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ABSTRACT 
 
An adaptive sliding mode control based on two neural networks is proposed in this paper for Quadrotor 

stabilization. This approach presents solutions to conventional control drawbacks as chattering 

phenomenon and dynamical model imprecision. For that reason two ANN for each quadrotor helicopter 

subsystem are implemented in the control loop, the first one is a Single Hidden Layer network used to 

approximate on line the equivalent control and the second feed-forward Network is used to estimate the 

ideal corrective term. The main purpose behind the use of ANN in the second part of SMC is to minimize 

the chattering phenomena and response time by finding optimal sliding gain and sliding surface slope. The 

learning algorithms of the two ANNs (equivalent and corrective controller) are obtained using the direct 

Lyapunov stability method. The simulation results are given to highlight the performances of the proposed 

control scheme. 
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I. INTRODUCTION 

 
In the last years, unmanned aerial vehicles (UAV) have gained a strong interest. The recent 

advances in low-power embedded processors, miniature sensors and control theory are opening 

new horizons in terms of miniaturization and field of application [1]. The Quadrotor Helicopter is 

considered as one of the most popular UAV platform. The mains reasons for all this attention has 

stemmed from its simple construction and its large payload as compared with the conventional 

helicopter [1]. 

 

The dynamics of the Quadrotor are nonlinear and like the most flying robots, the Quadrotor 

helicopter is characterized by its under actuated nature which can make the difficult to control. 

The Quadrotor has six degrees of freedom and only four control inputs. To solve the Quadrotor 

UAV tracking control problem many techniques have been proposed [2, 3, 4, 5, 6, and 7] where 

the control objective is to tack three desired cartesian positions and a desired yaw angle. 
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Many approaches in the literature that use different control techniques have dealt with control of 

the Quadrotor. Nonlinear Backstepping and sliding mode controls have been proposed in [2], [3]. 

In [4] the H∞ type robust control law was used, in [5] a PID control has been applied. 

 

The drawback of all these techniques is the need for nonlinear dynamics exactly knows. However 

the adaptive control presents a solution to the problems met by the classic schemas. Nevertheless 

this technique is only applicable in two cases: if the model is linear as in [8] or if the unknown 

parameters are assumed to appear linearly with respect to know nonlinear functions [9]. However 

this assumption is not sufficient for many piratical situations; because it is difficult to describe a 

nonlinear plant by know nonlinear functions precisely [9].  

 

Known by their big capacities in approximation, neural networks have been used with success in 

many adaptive control schemas. Several kinds of Neural Networks adaptive schemes have been 

proposed in the literature for Quadrotor’s control [6, 7, 10, 11, 12, and 13]. 

 

Sliding mode control (SMC) is an important robust control approach. This technique provides a 

systematic approach for a large class of systems to maintaining stability problem and consistent 

performance in the face of modelling imprecision.  

 

However this control technique has three drawbacks where two of them are caused by the 

corrective term and the third is imposed by the equivalent term. As is known the main 

disadvantage of SMC is the chattering phenomena, the second one is the choice of the sliding 

gain; the implementation of the switching signal requires the determination of the ideal sliding 

gain that depends on parametric and external disturbances, which is difficult if not impossible. 

The third disadvantage of the SMC is the need to have even partial knowledge of the system 

dynamics. In this context, several methods based on fuzzy logic [14, 15], and Neural Network 

[16] has been proposed. 

 

The present paper propose a new robust adaptive control that does not require any prior 

information on model dynamics based on the use of tow Neural Networks in parallel in the 

control loop to Quadrotor stabilization. The first ANN is a SHL used to compute on line the 

nonlinear equivalent control. To overcome the corrective term drawbacks a second feed-forward 

NN is added to the adaptive control scheme in which its principal objective is to reduce chattering 

phenomena and to approximate the optimal sliding gain and sliding surface slope in order to 

minimize the response time. The design methodology is based on the Lyapunov stability. A 

Quadrotor Helicopter is utilized to perform the control effect of the designed Neural sliding mode 

controller. 

 

This paper is organized as follows. In Section 2, the dynamical model of the Quadrotor will be 

described. In section 3, Problem formulation is presented. In Section 4, adaptive neural network 

control based on sliding mode technique for Quadrotor helicopter control will be developed. 

