
Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

DOI : 10.5121/acij.2012.3101 1

BREAKING A FEISTEL-TYPE BLOCK CIPHER BY

BACTERIA ENGINEERING

Arash Karimi* and Hadi Shahriar Shahhoseini**1

Electrical Engineering Department,
Iran University of Science and Technology, Tehran, Iran
*
ar_karimi@elec.iust.ac.ir,

**
hshsh@iust.ac.ir

ABSTRACT

In this paper we propose a theoretical method for breaking a block cipher based on a Feistel structure

which is a variant of DES (S-DES) using one pair of (plaintext, ciphertext). Our scheme utilizes bacterial

computing for the first time in cryptanalysis. For this reason, we design and simulate an engineered gene

regulatory network to break S-DES which possesses a superior performance than the other methods

based on DNA computing because it utilizes the power of massive parallelism of DNA molecules as well

as capability of cellular division of bacterial cells which gives our proposed S-DES cracker system the

flavour of massive parallel processing.

KEYWORDS

Feistel ciphers, brute-force cryptanalysis, DNA computing, genetic engineering, Mathematical modelling

1. INTRODUCTION

Computer science community has always looked for innovative approaches to facilitate solving
problems which need a significant burden of computation. In this regard, genetic engineering
techniques or recombinant DNA technology has made tremendous progress during the last
decade to design genetically engineered machines to do simple computations inside a living
organism [1]. The inherent cell division process that takes place in living cells of bacteria make
bacteria valuable tools in constructing machines to solve computationally hard problems that
require exponential steps in the size of the input. A practical problem that is considered
computationally hard is Cryptanalysis which is the art and science of breaking ciphers and is
assumed to be a practical problem and usually takes a long time to be accomplished using single
silicon computers because of exponential computation steps in the size of the input it demands
and also for impractical and unusual side information that is mandatory for applying non-naïve
cryptanalytic techniques. For this reason, in order for a computationally hard problem to be
solved within an appropriate period of time, we should make use of the computational power
offered by a group of silicon computers working in a parallel or distributed fashion. This
approach needs those computers to be synchronized which is a demanding task and also it
utilizes a big burden of computational resources which is expensive and scarce. In this respect,
the idea of using DNA molecules to solve computationally hard problems which was first
proposed by Adleman [2] opened new horizons in biologically-inspired computation. After this
evolutionary breakthrough, the idea of utilizing bacteria to solve NP-complete problems was
introduced that considered the process of cell division which takes place naturally in bacteria
cells as generative power required for doing computations.

 In [3] M. Elowitz and S. Leibler constructed an artificial genetic oscillator in cells using a
synthetic network of repressors and they called it the repressilator. In another issue of Nature,

1 Corresponding author: H.S.Shahhoseini, email :hshsh@iust.ac.ir

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

2

T. Gardner et al. constructed a toggle switch made of genes. The toggle in the second article
forms the basis for genetic applets- self-contained, programmable, synthetic gene circuits for the
control of cell function [4]. Weiss in [5] showed how to use the quorum-based cell-to-cell
communication mechanism between bacteria to provide a framework to construct bacterial
devices. In [6] a proof-of-concept experiment was conducted that utilized genetic engineering
methods to solve the burnt pancake problem (BPP) which is a permutation sorting problem and
is in general, NP-complete and in [7] a bacterial computer was proposed and built with similar
methods of [6] for solving the Hamiltonian path problem which is another NP-complete
problem.

Boneh et al. in [8] gave the first proposal for a DNA computer to break a cipher that they chose
to be the data encryption standard (DES) [9]. Roweis in [10] proposed a model for molecular
computation. In [11] an algorithm for breaking DES was proposed using P-systems. In [12] a
method utilizing networks of evolutionary processors with parallel string rewriting rules
(NEPPS) has been proposed to break the data encryption standard (DES). In this paper we aim
to propose and simulate a gene regulatory network to break simplified data encryption standard
(S-DES). The rest of the paper is organized as follows. In section 2, we introduce preliminary
backgrounds which are mandatory for understanding the concepts of the proposed S-DES
cracker system. The proposed model is presented in section 3. In section 4 simulations of the
paper are presented. Section 5 is devoted to the performance evaluation of the proposed scheme;
and finally in section 6 conclusions are drawn.

2. PRELIMINARY BACKGROUNDS

In this section, the background materials which are mandatory for conceiving the proposed
method of are explained. In the first part, the process of quorum sensing in E. coli is explained
and then, a brief note on the considered cipher which we aim to cryptanalyze is presented.

