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ABSTRACT 

 

Neural networks have been used successfully to a broad range of areas such as business, data mining, drug 

discovery  and biology. In medicine, neural networks have been applied widely in medical diagnosis, 

detection and evaluation of new drugs and treatment cost estimation. In addition, neural networks have 

begin  practice in data mining strategies for the aim of prediction, knowledge discovery. This  paper will 

present the application of neural networks for the prediction and analysis of antitubercular activity of 

Oxazolines and Oxazoles derivatives. This study presents techniques based on the development of Single 

hidden layer neural network (SHLFFNN), Gradient Descent Back propagation neural network (GDBPNN), 

Gradient Descent Back propagation with momentum neural network (GDBPMNN), Back propagation with 

Weight decay neural network (BPWDNN) and Quantile regression neural network (QRNN) of artificial 

neural network (ANN) models Here, we comparatively evaluate the performance of five  neural network 

techniques. The evaluation of the efficiency of each model by ways  of benchmark experiments is an 

accepted application. Cross-validation and resampling techniques are commonly used to derive point 

estimates of the performances which are compared to identify methods with good properties.   Predictive 

accuracy was evaluated using the root mean squared error (RMSE), Coefficient determination(	��), mean 

absolute error(MAE), mean percentage error(MPE) and relative square error(RSE). We found that all five 

neural network models were able to produce feasible models. QRNN model is outperforms with all 

statistical tests amongst other four models.  
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1. INTRODUCTION 
 
The use of artificial neural networks (ANNs) in the area of  drug discovery and optimization of 

the dosage forms has become a topic of analysis in the pharmaceutical literature [1-5]. Compared 

with linear modelling techniques, such as Multi linear regression (MLR) and Partial least squares 

(PLS) , ANNs show better as a modelling technique for molecular descriptor data sets showing 

non-linear conjunction, and thus for both data fitting and prediction strengths [6].  Artificial 

neural network (ANN) is a vastly simplified model of the form of a biological network[7] .The 

fundamental processing element of ANN is an artificial neuron (or commonly a neuron). A 



International Journal of Information Sciences and Techniques (IJIST) Vol.3, No.6, November 2013 

2 

biological neuron accepts inputs from other sources, integrate them, carry out generally a 

nonlinear process on the result, and then outputs the last result [8]. The fundamental benefit of 

ANN is that it does not use any mathematical model because ANN learns from data sets and 

identifies patterns in a sequence of input and output data without any previous assumptions about 

their type and interrelations [7]. ANN eliminates the drawbacks of the classical ways by 

extracting the wanted information using the input data. Executing ANN to a system uses enough 

input and output data in place of a mathematical equation[9]. ANN is a good alternative to 

common empirical modelling based on linear regressions [10]. 

 

 ANNs are known to be a powerful methodology to simulate various non-linear systems and have 

been applied to numerous applications of large complexity in many field including 

pharmaceutical research, engineering and medicinal chemistry. The promising uses of ANN 

approaches in the pharmaceutical sciences are widespread.  ANNs were also widely used in drug 

discovery, especially in QSAR studies. QSAR is a mathematical connection between the 

chemical’s quantitative molecular descriptors and its inhibitory activities [11-12] 

 

Five Different types of neural network models have been developed for the development of 

efficient antitubercular activity predicting models. Those models are Single hidden layer feed 

forward neural network (SHLFNN)[13],Gradient Descent Back propagation neural network 

(GDBPNN)[14,24], Gradient Descent Back propagation with momentum neural network 

(GDBPMNN)[15-16],Back propagation with Weight decay neural network 

(BPWDNN)[17],Quantile regression neural network (QRNN) [18].  

 

The purpose of this research work and research publication is to assign five distinct neural 

network models to the prediction of antitubercular activities of Oxazolines and Oxazoles 

derivatives descriptor dataset. Method and along with estimate and asses their performances with 

regard to their predicting ability. One of the goals of this scientific research project is to show 

how distinct neural network models can be used in predicting antitubercular activities of 

Oxazolines and Oxazoles derivatives descriptor dataset. It again involves inducing the best model 

in terms of the least errors produced in the graphical study describing the actual and predicted 

antitubercular activities. 

 

   2. MATERIALS AND ALGORITHAMS 
 

2.1 The Data Set 

 
The molecular descriptors of 100   Oxazolines and Oxazoles derivatives [19-20] based H37Rv 

inhibitors analyzed. These molecular descriptors are produced using Padel-Descriptor tool [21]. 

The dataset includes a different set of molecular descriptors with a broad range of inhibitory 

activities versus H37Rv. This molecular descriptor  data set includes  100 observations with 234 

descriptors. Before modelling, the dataset is ranged. 