Section 5, simulation results are given to show the effectiveness and feasibility of the proposed 

scheme. The conclusion is given in section 6. 

 

II. QUADROTOR MODELLING 

 
The Quadrotor is an air vehicle with four thrusters mounted at the ends of a cross. See. Figure.1 
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Figure 1.  Model of conventional Quadrotor. 

 

The front and rear motors (1,3) in conventional Quadrotor rotate in the counterclockwise-

clockwise, and the lateral motors (2,4) rotate in the opposite direction, in order to avoid turning 

the Quadrotor on itself. 

 

Each rotor, provide a vertical force responsible on the lift and the motions of the helicopter. 

Usually it exists three mode of flight according to rotation velocity of the motors. Vertical flight 

ascending (descending) is obtained by the increase (decrease) of the Thrust forces to getting a 

difference from the weight of the Quadrotor. Pitching motion in a Quadrotor is the result of the 

speed difference between front and rear rotors, hence a rotation around the Y axis coupled with a 

translation along the X axis are produced. The same analogy is applied to obtain the roll motion, 

but this time by changing the side motors speed. The yaw motion is obtained while increasing 

(decreasing) speed of motors (1.3) compared with that motors (2.4). Unlike pitch and roll 

motions, yaw rotation is the result of reactive torques produced by the rotation of the rotors. 

By using the formalism of Newton-Euler [2, 3, 4, 5, 6, and 9] the dynamic model of a Quadrotor 

can be expressed as: 
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Where : m: Quadrotor mass, kp : Thrust factor, kd : drag factor, ωi : angular rotor speed, J=diag(Ix, 

Iy, Iz): inertia matrix, Kft=diag(kftx, kfty, kftz), drag translation matrix, Kfr=diag(kfrx, kfry, kfrz): friction 

aerodynamic coefficients, [ ]Tzyx=ξ  : position vector, [ ]Tψθϕη =  represents the angles of 

roll, pitch and yaw, dx,y,z,φ,θ,ψ, disturbance and ( )∑
=

+−=Ω
4

1

1
1

i

i
i

r ω . 

The control inputs according to the angular velocities of the four rotors are given by: 
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2.1. Virtual control 

 
To ensure that every Quadrotor output follows a specified trajectory, we will introduce those 

virtual control input [13]: 
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The physical interpretation of theses virtual control, means that the control of translation motion 

depends on three common inputs are: θ, φ and U1(t). This requires that the rolling and pitching 

motions must take a desired trajectory to guarantee the control task of translation motion. Using 

equation (3) the desired trajectories in rolling and pitching are defined as follow [13]:  
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with φd, θd and ψd are the desired trajectories in roll, pitch and yaw respectively. 

 

III. PROBLEM FORMULATION 

 
After the implantation of the virtual control defined in equation (3), the quadrotor helicopter 

dynamic model is the nonlinear time-varying system described by two differentials equations 

with the following structure for each one: 

 

 ( ) ( )UXGXFY +=&&  (5) 

where: [ ]TpyyyyyX &L&& ,,2211=  is the output which is assumed available for measurement, 

[ ]TpuuU L1= is the input vector, [ ]TpyyY L1= is the output vector and F(X), G(X) are 

smooth nonlinear functions. 
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Assumption.1: The desired output trajectory )(tYd  and its first derivative are smooth and 

bounded. 

Assumption.2: The gain G(X) is bounded, positive definite and slowly time varying. 

Let’s define the tracking error as:  

 ( ) ( ) ( )tYtYte d −=  (6) 

and the filtered tracking errors by [9]: 

 ( )eteS λ+= &  (7) 

Where : [ ]TpssS L1=  and ( ) 0>ℜ∈ × pptλ  is a diagonal matrix. 

From (16), we deduce that the convergence of S to zero implies convergence of the tracking error 

and its derivative to zero [9]. So, the objective of control is summarized in the synthesis of a 

control law that allows the convergence to zero of the filtered error. 