2.1. Quorum sensing in bacteria

The LuxR quorum sensing system is common among the Vibrio family. The LuxR system is
underpinned by three quorum sensing molecules which are those that are the signalling
molecule HSL, the HSL synthase LuxI and the transcriptional regulator LuxR [13]. HSL is
generated in the cell by either diffusion through the cell membrane from the external
environment or within the cell. Whilst in the cell it may bind to LuxR. Two HSL molecules
form a tetramer with two complementary LuxR molecules that form a complex which can
activate the lux operon. This operon contains the genes that encode LuxI plus the luxR gene that
is located upstream and is constitutively produced as well as those that are responsible for
production of GFP [5].

2.2. The considered cipher

We have chosen the reduced version of the DES algorithm (S-DES) in order to mount and
simulate our cryptanalytic attack. The above-mentioned cipher has been introduced and
described in [14]. It has similar properties of DES but deals with a smaller block and key size (it
uses a 10-bit key and operates on 8-bit message blocks).

3. THE PROPOSED MODEL

Our approach to break the S-DES cipher is a brute force one in which possessing a pre-specified
(plain-text, cipher-text) pair, we wish to find the secret key. To achieve this goal we use the
graph shown in Figure 1 which is similar to the NEPPS graph of [12] with some modifications.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

3

We represent the underlying graph of Figure 1 with Equation (1) and similar to [12], we aim to
design a network of processors with parallel string rewriting rules. In each node of the graph of
Figure 2 a specific part of the attack takes place such that in node outY the secret key can be

found. In node inY we produce all possible keys that are shown by ia (101 ≤≤ i) in which i

shows the position of the key bits and ia encodes zeros and ones. The procedure for generating

all possible keys is demonstrated through the below algorithm.

Algorithm 1. Generation of all possible initial keys:

In order to generate all possible keys in node inY we use the graph of Figure 2 in which as

proposed in [15], all possible paths that initiate from 1a and terminate at na show all n-bit

binary numbers such that 1+iii aba and 1+′ iii aba encode logical zero and one, respectively, in

the i th bit of the key.

All in all, there exists 3n-2 vertices in graph of Figure 2 that from now on in this paper we call it
Lipton graph and each vertex of Lipton graph is encoded by DNA molecules such that it
represents a gene and furthermore, without loss of generality, we assume that vertices 1a and

na encode input and output vertices of the graph, respectively. The genes that encode vertices

except na are divided in two halves of 3′ and 5′ and each edge that starts from ix and ends

with jy in which ij = or 1+= ij , which we demonstrate by ji yx , is defined as follows: the

second half (3′) of the gene that encodes ix if placed in the left hand side of the first half (5′)

of the gene that encodes jy , define the edge that encodes ji yx . Just like [16-18], we utilize the

Hin/hixC recombinase systems of Salmonella typhimurium bacterium in order to flip between
different combinations and therefore make all possible keys. Indeed, in nature, Salmonella
typhimurium bacterium is capable of inverting one segment of its genome DNA so as to switch
between one gene to another and in this way it can make its intracellular surface covered with
another protein. This phenomenon can be utilized to invert a gene that is placed between two
hixC sites such that under exposure of hin proteins, the DNA segment between a pair of hix
sites is cut, inverted and reattached. Once we encode Lipton graph with the abovementioned
method, the most significant advantage of bacterial computing can be utilized in which knowing
the fact that an E. coli bacterium divides every 20-30 minutes, a billion E. coli can grow
overnight and therefore, a billion equal and independent bio-processors can be made ready in a
single culture. Now, if each cell of E. coli is exposed to hin protein, each cell inverts its DNA
segment that is between two hix sites. In this way, the DNA edges that are placed between hix
edges frequently reverse their direction and hence, random directions and configurations of the
graph edges are produced. To make sure that all represented paths of Lipton graph encode all
possible n-bit numbers, the plasmid that is going to encode Lipton graph begins with 5’ half of
the gene that encodes 1a and a transcription terminator (TT) is used to encode na . By

generating all possible paths of Lipton graph that begins with 1a and ends in na , a bacterial

population is produced and therefore in this stage, all possible keys have been produced
autonomously from only a single initial key string and through bacterial cell proliferation.