 

2.2 Single hidden layer feed forward neural network (SHLFNN) 

 
 The clearest form of neural network is one among a single input layer and an output layer of 

nodes. The network in Figure 1 represents this type of neural network.  Strictly, this is mentioned 

to as a one-layer feed forward network among  two outputs on account of the output layer is the 

alone layer with an activation computation.  



International Journal of Information Sciences and Techniques (IJIST) Vol.3, No.6, November 2013 

3 

                                          
 

Figure 1.  A Single Hidden Layer Feed Forward Neural Network 

 
In this single hidden layer feed forward neural network, the network's inputs are directly 

connected to the output layer nodes,	Z�and Z�. The output nodes use activation functions g� and g� to yield the outputs Y1 and Y2.  

 

Because 
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When the activation functions g� and g�  are similar activation functions, the single hidden layer 

feed forward neural network is similar to a linear regression model. Likewise , if g� and g�  are 

logistic activation functions, then the single hidden layer feed forward neural network is similar 

to logistic regression.  Because of this comparison between single hidden layer feed forward 

neural networks and linear and logistic regression, single hidden layer feed forward neural 

networks are not often used in place of linear and logistic regression. 

 

2.3 Gradient Descent Back Propagation Neural Network(GDBPNN) 

 
Gradient Descent Back propagation neural network is one of the most engaged  ANN algorithms 

in pharmaceutical research.  GDBPNN are the nearly general type of feed-forward networks. 

Figure 2 displays an back propagation neural network  which has three types of layers: an input 

layer, an output layer and a hidden layers. 
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Figure  2. A Back propagation (BP) neural network 

 
    Nodes(neurons) in input layer only act as buffers for delivering the input data x� �i = 1,2 … . n) 

to nodes in the hidden layer. Each processing  node $ (Figure 3) in the hidden layer sums up its 

input data �
 after weighting them with the strengths of the particular connections %&
 from the 

input layer and calculates its output '& as a function ( of the sum. 

                                     '& = ()∑ %&
�
+
�� ,																																																																																															�3� 

 

Activation function ( that is generally selected to be the sigmoid function.  

 

                              
 

Figure 3. Specification of the perceptron process 

 
The output of nodes in the output layer is calculated similarly. The backpropagation gradient 

descent algorithm, is the most generally approved Multi Layer Perciptron training algorithm. It 

provides to alter ∆w0� the weight of a connection between nodes i and j as accordingly: 

 ∆w0� = 12&�
																																																																																																																																							�4� 

 

Where 1 is a parameter termed the learning rate and δ0 is a factor depending on whether  node $ 
as an input node or a hidden node. For output nodes , 

 2& = )5( 5⁄ ��78&, 9'&�:� − '&<																																																																																																						�5� 
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and for hidden nodes  

2& = )5( 5⁄ ��78&, >
 %&?2?? @																																																																																																		�6� 

 

In Eq. (5) , ��78& is the aggregate weighted sum of input data to nodes $ and  '&�:�
 is the target  

output  for node $.  As there are no target outputs for hidden nodes ,in Eq. (6) , the variation 

between the target and measured output of a hidden nodes $ is put back by the weighted aggregate 

of the 2? 	 terms at present obtained for nodes B linked to the output of node $ The method starts 

with the output layer , the 2 term is calculated for nodes in entire layers and weight updates 

detected for all links, repetitively. The weight updating method can happen after the presentation 

of each training observation (observation-based training) or after the presentation of the whole set 

of training observations. Training epoch is achieved when all training patterns have been 

introduced once to the Multilayer Perceptron. 

 

2.4 Gradient Descent Back Propagation with Momentum Neural Network 

(GDBPMNN) 

 
Gradient descent back propagation with momentum neural network (GDBPMNN) algorithm is 

widely used in neural network training, and its convergence is discussed. A momentum term is 

often added to the GDBPNN algorithm in order to accelerate and stabilize the learning procedure  

in which the present weight updating increment is a mixture of the current gradient of the error 

function and the prior weight revising increment. Gradient decent back propagation with 

momentum allows a neural network to respond not only to the local gradient, but also to recent 

tendency in the error surface. Momentum allows the neural network to ignore small features in 

the error surface. Without momentum a neural network may get stranded in a shallow local 

minimum. With momentum a network can move through such a least. 

