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ABSTRACT

In this paper, a cryptanalysis of key exchange method using multilayer perceptron (CKEMLP) has been
proposed in wireless communication of data/information. In this proposed CKEMLP technique both sender
and receiver uses an identical multilayer perceptrons for synchronization between them. After achieving
the full synchronization weights vectors of both the parties’ becomes identical and this identical weight
vector is used as a secret session key for encryption/decryption. Different types of possible attacks during
synchronization phase are introduced in this paper. Among different types of attacks some of them can be
easily prevented by increasing the synaptic depth L. But few attacks are also there which has a great
success rate.
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1. INTRODUCTION

In this paper CKEMLP technique has been proposed to analyzed variety of attacks that can be
possible in key generation phase using multilayer perceptron and also provides some way out
from these attacks.

The organization of this paper is as follows. Section 2 of the paper deals with different types of
attacks in CKEMLP. Conclusions and future scope are drawn in section 3 and that of references
at end.

2. DIFFERENT TYPES OF ATTACKS ON MULTILAYER PERCEPTRON

The security of multilayer perceptron based key generation protocol is based on a contest between
attractive and repulsive forces. Two multilayer perceptrons interacting with each other
synchronize much faster than an attacker network only trained with their inputs and outputs. The
dissimilarity between the two parties and the attacker is that the two parties synchronize in a
polynomial time of synaptic depth L, while the complexity of the attacker scales exponentially.
However, the process is stochastic and depends on the random attractive and repulsive forces. As
a result, there is a small probability that an attacker succeeds to synchronize with one of the
parties. The difficulty an attacker faces with the organization of multilayer perceptron is the lack
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of information about the internal representation of A's or B's machine[1, 2, 3]. Most of attacks
depend on estimating the state of the hidden units. Following are the different possible attacks on
multilayer perceptron during key generation phase.

2.1 Type1 Attack

In this type1attack replicate a huge population of multilayer perceptrons with the identical
arrangement as the two parties, and teach them with the same inputs. At each stage about half the
replicated networks produces an output of +1, and half produces an output of -1. Successful
multilayer perceptrons whose outputs imitate those of the two parties raise and multiply, while
unsuccessful multilayer perceptrons gets ruled out. Attack starts with one network with
haphazardly chosen weights. At each step a population of networks grow according to 3 potential
scenarios:[8,9,10,11,12,13,14]

• A and B have dissimilar outputs ≠ , and therefore do not change their weights. Then
all the attacker's networks stay unaffected as well.

• A and B have the equivalent outputs = , and the sum of attacking networks is lesser
than some predefined limit. In this case there are 4 possible combinations of the hidden
outputs agreeing with the final output. So, the attacker replaces each network N from the
population by 4 variants of itself, {N1, ... ,N4} which are the results of updating N with
the standard learning rule but pretending that the hidden outputs were equal to each one
of these combinations.

• A and B have the identical outputs = but the total number of simulated networks is
larger than predefined value. In this case the attacker computes the outputs of all the
networks, deletes the unsuccessful networks whose output is different from , and
updates the weights in the successful networks by using the standard learning rule with
the actual hidden outputs of the perceptrons [4,5,6,7].

2.2 Type2 Attack

In type2 attack the attacker imitates one of the parties, but if attacker output disagrees with the
imitated party’s output c ≠ A, attacker certainly knows that either one or all three of his hidden
units are mistaken. In order to get c = A attacker negates the sign of one of attacker’s hidden
units. As ( )hsgn= the unit most likely to be wrong is the one with the minimal h , therefore

that is the unit which is negate. This policy results a immense enhancement in the attacker’s
achievement. It can be seen that the success rate is quite high for all L values presented, but it
drops exponentially as L increases. On the other hand parties’ synchronization time increases like
L2, and therefore it can be conclude that in the boundary of large L values the proposed technique
is secure against the type2 attack. Each input can be viewed as K random hyperplanes

X1, ..., XK corresponding to K hidden units. Each Xi is a hyperplane 0.),...,( 1 == ∑
=

j

N

ij
ijni zxzzf

in the N-dimensional discrete space NLLU },...,{−= . The weights of a network could be also

viewed as K points W1, ..., WK in U, },...,{ 1 ikii wwW = , while the i-th hidden output is just the
side of the half-space (with respect to Xi) which contains Wi. Consider an attacking network E
that is close enough to the unknown network A but has a different output for a given input. In fact
they have either 1 or 3 different hidden outputs. The second case is less likely to occur so we
assume that only one hidden output of the network E is different from the corresponding
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hidden output of A. Consequently, only one pair ( E
i