To break S-DES we assume the following initial configuration for nodes: initially, all nodes are
empty except node inY that contain }.........{ 710710910 eeemmmaaa ′′′′′′ in which im and ie ′′

(70 ≤≤ i) demonstrate 8-bits of plaintext and cipher-text respectively and ia (90 ≤≤ i)

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

4

show key bits. Additionally, the solution that contains all possible keys is kept in node inY and

therefore, initially in all strings of node inY only the substring 710710 eeemmm ′′′′′′ is fixed and

the number of strings which is in node inY equals the number of all combinations of the

substring 910 ...aaa . In addition to generation of all possible keys in node inY , the initial

permutation operation takes place in inY according to Equation (1).

3152046776543210 mmmmmmmmmmmmmmmm → (1)

The permutation mentioned in Equation (1) can be accomplished by the Hin/hix recombinant
systems

Figure 1. Attack graph for S-DES

Figure 2. The graph of generation of all possible initial keys (Lipton graph)

and engineering bacteria to solve the burnt pancake problem (BPP) with two inputs [6] in a
series of consecutive operations of flipping the bits as shown in the proposed algorithm.

Algorithm 2. Design and engineering bacteria to accomplish initial permutation (IP).

a) Reorder the numbers of the left hand side of Equation (1) that have a difference equal to “1”
so that they are arranged in their correct order dictated by the right hand side of Equation (1).
i.e. if initially in the left hand side of Equation (1) “2” is placed before “1”, these numbers will
be reordered and otherwise, the order of numbers of “2” and “3” must be investigated and this
step goes on in this way until numbers of “7” and “8” are taken into consideration.

b) Repeat step I for numbers with difference 2, 3 and 4, respectively and rearrange the numbers
if necessary.

c) After analyzing numbers with difference 4, if the right hand side of Equation (1) is not yet
equal to the derived sequence, repeat from step (a) until we get to the sequence dictated by the
right hand side of Equation (1).

Using algorithm 1, we can achieve the permutation of Equation (1) in 16 steps of ordering. All
in all, we demonstrate sequence of the required flips in Equation (2).

...

...

...

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

5

76402513

4760251347602531476205314672053106724531

0642753106127534061257340412375604123756

021437560214365702143570213456701234567

)7,6(

)1,3()0,2()7,6()4,0()7,4(

)4,1()7,5()6,4()5,3(

)4,2()7,6()6,5()4,3()2,1(

aa

aaaaaaaaaa

aaaaaaaaa

aaaaaaaaa

(2)

The result of the last derivation of Equation (2) equals to right hand sequence of Equation (1).
And since in accordance with [6] to reorder two numbers we need three steps of flipping, using
Hin/hix recombinant systems of Salmonella bacteria, in order to accomplish the initial
permutation of S-DES, totally, we need 16×3=48 flipping operations. After applying initial
permutation to the given plaintext, we achieve 0L and 0R that are higher and lower order four

bits of the attained plaintext in the previous step, respectively. After the abovementioned
operations in inY , the strings existing in this node, leave inY and enter into 1Y . The operation of

communication of strings from one node to its neighbourhood and its practical realization and
simulation is justifiable with the help of communication between bacterial communities and the
concept of quorum sensing explained in section 2.1. In node 1Y by applying permutation PC1

which is depicted in table 1 to the 10-bit key, we get to 00DC . In table 1 the upper line

demonstrates C0 bits and the lower bits are D0 bits and numbers of 0 to 9 belong to key bits.
After applying a single circular left shift to C0 and D0 we achieve C1 and D1, respectively. By
concatenating C1 and D1, we get C1D1. Therefore, the first bit of K1 is the third bit of C1D1. PC1
and circular left shifts can be accomplished using Hin/hix recombinant systems as shown in
Equations (3) and (4).

Table 1. PC1 permutation for S-DES

9 7 3 8 0

2 6 5 1 4

41562083799876543210 mmmmmmmmmmmmmmmmmmmm → (3)

973802651497382065149783206514

9783602514978360521497836052419780635241

798063524170985362417092536841

7092586341705298134630529817463012985746

301298547603129854760312785496

0312765498031274569803127456890312645789

0312546789031245678902134567890123456789

)0,2()3,8()2,6(

)2,5()1,4()3,0(

)9,7()8,0()8,2()3,8(

)6,1()7,3()5,1(

)7,4()3,0()9,7()8,6(

)6,4()9,8()7,6(

)6,5()5,4()3,2()2,1(

aaaaaa

aaaaaa

aaaaaaaa

aaaaaa

aaaaaaaa

aaaaaaa

aaaaaaa

(4)

In accordance with Equation (4), permutation PC1 is realizable in 25×3=75 flip operations.
Circular left shift can be accomplished utilizing Hin/hixC recombinant systems, as well.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

6

In node Y1 other than generation of C1D1 from the initial key, R0 which contains four bits should
be converted to eight bits. This operation is applicable using E function which is shown in table
2.

