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ABSTRACT 

 
This paper derives new results for the global chaos synchronization of identical hyperchaotic Qi systems 

(2008), identical hyperchaotic Jha systems (2007) and non-identical hyperchaotic Qi and Jha  systems. 

Active nonlinear control is the method adopted to achieve the complete synchronization of the identical and 

different hyperchaotic Qi and Jha systems. Our stability results derived in this paper are established using 

Lyapunov stability theory. Numerical simulations are shown to validate and illustrate the effectiveness of 

the synchronization results derived in this paper. 
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1. INTRODUCTION 

 
Chaotic systems are nonlinear dynamical systems that are characterized by the butterfly effect [1], 

viz. high sensitivity to small changes in the initial conditions of the systems.  Chaos phenomenon 

widely studied in the last two decades by various researchers [1-23]. Chaos theory has been 

applied in many scientific and engineering fields such as Computer Science, Biology, Ecology, 

Economics, Secure Communications, Image Processing and Robotics. 

 

Hyperchaotic system is usually defined as a chaotic system with more than one positive 

Lyapunov exponent. The first hyperchaotic system was discovered by O.E. Rössler ([2], 1979). 

Since hyperchaotic system has the characteristics of high capacity, high security and high 

efficiency, it has the potential of broad applications in nonlinear circuits, secure communications, 

lasers, neural networks, biological systems and so on. Thus, the studies on hyperchaotic systems, 

viz. control, synchronization and circuit implementation are very challenging problems in the 

chaos literature [3].  

 

Synchronization of chaotic systems is a phenomenon that may occur when two or more chaotic 

oscillators are coupled or when a chaotic oscillator drives another chaotic oscillator.  

 

In 1990, Pecora and Carroll [4] introduced a method to synchronize two identical chaotic systems 

and showed that it was possible for some chaotic systems to be completely synchronized. From 

then on, chaos synchronization has been widely explored in a variety of fields including physical 

[5], chemical [6], ecological [7] systems, secure communications [8-10], etc. 



International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.3, May 2012 

90 

 

 

Since the seminal work by Pecora and Carroll [4], a variety of impressive approaches have been 

proposed for the synchronization of chaotic systems such as OGY method [11], active control 

method [12-15], adaptive control method [16-20], backstepping method [21-22], sampled-data 

feedback synchronization method [23], time-delay feedback method [24], sliding mode control 

method [25-27], etc.  

 

In this paper, new results have been derived for the global chaos synchronization for identical and 

different hyperchaotic Qi and Jha systems using active nonlinear control. Explicitly, using active 

nonlinear control and Lyapunov stability theory, we achieve global chaos synchronization for 

identical hyperchaotic Qi systems ([28], 2008), identical hyperchaotic Jha systems ([29], 2007) 

and non-identical hyperchaotic Qi and Jha systems. 

 

This paper has been organized as follows. In Section 2, we present the problem statement of the 

chaos synchronization problem and detail our methodology. In Section 3, we give a description of 

the hyperchaotic Qi and Jha systems. In Section 4, we discuss the global chaos synchronization of 

two identical hyperchaotic Qi systems. In Section 5, we discuss the global chaos synchronization 

of two identical hyperchaotic Jha systems. In Section 6, we discuss the global chaos 

synchronization of non-identical hyperchaotic Qi and Jha systems. In Section 7, we conclude with 

a summary of the main results of this paper. 

 

2. PROBLEM STATEMENT AND OUR METHODOLOGY 

 
Consider the chaotic system described by the dynamics 

( )x Ax f x= +&          (1) 

where 
n

x ∈R  is the state of the system, A is the n n×  matrix of the system parameters and 

: n n
f →R R is the nonlinear part of the system.  

We consider the system (1) as the master system. 

As the slave system, we consider the following chaotic system described by the dynamics 

  ( )y By g y u= + +&           (2) 

where 
n

y ∈R is the state of the system, B is the n n× matrix of the system parameters, 

: n n
g →R R is the nonlinear part of the system and 

n
u ∈R is the active controller of the slave 

system. 

If A B= and ,f g= then x  and y are the states of two identical chaotic systems.  

If A B≠ or ,f g≠ then x and y are the states of two different chaotic systems.  