A
i WW , ) is separated by the known input

hyperplane Xi. Of course, we are interested in detecting its index i. If the points E
iW and A

iW are

separated by Xi then the distance between them is greater than the distance from E
iW to the

hyperplane Xi.
E

iW and A
iW are close to each other, so the distance from E

iW to Xi has to be

small. On the other hand, if E
iW and A

iW are in the same half-space with respect to Xi then they
are more likely to be far away from the random input Xi (even though we know that they are close
to each other). We thus guess that the index of the incorrect hidden output is the i for which E

iW is
closest to the corresponding hyperplane Xi, where we compute the distance by

)(),( E
iii

E
i WfXW = . Formally, the attacker constructs a single neural network E with the same

structure as A and B, and randomly initializes its weights. At each step attacker’s trains E with the
same input as the two parties, and updates its weights with the following rules:

• If A and B have different outputs ≠ , then the attacker doesn't update E.
• If A and B have the same outputs = and E = A, then the attacker updates E by the

usual learning rule.
• If A and B have the same outputs = and E ≠ A, then the attacker finds },...,1{0 Ki ∈

that minimizes ∑
=

N

j
ij

E
ij xw

0

. .The attacker negates E
i0
 and updates E assuming the new

hidden bits and output .

2.3 Type3 Attack

In this type3 attack a huge collection of M attackers work together. The type2 attacker’s
likelihood to supposition correctly A’s interior representation is some function Pcorrect(ƥ) of its
overlap ƥ with A, starting from Pcorrect(ƥ = 0) = 0.25. Assume there are group of M independent
type2 attackers, each having overlap ƥ with A. They will split into 4 groups, one for each possible
internal representation. Since Pcorrect > 0.25 for all ƥ > 0, the number of attackers having the
correct internal representation,M .Pcorrect, will be bigger than the number of attackers in the
other 3 groups, for all ƥ > 0. Therefore, the internal representation resulted from the majority
discussion of M independent type2 attackers would always be the correct one! From this
argument we conclude that the attack should use M >> 2k-1 attackers, which would
simultaneously develop an overlap with the parties, trying to remain as independent as possible.

2.4 Type4 Attack

The type4 attack procedure is to start from independent type2 attackers and let them act
disjointedly for some preliminary number of time steps. Then, the majority procedure is applied:
we count how many attackers have each of the 4 possible internal representations, and assign the
majority’s internal representation to all the M attackers. To prevent the similarity between the
attackers from developing too quickly, this majority procedure is applied only on even time steps.
However, the attackers make many coherent moves, and unavoidable overlap is developed
between them as well. Therefore we do not have a group of independent attackers, but of
attackers with an overlap between them. This overlap diminishes the efficiency of the attack, and
it is not always successful as a majority attack of M independent attackers would be.



Advanced Computational Intelligence: An International Journal (ACII),Vol.1, No.1, July 2014

4

2.5 Type5 Attack

It is much easier to predict the position of a point in a bounded multidimensional box after several
moves in its random walk than to guess its original position. A simple way to do it is to consider
each coordinate separately, and to associate with each possible value i in the interval },...,{ LL−

the probability ]Pr[)( iXip tt == . Initially
12

1
)(, 0 +

=∀
L

ipi and after each move )()(1 jpip
j

tt ∑=+

, where j are such that if jxt = then ixt =+1 .Applying this technique to the original scheme we
face the problem that the moves are not known | the attacker does not know which perceptrons are
updated in each round. Fortunately, if we know the distribution of the probabilities

]Pr[ ,,, iwP nkink == then using dynamic programming we can calculate the distribution of kk xw for

a given vector kx and thus the probabilities ]Pr[)( ssu kk ==  . Using these probabilities we can

calculate the conditional probabilities ]1Pr[  == kkU
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,because  is publicly known. We can now update the distribution of the weights:
]Pr[ ,

1
,,,,,

1 iwjwPP nk
t

nk
t

j

t
jnkink

t =⇒== ++ ∑ is calculated using Uk. Experiments show that in

most cases, when A and B converge to a common nkw ,ˆ the probabilities 1]ˆPr[ ,, ≈= nknk ww and

thus the adversary can easily find nkw ,ˆ when A and B decide to stop the protocol.