Table 2. E selection table of S-DES

3 0 1 2 1 2 3 0

E-function can be accomplished by permutation shown in Equation (5) which is implementable
by Hin/hix systems.

3012123001230123 → (5)

3012031201320123)3,0()3,1()3,2(
aaaaaa (6-1)

1230120310230123)3,0()2,0()1,0(
aaaaaa (6-2)

Equations (6-1) and (6-2) can be done in 6×3=18 flips.

After generation of intended strings in Y1 and passing through block C1-21, strings will get to Y21
in which 10-bits of C1D1 which were generated in the last step, reduce to 8-bits. This
permutation (so-called PC2) is shown in Equation (7).

0 1 2 3 4 5 6 7→3 1 7 5 0 6 4 2 (7)

The resulting strings in node Y22 are forwarded to node Y23 in which 8-bits of k1 which were
previously generated in node Y22 are XORed with 8-bits of di (1≤i≤8) which were produced in
node Y1. We propose to do XOR operation using communication between strains of Vibrio
Fischieri bacteria as shown in Equation (8) and depicted in Figure 3.

A⊕B=AND[OR(A,B),NAND(A,B)] (8)

To implement XOR gate using the concept of quorum sensing, as demonstrated in [19], we
assume two inputs of the XOR gate (i.e. A and B) as two inducers of appropriate promoters that
activate the cascade that implements XOR gate. These inputs are read by bacteria of Figure 3
that according to presence or absence of each molecule produce a different response. These
outputs are AHL molecules and by generation of them by NAND and OR bacterial gates of
Equation (8), the produced AHL molecules are written in agar plate solution which are then
received by AND bacterial gate that accomplishes the intended task by activation of its internal
state. The operations leading to doing XOR can be represented as follows: the OR gate,
expresses luxIa by activation of a promoter that needs an activator. i.e. assuming that Arabinose
and IPTG are inputs to the XOR gate, if any of these sugars are existing, luxIa is expressed and
output of OR gate becomes ‘True’. Output of Figure 3 gives the output of XOR function.

It is noteworthy that by expression of mucAB gene, all activities of transcription factor AlgT is
repressed and if output of the XOR gate is ‘One’, luxIout gene in bacteria strain is activated.
After doing XOR on strings existing in Y1 and Y22 that flow into Y23, resulting strings are then
sent to node Y24 in which output of S-Boxes S0 and S1 are calculated. S-Boxes of S-DES, map
4-bit binary strings to 2-bit binary strings in accordance with a predefined look-up table. In
order to realize S-Box, S0, at first, we must be able to recognize left hand side bits of the
corresponding lookup table and then, the operation of substitution should take place in two bits

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

7

luxIa

luxRa luxRb

Arabinose

AlgT mucAB

luxIout

IPTG
luxIb

of it. We provide a scheme for encoding the left 4-bits of S-Box inputs as follows: the ith-bit
from the left hand side is encoded by pi (piRev) (1≤i≤4) promoter if this bit is ‘one’ (‘zero’).

Figure 3. Genetic circuit for implementation of logical XOR [19]

piRev is promoter pi in the reverse order. It is noteworthy that all promoters are flanked by hixC

sequences. By activation of promoter pi in the straight order which encodes ‘one’,)1(
igp is

activated which encodes ‘one’ in the ith-bit. And by activation of promoter piRev which is pi in

the reverse order,)0(
igp is activated that encodes ‘zero’ for in the ith-bit of the input of S-Box.

After doing logical AND operation on the received signals for expression of all)(j
igp s

(1≤i≤4,j=0,1), a unique 4-bit sequence is defined. The HinLVA gene which belongs to
Salmonella typhimurium should also be cloned in a different plasmid and by co-transformation
of these plasmids into the bacterial cells, it is possible to do the inversion operation. We should
note that after recognition of the left hand side bits, only their first two bits will be substituted
and this is possible by Hin-mediated inversion of its corresponding promoter whenever
necessary. After this operation, the HinLVA plasmid will be removed from the resulting
solution. For instance, in order to substitute ‘1111’ with ‘00’ first, we should recognize ‘1111’
uniquely. To this end, we encode ‘1111’ as shown in Equation (9) and the plasmid encoding all
possible inputs of S- Box is demonstrated in Figure 4.