 

Momentum can be combined to GDBPNN method learning by building weight alters balance to 

the sum of a portion of the final weight modification and the new modification advised by the 

GDBP rule. The importance of the response that the last weight modification is admitted to have 

is negotiated by a momentum constant,	� , which can be any number between 0 and 1. When the 

momentum constant is 0 a weight modification is based only on the gradient. When the 

momentum constant is 1 the new weight modification is set to balance the last weight 

modification and the gradient is plainly neglected.   

 ∆%
&�C + 1� = 12&�
 + �∆%
&�C�																																																																																							�7� 

 

where ∆%
&�C + 1� and ∆%
&�C� are weight alters in epochs  �C + 1�and �C�, suitable way[24]. 

 

2.5 Back propagation with Weight Decay Neural Network (BPWDNN) 

 
Back propagation of error gradients for back propagation neural networks has proven to be useful 

in layered feed forward neural network training. Still, a wide number of repetitions is commonly 

required for changing the weights. The problem becomes more critical especially when a high 

level of accuracy is required. The complexity of a back propagation neural network can be 

regulated by a hyper-parameter called “weight decay” to penalize the weights of hidden nodes.  
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The employ of weight decay can both assist the optimization deals with and prevent the over 

fitting.  This type of method to encourage the learning algorithm to find solutions which use as 

few weights as possible. The simplest modified error function can be formed by summing to the 

initial error function a term relative to the sum of squares of weights: 

 E = E
 + F 
 
 %
&�&
 																																																																																																							�8� 

 

where  E� is the initial error function (sum of the squared differences between actual and 

predicted output values), 	λ is a minute positive constant which is employed to govern the 

addition of the second term , and w�0 is the weight of the link between node j and of a layer and 

node i of the at once higher indexed layer. The above error function penalizes the use of more %
&‘s  than essential. In order to demonstrate that, lets see how the weight updating rule is 

changed. Assuming that we apply the gradient descent algorithm to minimize the error, the 

changed weight update method is shown by: 

 ∆%
&�I� = −η M ∂E∂%
&O �C� = −1 M ∂E�∂%
&O �I� − 2λη%
&�I�																														�9� 

 

where C  denotes the C-th iteration and 1 denotes the learning rate . The above expression can be 

composed as 

 %
&�I + 1� = −η M ∂E�∂%
&O �I� + �1 − 2λη�%
&�I�																																												�10� 

 

It can be demonstrates that the importance of the weights decreases exponentially towards zero by 

calculating the weight values after C	weight adaptations: 

 

%
&�I� = 1 
�1 − 2λη�RS
R

�� �− M ∂E�∂%
&O� + �1 − 2λη�R%
&�0�																			�11� 

 

(assuming |1 − 2λη| < 1) . The above method has the disadvantage that all the weights of the 

neural network decrease at the same rate. Still , it is more attractive to allow large weights to 

carry on while small weights tend toward zero. This can be carried out by modifying the error 

function in a way that small weights are altered more considerably than large weights. The 

following modified function: 

 E = E� + λ 
 
 w�0�1 + w�0�0� 																																																																															�12� 

 

The weight updating rule then becomes: 
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%
&�I + 1� = −F M ∂E�∂%
&O �I� + V
W1 − 2λη91 + w�0��I�<� %
&�I�X

Y																	�13� 

 

It can be demonstrates that in this case small weights decrease more swiftly than large ones. 

 

2.6 Quantile Regression Neural Network (QRNN) 

 
Artificial neural networks allow the estimation of in some way nonlinear models without the need 

to define a accurate functional form. The most widely-used neural network for predicting is the 

single hidden layer feed forward neural network [25]. It exists a set of n input nodes , which are 

connected to each of m nodes in a single hidden layer, which, in turn, are connected to an output 

node. The final model can be made as 

 

(��: , [, %� = �� \
 [&
]

&�^ �� �
 %&

+


�^ �
:�_																																																	�14� 

 

where  g��·� and g��·� are activation functions, which are commonly chosen as sigmoidal and  

linear accordingly ,	w0� and v0 are the weights  to be approximated. 

 

 Theoretical assist for the use of quantile regression within an artificial neural network for the 

evaluation of probably nonlinear quantile models [26]. The only other work that we are 

knowledgeable of, that considers quantile regression neural networks , is that of Burgess [27] who 

briefly explains the proposal of the method. Alternative way of linear quantile function using the 

equation in (14) , a quantile regression neural network model, (��: , [, %�,of the b8ℎ quantile can 

be estimated using the following minimisation. 

 

mind,e > 
 b|': − (��: , [, %�|:|fghi�jg,d,e�k + 
 �1 − b�|': − (��: , [, %�|:|fghi�jg,d,e�k + F� 
 %&
�&,
+ F� 
 [
�
 O						�15� 

 

where λ� and λ� are regularisation parameters which penalise the complicatedness of the neural 

network and thus prevent over fitting [28].  