In the nonlinear feedback control approach, we design a feedback controller ,u which 

synchronizes the states of the master system (1) and the slave system (2) for all initial conditions 

(0), (0) .n
x z ∈R  

If we define the synchronization error as 
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  ,e y x= −           (3) 

then the synchronization error dynamics is obtained as 

           ( ) ( )e By Ax g y f x u= − + − +&               (4) 

Thus, the global synchronization problem is essentially to find a feedback controller u so as to 

stabilize the error dynamics (4) for all initial conditions (0) .n
e ∈R  

Hence, we find a feedback controller u so that 

   lim ( ) 0
t

e t
→∞

=  for all (0)e ∈R n
                          (5) 

We take as a candidate Lyapunov function 

            ( ) ,T
V e e Pe=                                                      (6) 

where P is a positive definite matrix.  

Note that : n
V →R R is a positive definite function by construction.  

It has been assumed that the parameters of the master and slave system are known and that the 

states of both systems (1) and (2) are measurable. 

If we find a feedback controller u so that 

           ( ) ,T
V e e Qe= −&                                                    (7) 

where Q is a positive definite matrix, then : n
V →& R R  is a negative definite function.  

Thus, by Lyapunov stability theory [30], it follows that the error dynamics (4) is globally 

exponentially stable. Hence, it is immediate that the states of the master system (1) and the slave 

system (2) will be globally and exponentially synchronized. 

 

3. SYSTEMS DESCRIPTION 

 
In this section, we describe the hyperchaotic systems studied in this paper, viz. hyperchaotic Qi 

system ([28], 2008) and hyperchaotic Jha system ([29], 2007). 

 

The hyperchaotic Qi system ([28], 2008) is described by the dynamics 

 

1 2 1 2 3

2 1 2 1 3

3 3 4 1 2

4 4 3 1 2

( )

( )

x a x x x x

x b x x x x

x cx x x x

x dx fx x x

ε

= − +

= + −

= − − +

= − + +

&

&

&

&

          (8) 
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where 1 2 3 4, , ,x x x x are the states and  , , , , ,a b c d fε are constant, positive parameters of the 

system. 

The Qi system (8) exhibits a hyperchaotic attractor (see Figure 1), when the parameter values are 

taken as  

50,a =   24,b =   13,c =   8,d =   33,ε =   30f =       (9) 

 

Figure 1. The Phase Portrait of the Hyperchaotic Qi System 

 

The hyperchaotic Jha system ([29], 2007) is described by the dynamics  

 

1 2 1 4

2 1 3 1 2

3 1 2 3

4 1 3 4

( )x x x x

x x x x x

x x x x

x x x x

α

β

γ

δ

= − +

= − + −

= −

= − +

&

&

&

&

         (10) 

where 1 2 3 4, , ,x x x x are the states and  , , ,α β γ δ are constant, positive parameters of the system. 

The Jha dynamics (10) exhibits a hyperchaotic attractor (see Figure 2), when the parameter values 

are taken as  

10,α =   28,β =   8 / 3,γ =    1.3δ =       (11) 
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Figure 2. The Phase Portrait of the Hyperchaotic Jha System 

 

4. GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC QI 

SYSTEMS BY ACTIVE CONTROL 

 
4.1 Theoretical Results  

 
In this section, we apply the active nonlinear control method for the synchronization of two 

identical hyperchaotic Qi systems (2008). 

 

Thus, the master system is described by the hyperchaotic Qi dynamics 

         

1 2 1 2 3

2 1 2 1 3

3 3 4 1 2

4 4 3 1 2

( )

( )

x a x x x x

x b x x x x

x cx x x x

x dx fx x x

ε

= − +

= + −

= − − +

= − + +

&

&

&

&

                         (12) 
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where 1 2 3 4, , ,x x x x are the state variables and , , , , ,a b c d fε are positive parameters of the system. 

The slave system is described by the controlled hyperchaotic Qi dynamics 

   

1 2 1 2 3 1

2 1 2 1 3 2

3 3 4 1 2 3

4 4 3 1 2 4

( )

( )

y a y y y y u

y b y y y y u

y cy y y y u

y dy fy y y u

ε

= − + +

= + − +

= − − + +

= − + + +

&

&

&

&

             (13) 

where 1 2 3 4, , ,y y y y are the state variables and 1 2 3 4, , ,u u u u are the active nonlinear controls to be 

designed. 