The filtered error first time derivative is giving by: 

 ( ) ( )UXGXFvS −−=&  (8) 

Where: 

 ( ) ( )etetYv d λλ &&&& ++=  (9) 

The ideal sliding mode control (SMC) who guaranteed the closed loop system performances may 

be given by: 

 ∗∗∗ += coreq UUU  (10) 

� ∗
eqU  : is the ideal equivalent control,  

 ( )FvGU eq −= −∗ 1  (11) 

� ∗
corU  : is the ideal corrective control: 

 ( )∗∗∗ = SsignKU cor  (12) 

Where : ∗
K , present the sliding gain optimal value and ∗

S  is the sliding surface with ideal slope 

( )t∗λ . 

Substituting (10), (11) and (12) in (8), filtered error dynamics becomes: 

 ( )∗∗−= SsignKGS&  (13) 

implying that S→0 and therefore 0, →ee &  pirj i :1,1:1 =−=  [9]. 
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However, the implementation of the control law defined in equation (10) is impossible for the 

following reasons:  

 

(i) The dynamical mode is completely unknown, 

(ii) The discontinuous term will introduce high frequency signals that may excite the 

unmodelled dynamics and deterioration of the controlled system,  

(iii) The optimal value of the gain is unknown because it depends on parametric and 

external disturbances. 

 

So our goal is to use artificial neural networks in order to solve problems encountered by the 

classical sliding mode technique 

 

IV. DESIGN OF ADAPTIVE CONTROL 

 
4.1. Equivalent control 

 
In this section, the approximation of the corresponding command defined in (10) will be 

performed by SHL Networks (Figure.2). According to universal approximation theorem, the 

neural network of the type SHL can estimate any nonlinear, continuous, unknown function [12]. 

So that that ideal estimation of the equivalent controller presented in (11) by a SHL is giving by 

the following expression: 

 

 ( ) ( ) εχσ +=−= −∗ TT
eq VWFvGU

1  (14) 
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Figure 2:  SHL NN used in the control schemes. 

 

where : ne input neurons number, nc hidden neurons number, ns=3 output neurons number, 
neℜ∈χ  input vector and σ() is sigmoid activation function, nsnc

W
×ℜ∈  and ncne

V
×ℜ∈  are the 

ideal weight and ε is the reconstruction error. 

 

The optimal weights are unknown, it is necessary to estimate them by an adaptation mechanism 

so that the output feedback control law can be realized. 

 

The matrixes Ŵ  and V̂  are the estimate of W and V respectively. Thus, the adaptive control 

approximating the ideal SHLNN output defined in (14) is given by : 
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( )χσ TT

eq VWU ˆˆ=
 (15) 

Assumption.3: mF
WW ≤ , mF

VV ≤ . with : Wm et Vm are unknown positive constants. 

In this case, the equivalent control identification error is giving by : 

 wVWWUUU
TTT

eqeqeq +′+=−= ∗ χσσ
~

ˆˆˆ
~~

 (16) 

Where : WWW ˆ~
−= , VVV ˆ~

−=  are parameter estimation errors and w presents the estimation 

errors: 

 ( )2~~
ˆ

~
χχσε TTTT

VOWVWw +′+=  (17) 

Assumption.4 : ww ≤ . with : w  is an unknown positive constant. 

To achieve the goal of controlling the weights adaptation laws based on e-modification technique 

are defined by: 
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with: FW>0, FV>0 are the adaptive gains and κ is a positive constant. 

4.2. Corrective control 

As we already note, the corrective control in SMC is characterized by the charting phenomena 

provide by the discontinuous term, for that reason we will replace it by a continuous function T(.) 

giving by: 

 ( )
z

z

e

e
zT

2

2

1

1
−

−

+

−
=  (19) 

So the ideal expression of corrective term will be: 

 ( )∗∗∗ = STKUcor  (20) 

A second neural network is added to the control scheme. The purpose here is estimating the ideal 

corrective term including the ideal sliding gain and surface. The net used is shown on Figure. 3. 
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Figure. 3. The network used to estimate corrective control. 

 

The ideal output of such network is defined by: 

 

 ( ) piTku
ig

e
i

T
iiicor :1=+Γ=∗ εχ  (21) 

Where : the gain ki and [ ]Tiii 21 λλ=Γ  present the ideal output layer and hidden layer weight 

respectively, [ ]T

ii

e

i ee &=χ  is the input vector, 
igε  is the reconstruction error and T(.) is the 

activation function defined in equation (20). 

