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ABSTRACT 
 

Cryptography is the study of mathematical techniques related to aspects of information security such as 

confidentiality, data integrity, entity authentication, and data origin authentication. Most cryptographic 

algorithms function more efficiently when implemented in hardware than in software running on single 

processor. However, systems that use hardware implementations have significant drawbacks: they are 

unable to respond to flaws discovered in the implemented algorithm or to changes in standards. As an 

alternative, it is possible to implement cryptographic algorithms in software running on multiple 

processors. However, most of the cryptographic algorithms like DES (Data Encryption Standard) or 3DES 

have some drawbacks when implemented in software: DES is no longer secure as computers get more 

powerful while 3DES is relatively sluggish in software. AES (Advanced Encryption Standard), which is 

rapidly being adopted worldwide, provides a better combination of performance and enhanced network 

security than DES or 3DES by being computationally more efficient than these earlier standards. 

Furthermore, by supporting large key sizes of 128, 192, and 256 bits, AES offers higher security against 

brute-force attacks. 

 

In this paper, AES has been implemented with single processor. Then the result has been compared with 

parallel implementations of AES with 2 varying different parameters such as key size, number of rounds 

and extended key size, and show how parallel implementation of the AES offers better performance yet 

flexible enough for cryptographic algorithms. 
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1. INTRODUCTION  
 

Cryptography is generally understood to be the study of the principles and techniques by which 

information is converted into an encrypted version that is difficult (ideally impossible) for any 

unauthorized person to convert to the original information, while still allowing the intended 

reader to do so. In fact, cryptography covers rather more than merely encryption and decryption. 

It is, in practice, a specialized branch of information theory with substantial additions from other 

branches of mathematics. Cryptography is probably the most important aspect of communications 

security [1] and is becoming increasingly important as a basic building block for computer 

security.  

 

The increased use of computer and communications systems by the industry has increased the 

risk of theft of proprietary information. Although these threats may require a variety of 

countermeasures, cryptography is a primary method of protecting valuable electronic information. 

In data and telecommunications, cryptography is necessary when communicating over any 

unsecured medium, which includes just about any network, particularly the Internet. Within the 

context of any application-to-application communication, there are some specific security 

requirements, including the following: 

 

Authentication: The process of proving one's identity. 

Confidentiality: Ensuring that no one can read the message except the intended receiver. 

Integrity: Assuring the receiver that the received message has not been altered in any way from 

the original. 

Non-repudiation: A mechanism to prove that the sender really sent this message.  

There are, in general, two types of cryptographic schemes typically used to accomplish these 

goals: secret key (or symmetric or conventional) cryptography and public-key (or asymmetric) 

cryptography.  

In symmetric-key cryptography, an algorithm is used to scramble the message using a secret key 

in such a way that it becomes unusable to all except the ones that have access to that secret key. 

The most widely known symmetric cryptographic algorithm is DES, developed by IBM in the 

seventies. It uses a key of 56 bits and operates on chunks of 64 bits at a time. In public key 

cryptography [4], algorithms use two different keys: a private and a public one. A message 

encrypted with a private key can be decrypted with its public key (and vice versa). The owner of 

the key pair holds the private key, and may distribute the public key to anyone. Someone who 

wants to send a secret message uses the public key of the intended receiver to encrypt it. Only the 

receiver holds the private key and can decrypt it. 
 

 

 

 

 

 

 

 

 

 

      

   Figure 1: Two types of cryptography 
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1.1 Data Encryption Standard (DES)  
 

The most common symmetric-key cryptography scheme used today is the Data Encryption 

Standard (DES) [2], designed by IBM in the 1970s and adopted by the National Bureau of 

Standards (NBS) [now the National Institute for Standards and Technology (NIST)] in 1977 [2] 

for commercial and unclassified government applications. DES has been adopted as Federal 

Information Processing Standard 46 (FIPS 46-3) and by the American National Standards 

Institute as X3.92. DES is a block-cipher employing a 56-bit key that operates on 64-bit blocks. 

DES has a complex set of rules and transformations that were designed specifically to yield fast 

hardware implementations and slow software implementations, although this latter point is 

becoming less significant today since the speed of computer processors is several orders of 

magnitude faster today than twenty years ago. IBM also proposed a 112-bit key for DES, which 

was rejected at the time by the government; the use of 112-bit keys was considered in the 1990s, 

however, conversion was never seriously considered.  