The synchronization error e is defined by 

  ,   ( 1, 2,3, 4)i i ie y x i= − =           (14) 

The error dynamics is obtained as 

  

1 2 1 2 3 2 3 1

2 1 2 1 3 1 3 2

3 3 4 1 2 1 2 3

4 4 3 1 2 1 2 4

( )

( )

e a e e y y x x u

e b e e y y x x u

e ce e y y x x u

e de fe y y x x u

ε

= − + − +

= + − + +

= − − + − +

= − + + − +

&

&

&

&

            (15) 

We choose the active nonlinear controller as 

    

1 2 1 2 3 2 3 1 1

2 1 2 1 3 1 3 2 2

3 3 4 1 2 1 2 3 3

4 4 3 1 2 1 2 4 4

( )

( )

u a e e y y x x k e

u b e e y y x x k e

u ce e y y x x k e

u de fe y y x x k e

ε

= − − − + −

= − + + − −

= + − + −

= − − + −

           (16) 

where the gains ,  ( 1, 2,3, 4)ik i = are positive constants. 

Substituting (16) into (15), the error dynamics simplifies to 

       

1 1

2 2

3 3

4 4

1

2

3

4

e k e

e k e

e k e

e k e

= −

= −

= −

= −

&

&

&

&

                                                               (17) 

Next, we prove the following result. 

Theorem 4.1. The identical hyperchaotic Qi systems (12) and (13) are globally and exponentially 

synchronized for all initial conditions with the active nonlinear controller defined by (16).    
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Proof. We consider the quadratic Lyapunov function defined by 

  ( )2 2 2 2

1 2 3 4
( )

1 1
,

2 2

T
V e e e e e e e= = + + +                        (18) 

which is a positive definite function on 
4.R  

Differentiating (18) along the trajectories of (17), we get 

   
2 2 2 2

1 1 2 2 3 3 4 4( )V e k e k e k e k e= − − − −&                                       (19) 

which is a negative definite function on 
4.R  

Thus, by Lyapunov stability theory [30], the error dynamics (17) is globally exponentially stable. 

Hence, the identical hyperchaotic Qi systems (12) and (13) are globally and exponentially 

synchronized for all initial conditions with the nonlinear controller defined by (16).    

This completes the proof.   � 

 

4.2 Numerical Results  

 

For simulations, the fourth-order Runge-Kutta method with time-step 
8

10h
−

= is deployed  

to solve the systems (12) and (13) with the active nonlinear controller (16).  

The feedback gains used in the equation (16) are chosen as  

1 2 3 45,   5,   5,   5k k k k= = = =  

The parameters of the hyperchaotic Qi systems are chosen as 

        50,a =   24,b =   13,c =   8,d =   33,ε =   30f =    

The initial conditions of the master system (12) are chosen as 

       1 2 3 4(0) 10,   (0) 15,   (0) 20,   (0) 25x x x x= = = =  

The initial conditions of the slave system (13) are chosen as 

       1 2 3 4(0) 30,   (0) 25,   (0) 10,   (0) 8y y y y= = = =  

Figure 3 shows the complete synchronization of the identical hyperchaotic Qi systems.  

Figure 4 shows the time-history of the synchronization errors 1 2 3 4, , , .e e e e  
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Figure 3. Complete Synchronization of the Identical Hyperchaotic Qi Systems 

 

Figure 4. Time-History of the Synchronization Error 
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5. GLOBAL CHAOS SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC JHA 

SYSTEMS BY ACTIVE CONTROL 

 
5.1 Theoretical Results  

 
In this section, we apply the active nonlinear control method for the synchronization of two 

identical hyperchaotic Jha systems (2007). Thus, the master system is described by the 

hyperchaotic Jha dynamics 

 

     

1 2 1 4

2 1 3 1 2

3 1 2 3

4 1 3 4

( )x x x x

x x x x x

x x x x

x x x x

α

β

γ

δ

= − +

= − + −

= −

= − +

&

&

&

&

                          (20) 

where 1 2 3 4, , ,x x x x are the state variables and , , ,δα β γ are positive parameters of the system. 

The slave system is described by the controlled hyperchaotic Jha dynamics 

   

1 2 1 4 1

2 1 3 1 2 2

3 1 2 3 3

4 1 3 4 4

( )y y y y u

y y y y y u

y y y y u

y y y y u

α

β

γ

δ

= − + +

= − + − +

= − +

= − + +

&

&

&

&

             (21) 

where 
1 2 3 4, , ,y y y y are the state variables and 

1 2 3 4, , ,u u u u are the active nonlinear controls to be 

designed. 