The weights ki and [ ]Tiii 21 λλ=Γ  are unknown, so it is judicious to find a way for adapting 

them. So the real estimate of the corrective term by the ANN presented in Figure.3 has the 

following structure: 

 ( ) piTku
e
i

T
iiicor :1ˆˆ =Γ= χ  (22) 

The corrective term estimation error is given by: 

 piwTkTku
ig

e
i

T
iiiiiicor :1

~ˆˆˆ~~ =+Γ′+= χ  (23) 

Where : ik̂ , 
iΓ̂  are the estimate of ki, iΓ  respectively, and iii kkk ˆ~

−= , iii Γ−Γ=Γ ˆ~
 are the 

parameter errors. The term 
igw  present the approximation error given by: 
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Assumption 5 : 
ii gg ww ≤ , 

igw  is an unknown positive constant and 
ii mFimi kk Γ≤Γ≤ , . 

with : miΓ and kmi are unknown positive constants. 

The proposed adaptation laws for adjusting weights are giving by the following equations: 
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Where : 0>= T
kk ii

FF , 0>= ΓΓ
T

ii
FF , 0>Γi

κ . 
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The vector iΓ  is selected as follows: 
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This expression implies can rotate in the phase space the surface rotation according to the 

tracking error in order to reduce the response time and filtered error, where:  

� The slope is small, if the tracking error is large as in Figure.4.a,  

� The slope is large, if the tracking error is small as in Figure.4.b. 
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Figure 4: sliding surface rotation. 

4.3. Proof 

Consider the Lyapunov function defined by : 
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The first time derivative of (27) is :  
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The filtered error dynamic in equation (8), can be written as : 

 ( )coradcor UUUGS
~~

−−−= ∗&  (29) 

Where 

 [ ]Tpcorcorcor uuU
∗∗∗ = L1  (30) 

The implementation of (18), (25), (29) in (28), we will have: 
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Suppose that: ∗
cor

T
US  is sufficiently large to compensate the other positives term in equation 

(31). So the Lyapunov first time derivative will be: 

 0≤L&  (32) 

Which guarantee stability of closed-loop system [9]. 

V. SIMULATION RESULTS 

In the simulation two SHL (translation And rotation motion) are implemented in order to estimate 

the equivalent controller, each network consists of three neurons in output layer, three hidden 

neurons and five neurons in the input layer where the vector: [ ]Tiidididii eeyyy &&&&=χ . 

Figure.5 shows the performance of this approach in the presence of a sinusoidal external 

perturbation [11] giving in equation (33) and a parametric variation of order 50%from time t = 

10sec. 
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The simulation parameters used are: 
 

Table 1.  Quadrotor Parameters  

 

Symbol Value Symbol Value 

m 

l 

kd 

kp 

Jr 

Ix 

Iy 

0.486 (Kg) 

0.25 (m) 

3.23e-7 (NMs
2
) 
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2
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2
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3.82e-3 (KgM
2
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7.65e-3 (KgM
2
) 

9.81 (Ms2) 

5.56e-4 (Ns/M) 

6.35e-4 (Ns/M) 

5.56e-4 (Ns/r) 

6.35e-4 (Ns/r) 

 

Table 2:  Controller Parameters. 

 

Symbol Value Symbol Value 

FWξ,η 

FV ξ,η 
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Diag(10,0) 
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Figure.5: simulation result 
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According to simulation result, the proposed approach appears sufficient, where the actual 

trajectory converges to the desired trajectory, even when the parametric and external disturbances 

are present. 

 

The use of the ANN presented on Figure. 3 to estimate the corrective term has permitted to 

eliminated the chattering phenomena as well as allow us to avoid the adjustment of sliding 

gain without any performance degradation. 

 

VI. CONCLUSION 

 
A neural network adaptive control based on sliding mode technique for a class of unknown 

nonlinear MIMO system is proposed in this paper. The scheme is realized by two parallel ANN 

where one of them is a SHL NN responsible on the equivalent controller accounting. The second 

one is a feed-forward NN used in order to solve the corrective term problems as chattering 

phenomena and the ideal value of sliding gain. The proposed method does not require any prior 

knowledge about dynamic model or/ and parametric and external disturbances. A stability study 

is performed by the direct method of Lyapunov. The performances of the proposed control 

scheme were validated by simulation of a control Quadrotor. 
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