 

1.2 AES: An Alternative to DES  
 

The symmetric-key cryptography is efficient for encryption while the Public-key cryptography 

facilitates efficient signatures (particularly non-repudiation) and key management.  Symmetric–

key cryptography is faster than any currently available public-key encryption method. On the 

other hand, the most widely used symmetric-key encryption technique like DES is vulnerable to a 

brute-force attack [3] because of its inadequate key size compare to the processing power of 

modern computer. In order to increase the security of symmetric-key cryptography, NIST in 1997 

issued a call for proposals for a new Advanced Encryption Standard (AES), which should have 

security strength better than DES and significantly improved efficiency. In addition, to these 

general requirements, NIST specified that AES must be a symmetric block cipher with a block 

length of 128 bits and support for key lengths of 128, 192, and 256 bits.  

 

2. MATERIALS AND METHODS: 
 

AES Cipher: 
 

The Rijndael proposal for AES [6] defined a cipher in which the block length and the key length 

specified to be 128, 192, or 256 bits. The AES specification uses the same three key size 

alternatives but limits the block length to 128 bits. A number of AES parameters (Table1) depend 

on the key length. Most of the implementation of AES uses the key length of 128 bits. 

 

 

 

 

 

 

 

 

 

Table 1: AES Parameter 
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2.1 Overall Structure of AES 
 

The overall structure of AES is depicted in figure 2. The input to the encryption and decryption 

algorithms is a single 128-bit block. This block of input is depicted as a square matrix of bytes. 

This block is copied into the state array, which is modified at each stage of encryption or 

decryption. After the final stage, state is copied to an output matrix. These operations are 

depicted in figure: 3. similarly, the 128-bit key is depicted as a square matrix of bytes. This key is 

then expanded into an array of key schedule words; each word is four bytes and total key 

schedule is 44 words for the 128-bit key. The ordering of bytes within a matrix is by column. So, 

for example, the first four bytes of a 128-bit plaintext input to the encryption cipher occupy the 

first column of the in matrix, the second four bytes occupy the second column, and so on. 

Similarly, the first four bytes of the expanded key, which form a word, occupy the first column of 

the w matrix. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

Figure 2: AES encryption and decryption 
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Several features of the overall AES structure [7]:  

 

1. One noteworthy feature of this structure is that it is not a Feistel structure. In the classic feistel 

structure, half of the data block is used to modify the other half of the data block, and then the 

half are swapped. Rijndael does not use a Feistel structure but process the entire block in parallel 

during each round using substitutions and permutations. 

 

2. The key that is provided as input is expanded into an array of forty-four 32-bit words, w[i]. 

Four distinct words (128 bits) serve as a round key for each round; these are indicated in Figure-

2. 

 

3. Four different stages are used, one of permutation and three of substitution: 

 
Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the block. 

Shift rows: A simple permutation 

Mix Columns: A substitution that makes use of arithmetic over GF (2
8
) 

Add round Key: A simple bitwise XOR of the current block with a portion of the expanded key 

 

 

 (a) Input, State array and Output  

  

→ 

 

 

 

  

(b) Key and Expanded Key 

 

Figure 3: AES Data Structure 

 

4. The structure of AES is quite simple. For both encryption and decryption, the cipher begins 

with an Add Round Key stage, followed by nine rounds that each includes all four stages, 

followed by a tenth round of three stages. Figure 4 depicts the structure of a full encryption 

round. 

 

5. Only the Add Round Key stage makes use of the key. For this reason, the cipher begins and 

ends with an Add Round Key stage. Any other stage, applied at the beginning or end, is reversible 

without knowledge of the key and so would add no security. 

 

K0 K4 K8 K12 

K1 K5 K9 K13 

K2 K6 K10 K14 

K3 K7 K11 K15 

W0 W1 …… W43 
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6. The Add Round Key stage is, in effect, a form of Vernam cipher and by itself would not be 

formidable. The other three stages together provide confusion, diffusion, and nonlinearity, but by 

themselves would provide no security because they do not use the key. The cipher is an 

alternating operations of XOR encryption (Add Round Key) of a block, followed by scrambling 

of the block (the other three stages), and followed by XOR encryption, and so on. This scheme is 

both efficient and highly secure. 

 

7. Each stage is easily reversible. For the Substitute Byte, Shift Row, and Mix Columns stages, an 

inverse function is used in the decryption algorithm. For the Add Round Key stage, the inverse is 

achieved by XORing the same round key to the block, using the result that A ⊕ A ⊕ B = B. 

8. As with most block ciphers [5], the decryption algorithm makes use of the expanded key in 

reverse order. However, the decryption algorithm is not identical to the encryption algorithm. 

This is a consequence of the particular structure of AES. 

 

9. Once it is established that all four stages are reversible, it is easy to verify that decryption does 

recover the plaintext. Figure 2 lays out encryption and decryption going in opposite vertical 

directions. At each horizontal point (e.g.,the dashed line in the figure), State is the same for both 

encryption and decryption. 