The synchronization error e is defined by 

  ,   ( 1, 2,3,4)i i ie y x i= − =           (22) 

The error dynamics is obtained as 

  

1 2 1 4 1

2 1 2 1 3 1 3 2

3 3 1 2 1 2 3

4 4 1 3 1 3 4

( )e e e e u

e e e y y x x u

e e y y x x u

e e y y x x u

α

β

γ

δ

= − + +

= − − + +

= − + − +

= − + +

&

&

&

&

            (23) 

We choose the active nonlinear controller as 

    

1 2 1 4 1 1

2 1 2 1 3 1 3 2 2

3 3 1 2 1 2 3 3

4 4 1 3 1 3 4 4

( )u e e e k e

u e e y y x x k e

u e y y x x k e

u e y y x x k e

α

β

γ

δ

= − − − −

= − + + − −

= − + −

= − + − −

            (24) 
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where the gains ,  ( 1, 2,3,4)ik i = are positive constants. 

Substituting (24) into (23), the error dynamics simplifies to 

       

1 1

2 2

3 3

4 4

1

2

3

4

e k e

e k e

e k e

e k e

= −

= −

= −

= −

&

&

&

&

                                                               (25) 

Next, we prove the following result. 

 

Theorem 5.1. The identical hyperchaotic Jha systems (20) and (21) are globally and 

exponentially synchronized for all initial conditions with the active nonlinear controller defined 

by (24).    

 

Proof. We consider the quadratic Lyapunov function defined by 

  ( )2 2 2 2

1 2 3 4
( )

1 1
,

2 2

T
V e e e e e e e= = + + +                        (26) 

which is a positive definite function on 
4.R  

Differentiating (26) along the trajectories of (25), we get 

   
2 2 2 2

1 1 2 2 3 3 4 4( )V e k e k e k e k e= − − − −&                                       (27) 

which is a negative definite function on 
4.R  

Thus, by Lyapunov stability theory [30], the error dynamics (25) is globally exponentially stable. 

Hence, the identical hyperchaotic Jha systems (20) and (21) are globally and exponentially 

synchronized for all initial conditions with the nonlinear controller defined by (24).    

This completes the proof.   � 

 

5.2 Numerical Results 

  

For simulations, the fourth-order Runge-Kutta method with time-step 
8

10h
−

= is deployed 

to solve the systems (20) and (21) with the active nonlinear controller (24).  

The feedback gains used in the equation (24) are chosen as  

1 2 3 45,   5,   5,   5k k k k= = = =  

The parameters of the hyperchaotic Jha systems are chosen as 

        10,α =   28,β =   8 / 3,γ =    1.3δ =   
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The initial conditions of the master system (20) are chosen as 

       1 2 3 4(0) 8,   (0) 20,   (0) 11,   (0) 4x x x x= = = =  

The initial conditions of the slave system (21) are chosen as 

        
1 2 3 4(0) 16,   (0) 14,  (0) 31,   (0) 42y y y y= = = =  

Figure 5 shows the complete synchronization of the identical hyperchaotic Jha systems.  

Figure 6 shows the time-history of the synchronization errors 1 2 3 4, , , .e e e e  

 

Figure 5. Complete Synchronization of the Identical Hyperchaotic Jha Systems 
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Figure 6. Time-History of the Synchronization Error 

 

6. GLOBAL CHAOS SYNCHRONIZATION OF NON-IDENTICAL 

HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS BY 

ACTIVE CONTROL 

 
6.1 Theoretical Results  

 
In this section, we apply the active nonlinear control method for the synchronization of the non-

identical hyperchaotic Qi system (2008) and hyperchaotic Jha system (2007). 

 Thus, the master system is described by the hyperchaotic Qi dynamics 

     

1 2 1 2 3

2 1 2 1 3

3 3 4 1 2

4 4 3 1 2

( )

( )

x a x x x x

x b x x x x

x cx x x x

x dx fx x x

ε

= − +

= + −

= − − +

= − + +

&

&

&

&

                          (28) 

where 1 2 3 4, , ,x x x x are the state variables and , , , , ,a b c d fε are positive parameters of the system. 
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The slave system is described by the controlled hyperchaotic Jha dynamics 

   

1 2 1 4 1

2 1 3 1 2 2

3 1 2 3 3

4 1 3 4 4

( )y y y y u

y y y y y u

y y y y u

y y y y u

α

β

γ

δ

= − + +

= − + − +

= − +

= − + +

&

&

&

&

             (29) 

where 1 2 3 4, , ,y y y y are the state variables, , , ,δα β γ are positive parameters and 1 2 3 4, , ,u u u u are 

the active nonlinear controls to be designed. 