 

2.7 Fitting and comparing models 

 
The solutions for the SHLFFNN , GDBPNN, GDBPMNN, BPWDNN and QRNN models were 

computed using  open source CRAN R packages nnet ,neuralnet, RSSNS and qrnn. These five 

neural network  models are trained on a Oxazolines and Oxazoles derivatives descriptor dataset , 

it constructs a predictive model that returns a minimization in error when the neural network's 

prediction (its output) is compared with a known or expected outcome. The comparison between 

the five models were  assessed using root mean square error (RMSE) and  coefficient of 
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determination R�. RMSE presents information on the short term efficiency which is a benchmark 

of the difference of predicated values about the observed values. The lower the RMSE, the more 

accurate is the evaluation and  coefficient of determination (also called R square) measures the 

variance that is interpreted by the model, which is the reduction of variance when using the 

model.  �� orders from 0 to 1 while the model has healthy predictive ability when it is near to 1 

and is not analyzing whatever when it is near to 0. These performance  metrics are a good 

measures of the overall predictive accuracy. 

 

 MAE(mean absolute error) is an indication of the average deviation of the predicted values from 

the corresponding observed values and can present information on long term performance of the 

models; the lower MAE the better is the long term model prediction. Relative squared error 

(RSE) is the aggregate squared error produce relative to what the error would have been if the 

prediction had been the average of the absolute value. Lower RSE is the better model prediction.  

The Mean  Percent Error (MPE) is a well known measure that corrects the 'cancelling out' results 

and also keeps into basis the different scales at which this measure can be calculated and thus can 

be used to analyze different predictions. The expressions of all measures are given below. 

 

mnE = 1� 
|'o
 − '
|+

�� 																																																																																									�16� 

 

mpE = 1� 
 '
 − 'o
'

+


�� ∗ 100																																																																													�17� 

 �rE = ∑ �'o
 − '
��+
��∑ �s7���'� − '
��+
�� 																																																																									�18� 

 

where  '
 and 'o
 are observed and predicted values. 

 

 2.9 Benchmark Experiments 

 
Move in benchmark experiments for comparison of neural network models. The experimental 

performance distributions of a set of neural network models are estimated, compared, and 

ordered. The resampling process used in these experiments must be investigate in further detail to 

determine which method produces the most accurate analysis of model influence. Resampling 

methods to be compared include cross-validation [29-31]. We can use resampling results to make 

orderly and in orderly comparisons between models [29-30]   Each model  performs 25 

independent runs on each sub sample and report minimum, median, maximum, mean  of each 

performance measure over the 25 runs. 

 

3. RESULTS AND DISCUSSION 

 
This part presents the numerical analysis conducted using numerous neural network methods. 

RMSE and �� values were used to analyze model prediction accuracies for the 

SHLFFNN,GDBPNN, GDBPMNN, BPWDNN and QRNN neural network models. Comparing 

the resampling performance the effect of prediction of antituberculer activity using Oxazolines 

and Oxazoles derivatives are demonstrated in Figure 4. 
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Figure 4. Box-and-whisker diagrams for the cross validation estimates of model precision 

performance RMSE, or ��. The QRNN and GDBPMNN models gives the smallest prediction error and 

smallest RMSE and �� error spread compared to BPWDNN, GDBPNN and SHLFFNN models have 

largest RMSE and ��	error spread 

 

The RMSE and �� values for the five different neural network models for prediction of 

antitubercular activity are comparable as shown in Figure 4. QRNN and GDBPMNN 

models appear to have  slightly smaller  RMSE and �� spreads than  BPWDNN model. 

SHLFFNN and GDBPNN models appear to have larger RMSE and	�� error spreads than 

BPWDNN model. Pair-wise comparisons of model RMSE and �� values using Student’s 8-test reveal that there is statistical difference in the prediction accuracies of the five 

neural network models. These results are shown in Table 1, which gives both the t-

values and the absolute differences in RMSE and �� for the model comparisons. None of 

the t-values are smaller than the specified significance level α = 0.05. The null 

hypothesis is not rejected; in the context of this data set, there is no statistically 

significant difference in performance among these five neural network methods.  
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                                    Table 1. Pair-wise comparisons of RMSE  and �� differences and t-values          

    

   RMSE differences (upper diagonal) and u-values (lower diagonal)  

 