 

10. The final round of both encryption and decryption consists of only three stages. Again, this is 

a consequence of the particular structure of AES and is required to make the cipher reversible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: AES encryption round 
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2.2 Algorithm for Serial Implementation of AES 
 
AES is an iterated block cipher, meaning that the initial input block and cipher key undergoes 

multiple rounds of transformation before producing the output. Each intermediate cipher result is 

called a State. The block and cipher key are often represented as an array of columns where each 

array has 4 rows and each column represents a single byte (8 bits). The number of columns in an 

array representing the state or cipher key, then, can be calculated as the block or key length 

divided by 32 (32 bits = 4 bytes). An array representing a State will have Nb columns, where Nb 

values of 4, 6, and 8 correspond to a 128-, 192-, and 256-bit block, respectively. Similarly, an 

array representing a Cipher Key will have Nk columns, where Nk values of 4, 6, and 8 

correspond to a 128-, 192-, and 256-bit key, respectively. The AES cipher itself has three 

operational stages:  

 

1. AddRound Key transformation       

 

2. Nr-1 Rounds comprising: • SubBytes transformation           • ShiftRows transformation 

 

                                               • MixColumns transformation        • AddRoundKey transformation 

 

3. A final Round comprising: • SubBytes transformation        • ShiftRows transformation 

 

                                               • AddRoundKey transformation 

 

The overall structure of AES cipher is described below: 

 

  Constants:                    int Nb = 4; 

 
                                        int Nr = 10, 12, or 14; // rounds, for Nk = 4, 6, or 8 

 

  Inputs:                           array in of 4*Nb bytes // input plaintext 

 

                                         array out of 4*Nb bytes // output ciphertext 

 

                                         array w of 4*Nb*(Nr+1) bytes // expanded key 

 

Internal work array:     state, 2-dim array of 4*Nb bytes, 4 rows and Nb cols 
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Algorithm : 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the above algorithm: 

 

• in[] and out[] are 16-byte arrays with the plaintext and cipher text, respectively. Both of 

these arrays are actually 4*Nb bytes in length but Nb=4 in AES. 

 

• state[] is a 2-dimensional array containing bytes in 4 rows and 4 columns. This arrays is 

4 rows by Nb columns. 

 

• w[] is an array containing the key material and is 4*(Nr+1) words in length. 

 

• AddRoundKey(), SubBytes(), ShiftRows(), and MixColumns() are functions representing 

the individual transformations. 

 

2.3 Run Time Complexity of the Serial Implementation 
 
The number of steps an algorithm requires to solve a specific problem is denoted as the running 

time of the algorithm. In general, the running time depends on the size of the problem and on the 

respective input. In order to evaluate an algorithm independently of the input, the notation of time 

complexity is introduced. The time complexity T(n) is a function of the problem size n. The value 

of T(n) is the running time of the algorithm in the worst case, i.e. the number of steps it requires 

at most with an arbitrary input. However, time complexity function does not give the actual 

execution time of an algorithm rather it gives an idea how the time required for an algorithm 

changes as the problem size increases. 
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In order to compute the run time complexity of the AES algorithm, the time complexity function 

for each transformation has to be considered. As the AES algorithm consists of only four different 

types of transformation, the time complexity function of AES will depend on the time complexity 

of each transformation. 

 

From the time complexity of different transformation function, it is found that the AES algorithm 

has a linear complexity that means when the value of N (number of data block) ranges from 10 – 

100000, the execution time will vary from 10
-5

 second to 1 seconds (each operation is assumed to 

take 10
-6

 second). However, when the value of N is greater than 10
8
, the execution time of the 

algorithm will require several days to encrypt or decrypt. The following table will give a clear 

idea: 

 

 2.4 Computer time used for different data blocks 
 
 

 

 

 

 

 

 

 

 

 

 

 

2.5 PARALLEL IMPLEMENTAION OF AES 
 

The current trend in high performance computing is clustering and distributed computing. In 

clusters, powerful low cost workstations and/or PCs are linked through fast communication 

interfaces to achieve high performance parallel computing. Recent increases in communication 

speeds, microprocessor clock speeds, availability of high performance public domain software 

including operating system, compiler tools and message passing libraries, make cluster based 

computing appealing in terms of both high performance computing and cost effectiveness. 

 

For implementing the AES algorithm in parallel, the MPI based cluster is used in the present 

section. The performance of a parallel algorithm depends not only on input size but also on 

the architecture of the parallel computer, the number of processors, and the interconnection 

network. In this chapter, different types of parallel architectures and interconnection networks are 

discussed before actually implementing the parallel algorithm of AES. At the end of this chapter, 

some sample input/output are shown varying the key size, number of rounds and the number of 

processors to verify the correctness of parallel algorithm. Finally, the run time complexity of the 

parallel algorithm is shown to measure the performance improvement of the parallel 

implementation over the serial implementation. 
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2.6 Algorithm for Parallel Implementation of AES 
 
There are two major components of parallel algorithm design. The first one is the identification 

and specification of the overall problem as a set of tasks that can be performed concurrently. The 

second is the mapping of these tasks onto different processors so that the overall communication 

overhead is minimized. The first component specifies concurrency, and the second one specifies 

data locality. The performance of an algorithm on a parallel architecture depends on both. 

