Methods -A Survey”, ACM Computing Surveys, Vol. 39, No.4, Article 10.

[10]. Storey, M. Lintern, R. Ernst, N. Perrin, D., (2004), “Visualization and Protégé”, http://protege .

stanford.edul conference/20041 abstracts/S torey. pdf.

[11]. Horridge, M., “OWL Viz”, (2010), http://code.google.com/p/co-ode-owlplugins/ wiki/OWL Viz.

International Journal of Information Sciences and Techniques (IJIST) Vol.1, No.3, November 2011

22

[12]. Krivov, S. Williams, R. Villa, F., (2007), “GrOWL: A tool for visualization and editing of OWL

ontologies”, Web Semantics: Science, Services and Agents on the World Wide Web , Vol 5, Issue 2,

2007, pp. 54—57.

[13]. Sivakumar, R. Arivoli, P.V., (2011), “Ontology Visualization Protégé Tools – A Review”,

International Journal of Advanced Information Technology (IJAIT),Vol. 1, No. 4.

[14]. Storey, M.A., Mussen, M., Silva, J., Best, C., Ernst, N., Fergerson, R., Noy, N., (2001), “Jambalaya:

Interactive visualization to enhance ontology authoring and knowledge acquisition in Protégé”,

Workshop on Interactive Tools for Knowledge Capture, K-CAP-2001, Victoria, BC, Canada,

http://www.thechiselgroup.org/jambalaya.

[15]. Alani, H.,(2003), “TGVizTab: An Ontology Visualisation Extension for Protégé”, Proceedings of

Knowledge Capture (K-Cap'03), Workshop on Visualization Information in Knowledge Engineering,

Sanibel Island, Florida, USA.

[16]. Sintek, M., (2003) “Ontoviz tab: Visualizing Protégé ontologies”,

http://protege.stanford.edu/plugins/ontoviz/ontoviz.html.

[17]. Heer, J.. Card, S.K. Landay, J.A, (2005) “Prefuse: a toolkit for interactive information

visualization”, In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

CHI ’05, ACMPress, Portland, OR, USA/New York, NY, USA, pp. 421–430.

Authors

R. Sivakumar received his M.Phil degree (1996) in Computer Science from Regional Engineering

College, India and Ph.D degree (2005) in Computer Science from Bharathidasan University, India. He

has published a number of articles both in national level and international level journals. He has also

completed a minor research project on Bioinformatics and currently working on developing visualization

tools for health informatics. His areas of interest are Data mining, HCI, Ontology and Information

Systems.

P.V. Arivoli received his M.Phil degree (2008) in Computer Science from Bharathidasan University,

India. He is currently working as a research project fellow in “Development of Visualization Methods to

Integrate Patient Records for the domain of Acquired Immune Deficiency Syndrome (AIDS)” at

A.V.V.M. Sri Pushpam College, Bharathidasan University, India. His areas of interests are HCI and

Ontology.