2.6 Type 6 Attack

Here the attacker E's neural network has the same structure of A's and B's. All what E has to do is
to start with random initial weights and to train with the same inputs transmitted between A and B

over the public channel. Then, the attacker E learns the mutual output bit
BA/ between them and

applies the same learning rule by replacing
E with

BA/ , i.e.

))(( // BABA
k

E
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BAE
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E
k xWW  Θ−=

Uncorrelated hidden units, e. g. at the beginning of the synchronization process, have ρi

= 0, while the maximum value ρi = 1 is reached for fully synchronized weights. Consequently, ρi
is the most important quantity for analyzing the process of synchronization. But it is also
interesting to estimate the mutual information gained by the partners during the process of
synchronization. For this purpose one has to calculate the entropy
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of the joint weight distribution of A’s and B’s neural networks. Similarly the entropy of the
weights in a single hidden unit is given by
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Of course, these equations assume that there are no correlations between different weights in one
hidden unit. This is correct in the limit N → ∞, but not necessarily for small systems. Using
above three equations the mutual information of A’s and B’s

Multilayer Perceptrons can be calculated as

( )∑
=

−+=
K

i

AB
i

B
i

A
i

AB SSSI
1

At the beginning of the synchronization process, the partners only know the weight configuration
of their own neural network, so that IAB = 0. But for fully synchronized weight vectors this
quantity is equal to the entropy of a single Multilayer Perceptron, which is given by

( )12ln0 += LKNS

in the case of uniformly distributed weights.

The neural key-exchange protocol is an application of neural synchronization. Both partners A
and B use a Multilayer Perceptron with the same structure. The parameters K, L and N are public.
Each neural network starts with randomly chosen weight vectors. These initial conditions are kept
secret. During the synchronization process, only the input vectors xi and the total outputs τA, τB

are transmitted over the public channel. Therefore each participant just knows the internal
representation (σ1, σ2, . . . , σK) of his own Multilayer Perceptron. Keeping this information secret
is essential for the security of the key-exchange protocol. After achieving full synchronization A
and B use the weight vectors as common secret key. The main problem of the attacker E is that
the internal representations (σ1, σ2, . . . , σK)  of A’s and B’s Multilayer Perceptrons are not known
to her. As the movement of the weights depends on σi, it is important for a successful attack to
guess the state of the hidden units correctly. Of course, most known attacks

use this approach. But there are other possibilities and it is indeed possible that a clever attack
method will be found, which breaks the security of neural cryptography completely. However,
this risk exists for all cryptographic algorithms except the one-time pad.

2.7 Type 7 Attack

For the simple attack E just trains a third Multilayer Perceptron with the examples consisting of
input vectors xi and output bits τA. These can be obtained easily by intercepting the messages
transmitted by the partners over the public channel. E’s neural network has the same structure as
A’s and B’s and starts with random initial weights, too.

In each time step the attacker calculates the output of her neural network. Afterwards E uses the
same learning rule as the partners, but τE is replaced byτA. Thus the update of the weights is
given by one of the following equations:

• Hebbian learning rule:
( ) ( )( )BAAE

i
A
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E

ji
E xwgw ji  ΘΘ+=+

,,,
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Anti-Hebbian learning rule:

( ) ( )( )BAAE
i

A
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E
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E xwgw ji  ΘΘ−=+
,,,

Random walk learning rule:

( ) ( )( )BAAE
iji

E
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E xwgw ji  ΘΘ+=+
,,,

So E uses the internal representation (σ1, σ2, . . . , σK)  of her own network in order to estimate
A’s, even if the total output is different. As τA ≠ τE indicates that there is at least one hidden unit

with
E
i

A
i  ≠ , this is certainly not the best algorithm available for an attacker.

2.8 Type 8 Attack

The geometric attack performs better than the simple attack, because E takes τE and the local
fields of her hidden units into account. In fact, it is the most successful method for an attacker
using only a single Multilayer Perceptron. Similar to the simple attack E tries to imitate B without
being able to interact with A. As long as τA = τE, this can be done by just applying the same
learning rule as the partners A and B. But in the case of  τE ≠τA E cannot stop A’s update of the
weights. Instead the attacker tries to correct the internal representation of her own Multilayer

Perceptron using the local fields
E
K

EE hhh ...,, ,21 as additional information. These quantities can be

used to determine the level of confidence associated with the output of each hidden unit. As a low

absolute value
E
ih indicates a high probability of

E
i

A
i  ≠ , the attacker changes the output E

i

Of the hidden unit with minimal
E
ih and the total output τE before applying the learning rule. Of

course, the geometric attack does not always succeed in estimating the internal representation of

A’s Multilayer Perceptron correctly. Sometimes there are several hidden units with
E
i

A
i  ≠ . In

this case the change of one output bit is not enough. It is also possible that
E
i

A
i  = for the

hidden unit with minimal
E
ih , so that the geometric correction makes the result worse than

before.