The synchronization error e is defined by 

  ,   ( 1, 2,3,4)i i ie y x i= − =           (30) 

The error dynamics is obtained as 

  

1 2 1 4 2 1 2 3 1

2 1 2 1 2 1 3 1 3 2

3 3 3 4 1 2 1 2 3

4 4 4 3 1 3 1 2 4

( ) ( )

( )

e y y y a x x x x u

e y y b x x y y x x u

e y cx x y y x x u

e y dx fx y y x x u

α

β

γ ε

δ

= − + − − − +

= − − + − + +

= − + + + − +

= + − − − +

&

&

&

&

          (31) 

We choose the active nonlinear controller as 

    

1 2 1 4 2 1 2 3 1 1

2 1 2 1 2 1 3 1 3 2 2

3 3 3 4 1 2 1 2 3 3

4 4 4 3 1 3 1 2 4 4

( ) ( )

( )

u y y y a x x x x k e

u y y b x x y y x x k e

u y cx x y y x x k e

u y dx fx y y x x k e

α

β

γ ε

δ

= − − − + − + −

= − + + + + − −

= − − − + −

= − − + + + −

            (32) 

where the gains ,  ( 1, 2,3,4)ik i = are positive constants. 

Substituting (32) into (31), the error dynamics simplifies to 

       

1 1

2 2

3 3

4 4

1

2

3

4

e k e

e k e

e k e

e k e

= −

= −

= −

= −

&

&

&

&

                                                               (33) 

Next, we prove the following result. 

 

Theorem 6.1. The non-identical hyperchaotic Qi system (28) and hyperchaotic Jha system (29) 

are globally and exponentially synchronized for all initial conditions with the active nonlinear 

controller defined by (32).    

 

Proof. We consider the quadratic Lyapunov function defined by 
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  ( )2 2 2 2

1 2 3 4( )
1 1

,
2 2

T
V e e e e e e e= = + + +                        (34) 

which is a positive definite function on 
4.R  

Differentiating (34) along the trajectories of (33), we get 

   
2 2 2 2

1 1 2 2 3 3 4 4( )V e k e k e k e k e= − − − −&                                       (35) 

which is a negative definite function on 
4.R  

Thus, by Lyapunov stability theory [30], the error dynamics (33) is globally exponentially stable. 

Hence, the non- identical hyperchaotic Qi system (28) and hyperchaotic Jha system (29) are 

globally and exponentially synchronized for all initial conditions with the active nonlinear 

controller defined by (32).   This completes the proof.   � 

 

6.2 Numerical Results  

 

For simulations, the fourth-order Runge-Kutta method with time-step 
8

10h
−

= is deployed 

to solve the systems (28) and (29) with the active nonlinear controller (32).  

The feedback gains used in the equation (32) are chosen as  

1 2 3 45,   5,   5,   5k k k k= = = =  

The parameters of the hyperchaotic Qi systems are chosen as 

        50,a =   24,b =   13,c =   8,d =   33,ε =   30f =    

The parameters of the hyperchaotic Jha systems are chosen as 

        10,α =   28,β =   8 / 3,γ =    1.3δ =   

The initial conditions of the master system (28) are chosen as 

       1 2 3 4(0) 28,   (0) 10,   (0) 8,   (0) 12x x x x= = = =  

The initial conditions of the slave system (29) are chosen as 

        1 2 3 4(0) 6,   (0) 24,  (0) 7,   (0) 43y y y y= = = − =  

Figure 7 shows the complete synchronization of the hyperchaotic Qi and hyperchaotic Jha 

systems.  

Figure 8 shows the time-history of the synchronization errors 1 2 3 4, , , .e e e e  
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Figure 7. Complete Synchronization of Hyperchaotic Qi and Hyperchaotic Jha Systems 

 

Figure 8. Time-History of the Synchronization Error 
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7. CONCLUSIONS 

 
In this paper, we have used active nonlinear control method and Lyapunov stability theory to 

achieve global chaos synchronization for the identical hyperchaotic Qi systems (2008), identical 

hyperchaotic Jha systems (2007) and non-identical hyperchaotic Qi and hyperchaotic Jha 

systems. Numerical simulations have been shown to illustrate the effectiveness of the complete 

synchronization schemes derived in this paper for the hyperchaotic Qi and hyperchaotic Jha 

systems. 
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