 GDBPNN SHLFFNN GDBPMNN BPWDNN QRNN 

  GDBPNN  -0.02361 0.14891 0.08679 0.20649 

  SHLFFNN 1.00000  0.17252 0.11040 0.23011 

  GDBPMNN 0.49971 0.01617  -0.06212 0.05759 
  BPWDNN 1.00000 0.29577 1.00000  0.11971 

  QRNN 0.08053 0.01048 1.00000 0.19054  

  vw differences (upper diagonal) and u-values (lower diagonal) 

 GDBPNN SHLFFNN GDBPMNN BPWDNN QRNN 

   GDBPNN  -0.10573 -0.23230 -0.15382 -0.26385 
   SHLFFNN 1.0000  -0.12657 -0.04809 -0.15812 
   GDBPMNN 0.5848 0.6052  0.07848 -0.03155 

    BPWDNN 1.0000 1.0000 1.0000  -0.11003 
    Ridge 0.3109 0.2511 1.0000 0.4586  

 

It should be observed that the t-value for this pair-wise comparison is 0.08053 and 0.3109 (Table 

1) for RMSE and ��, which is not valid at α = 0.05, but it is still a much smaller t-value than 

those obtained for the other four pair-wise comparisons. To test for pair-wise differences, we use 

Tukey differences.  

 

 
 

Figure 5. Asymptotic simultaneous confidence sets for Tukey all-pair neural network models comparisons 

of the  RMSE errors after alignment. 

 



International Journal of Information Sciences and Techniques (IJIST) Vol.3, No.6, November 2013 

11 

As a major advantage compared to the non-parametric methods, can calculate simultaneous 

confidence intervals. Figure 5 shows the corresponding 99% model wise confidence intervals 

where the bars of a given comparison are outside the 0 difference in RMSE line there is a 

statistically meaningful difference at the 99% level present. The blue dot indicates the estimated 

magnitude of this difference. The differences between (GDBPNN,SHLFFNN) and 

(GDBPMNN,BPWDNN)  are not significant, the corresponding confidence intervals intersect 

zero and overlap each other. 

      
             Table 2. Accuracy of predictions of the five neural network models 

 

 
 

In our study, neural network methods to predict antitubercular activity of Oxazolines and 

Oxazoles derivatives. In this case descriptor dataset is splits into training set and test set. Training 

set comprises seventy six observations  and test set comprises twenty four observations. 

 
 

Figure 6. Comparison of prediction performance of trained and tested models obtained by five neural 

network methods for Oxazolines and Oxazoles derivatives descriptor dataset. 
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Predictive accuracy of all five neural network model evaluated as the coefficient determination 

i.e. ��  , root mean squared error (RMSE), mean absolute error(MAE), mean percentage error 

(MPE) and relative squared error(RSE). RMSE and �� provides baseline measures of predictive 

accuracy. All results reported are for the training set and test set. The predictive estimation results 

are summarized in Table 2. 

 

 
 
 

The obtained both RMSE and ��  values of trained QRNN model are 3.710198e-06 and 1 are 

highly significant as well as RMSE and ��  values of tested QRNN models are 0.2080948 and 

0.9287288 are outstanding. The RMSE and ��  values of trained GDBPNN model is 0.07103242 

and 0.9918216 comparatively better than GDBPMNN model i.e. 0.113598 and 0.9878081. The 

RMSE and ��  values of tested models are SHLFNN and BPWDNN are comparatively better 

than GDBPNN and GDBPMNN models. Figure 6 shows the performance comparison of the five 

methods for antitubercular activity prediction. In order to test and validate the five neural network 

models, the rest of five statistical tests are (MAE, MPE and RSE).  These statistical tests signifies 

the QRNN model shows more significant  than other four neural network models. These 

statistical tests are summarized in Table 2. Figure 7 shows  the deviation from actual data of the 

five neural network models for trained and test datasets. Zero deviation shows that actual   data 

and predicted QRNN model is overlapped is shown in Figure 7a.  It means that predicted data has 

zero errors. 

  

4. CONCLUSIONS 

 
At first, important properties of neural network modelling methods and basic concepts of this   

were introduced. This technique is historically based on the attempt to model the way a biological 

brain processes the data. This study evaluated the ability of a five neural network models to 

predict antitubercular activity of Oxazolines and Oxazoles derivatives. we presented exploratory 

and inferential analyses of benchmark experiments. Benchmark experiments show that this 

method is the primary choice to evaluate neural network models. . It should be observed that the 
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scheme can be utilized to compare a set of neural network techniques but does not offer a neural 

network model selection. The results for the non linear neural network models suggest that we 

may detect performance differences with fairly high power. We have compared the predictive 

accuracies with all five neural network models among QRNN model is outperformed overall 

predictive performance. 
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