2.9 Type 9 Attack

With the majority attack E can improve her ability to predict the internal representation of A’s
neural network. For that purpose the attacker uses an ensemble of M Multilayer Perceptrons
instead of a single neural network. At the beginning of the synchronization process the weight
vectors of all attacking networks are chosen randomly, so that their average overlap is zero.
Similar to other attacks, E does not change the weights in time steps with τA ≠τB, because the
partners skip these input vectors, too. But for τA = τB an update is necessary and the attacker
calculates the output bits τE,m of her Multilayer Perceptrons. If the output bit τE,m of the m-th
attacking network disagrees with τA, E searches the hidden unit i with minimal absolute local field

mE
ih ,
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.Then the output bits
mE

i
, and τE,m are inverted similarly to the geometric attack. Afterwards the

attacker counts the internal representations ( )mE
K

mE ,,
1 ,..., of her Multilayer Perceptrons and

selects the most common one. This majority vote is then adopted by all attacking networks for the
application of the learning rule. But these identical updates create and amplify correlations
between E’s Multilayer Perceptrons, which reduce the efficiency of the majority attack.
Especially if the attacking neural networks become fully synchronized, this method is reducedto a
geometric attack. In order to keep the Tree ParityMachines as uncorrelated as possible, majority
attack and geometric attack are used alternately. In even time steps the majority vote is used for
learning, but otherwise E only applies the geometric correction. Therefore not all updates of the
weight vectors are identical, so that the overlap between them is reduced. Additionally, E replaces
the majority attack by the geometric attack in the first 100 time steps of the synchronization
process.

2.10 Type 10 Attack

The genetic attack  offers an alternative approach for the opponent, which is not based on
optimizing the prediction of the internal representation, but on an evolutionary algorithm. E starts
with only one randomly initialized Multilayer Perceptron, but she can use up to M neural
networks. Whenever the partners update the weights because of τA = τB in a time step, the
following genetic algorithm is applied:

• As long as E has at most M/2K−1 Multilayer Perceptrons, she determines all 2K−1 internal

representations ( )E
K

E  ,...,1 which reproduce the output τA. Afterwards these are used to update
the weights in the attacking networks according to the learning rule. By doing so E creates 2K−1

variants of each Multilayer Perceptron in this mutation step.

• But if E already has more than M/2K−1 neural networks, only the fittest Multilayer Perceptrons
should be kept. This is achieved by discarding all networks which predicted less than U outputs
τA in the last V learning steps, with τA = τB, successfully. A limit of U = 10 and a history of V =
20 are used as default values for the selection step. Additionally, E keeps at least 20 of her
Multilayer Perceptrons. The efficiency of the genetic attack mostly depends on the algorithm
which selects the fittest neural networks. In the ideal case the Multilayer Perceptron, which has
the same sequence of internal representations as A is never discarded. Then the problem of the
opponent E would be reduced to the synchronization of K perceptrons and the genetic attack
would succeed certainly. However, this algorithm as well as other methods available for the
opponent E are not perfect.

Table 1. Source size  vs. Chi-Square value

Figure 1 shows graphical representation of table 2.

Stream
Size

(bytes)

Chi-
Square value

(TDES)
[1]

Chi-Square
value

( CKEMLP )

Chi-Square
value

(ANNRBLC)
[8]

Chi-
Square value

(RSA) [1]

1500 1228.5803 2856.2673 2471.0724 5623.14
2500 2948.2285 6582.7259 5645.3462 22638.99
3000 3679.0432 7125.2364 6757.8211 12800.355
3250 4228.2119 7091.1931 6994.6198 15097.77
3500 4242.9165 12731.7231 10572.4673 15284.728
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Figure 1. Chi-Square value against stream size

3. FUTURE SCOPE & CONCLUSION

This paper presented a novel approach for cryptanalysis of key exchange using multilayer
perceptron. In this paper 10 types of attacks has been presented along with analysis. In future
attacks in group key exchange protocol with analysis will be considered.
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