Concurrency is necessary to keep the processors busy. Locality is important because it minimizes 

communication overhead. Ideally, a parallel algorithm should have maximum concurrency and 

locality. However, for most algorithms, there is a tradeoff. An algorithm that has more 

concurrency often has less locality. 

 

To implement the AES algorithm in parallel, data blocks (Figure 5) and a key are distributed 

among the available processors. Each processor will encrypt different data blocks using the same 

key. For example, in order to encrypt n number of data blocks with p processors, n/p data blocks 

will be encrypted by each processor. As each processor has its own data blocks and a key 

(increases data locality), all the 10/12/14 rounds (consists of four transformations) will be 

executed by each processor for encrypting each data block. 

 

After encrypting all the data blocks of each processor, the encrypted data will be merged in tree 

structure and return back to the main processor. For example, if there are four processors working 

in parallel, processor P1 will send its encrypted data to P0 and P0 will merge its encrypted data 

with P1; processor P3 will send its encrypted data to P2, and P2 will merge its encrypted data 

with P3.  
      

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: (a, b) Data blocks are distributed between two and four processors 

 

Finally processor P2 will send its (P2 & P3) encrypted data to P0 and P0 will merge its (P0 & P1) 

encrypted data with P2. This technique of merging and returning data to the main processor will 

increase the concurrency and reduce the idle time of each processor. 
  

The overall parallel algorithm of AES cipher is described below: 

 

    Constant: ArraySize = 160 ; int Nb = 4; 
    int Nr = 10, 12, or 14; // rounds, for Nk = 4, 6, or 8 
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    Inputs: int nProcessors = 2/4/8/16 processors 
    int tNumberOfBlocks // number of blocks to be encrypted 

    unsigned char key[16] // key for encrypting data 

    int k = 0; 

    array w of 4*Nb*(Nr+1) bytes // expanded key 

Internal work array: my_pointer is an array of pointers where each element of the array 

points to an array of data blocks. Each processor will have the variable my_pointer, where the 

first index will contain the data blocks for each processor. 

 

Algorithm: 
 

 

3. SAMPLE INPUT/OUTPUT 

 
128-bit data, 128-bit Key 

2 processors, each processor processes 4 data blocks 

Encrypting . . . 

 

 

 

 

void Cipher(byte[] in, byte[] out, byte[] w) { 

nProcessors = 4 

int nBlockPerProcessor = tNumberOfBlocks / nProcessors 

int rank = processor’s label 

if (rank = = processor 0){ 

my_pointer[0] = nBlockPerProcessor data blocks 

read the key 

send nBlockPerProcessor data blocks to rest of the processors 

send the same key to other processors 

} 

else{// for all other processors 

receive the nBlockPerProcessor data blocks from processor 0 

my_pointer[0] = nBlockPerProcessor data blocks 

receive the key from the processor 0 

} 

// each processor will execute this part of the algorithm. 

//Encrytion 

Encryption(my_pointer[0]); 

// Encrypted data are merged in tree structure and return back to the 

// main processor 

BTM(0, nProcessors -1); 

//Decryption 

Decryption(my_pointer[1]); 

BTM(0, nProcessors -1);} 
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4. CONCLUSIONS 

 
In the figure 6 and 7, the performance of serial and parallel implementation of AES is shown with 

2 processors. The speedup factor of AES is given in figure 8 with 2 processors. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

     

Figure 6: Performance of AES in Serial 
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Figure 7: Performance of AES in Parallel with 2 processors 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Speedup of AES with 2 processors 
 

After implementing the AES algorithm on a single processor, it is found that the AES algorithm 

has a linear complexity that means when the value of N (number of data blocks) ranges from 10 – 

100000, the execution time will vary from 10
-5

 second to 1 seconds (each operation is assumed to 

take 10-6 second). However, when the value of N is greater than 10
8
, the execution time of the 

algorithm will require several days to encrypt or decrypt. This creates the reason for 

implementing the algorithm in parallel. 

 

After implementing the AES algorithm in parallel, it is found that the performance of AES 

algorithm increases significantly as the number of processor increases. It is not possible to get the 

speedup factor equal to P (number of processor), as some parallel processing overhead is also 

occurred during the implementation of AES in parallel. 
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