)9(

)0(
1

)1(
44

)0(
4

)1(
33

)0(
3

)1(
22

)0(
2

)1(
11

101 gpplasmidAmpRrepApSCplasmid

hixCgphixCphixCgphixCgphixCphixCgp

hixCgphixCphixCgphixCgpRBShixCphixC

CutSiteCutSite −−−−

−−−−−−−−−−−−

−−−−−−−−−−−−

CutSiteplasmid is the cut site point of the plasmid which encodes inputs of S-Box. RBS stands

for Ribosome binding site. AmpR is the Ampicillin resistance coding gene and repA pSC101 is
the origin of replication. Therefore, Y24 contains all plasmids that are waiting to receive output
of Y23 and by receiving appropriate signals from Y23, appropriate promoters are induced in them
and different genes (different luxI-luxR pairs) are expressed. By expressing all genes that are
cloned in the input plasmid, HinLVA gene which has been cloned in another plasmid that
corresponds to the input plasmid, is expressed and then both plasmids are transformed into a
common cell and Hin acts on two first bits of plasmid and reverses direction of the genes
between two hixC sites and therefore, when input bits are to be changed, gene direction is
reversed and when there is no need to change direction of genes, HinLVA remains functionally
inert. For instance, in substitution of ‘1111’ with ‘00’, the first 2-bits of input and therefore,
direction of promoters p1 and p2 must change. We should note that Hin protein works only on

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

8

rep
A

Amp
R Plasmid cut-point

the gene between two hixC sites and may not reorder two different genes in a plasmid and
therefore, only the substitution operation is possible.

Figure 4. The proposed encoding scheme of inputs of S-box for S-DES

After doing S-Box substitutions, strings that exist in Y24 enter into Y25 in which a permutation
operation takes place as Equation (10) demonstrates. This permutation is realizable through
Hin-mediated flipping mechanism as Equation (11) suggests.

10320123 aa
p (10)

103210230123)3,2()1,0(
aaaa (11)

Permutation, p, needs 2×3=6 inversion operations in total. Strings of Y25 are forwarded to Y2
after generation. In Y2, outputs of Y25 are XORed with l0i (1≤i≤4) which are outputs of node Yin.
Output of Y2 is R1 or the output of the first round of S-DES. Next, these strings are entered into
node Y26 in which R0 which contains 4-bits by itself is converted into 8-bits. This
transformation looks like the function that takes place in node Y1 and utilizes the same E-
function (Equation (5)). The generated strings of Y26 are then received by Y27 in which
generated bits of Y25 as well as output of node Y22 are removed because they are not useful
anymore. Next, in output of node Y27, L1 and R1 are calculated and L1R1 is treated like L0R0. In
Y31 we convert the 10-bit key to 8 bits and in Y32, permutation of Equation (3) is applied. In Y33,
output of Y31 is XORed with output of Y26 and in Y34, S-Box tables are applied to the output of
Y33. In Y35, output of Y34 goes to P-Box of Equation (7) and in Y3, R2 (right half of the last
round) is assumed equal to R1 and L2 (left half of the last round) is assumed equal to XOR of R0
with output of Y35. In node Y36, no change is made to strings and nodes and in Y37, output of Y35
and Y32 are removed and ultimately, in Y37 we get to R1 and R2 and strings of Y37 are received
by Y4 after departure from Y37. In Y4, inverse of initial permutation (called IIP) is applied to
R1R2 string which is in Y4. The last mentioned operation is similar to applying initial
permutation from genetic engineering point of view. Eventually, in Y4 we have achieved cipher-
text which is shown by 821 ...hhh . In this stage, we should examine that whether in each one of

210 strings existing in Y4 the calculated cipher-text (821 ...hhh) equals with the given cipher-text

or not. This operation takes place in Yout.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

9

4. SIMULATIONS

In this section, mathematical modelling for gene and protein interactions that we have used in
our simulations will be described.

Binding of a ligand to a molecule has been modelled by Hill equation as follows. If we assume
that the fraction of a molecule saturated by a ligand (i.e. the probability of binding the molecule
to the ligand) is shown with biobPr , then Equation (12) holds in which][L is concentration of

the ligand; 50K is dissociation constant which is the concentration which produces Prob equal

to 5.0 and n is the Hill coefficient which describes binding cooperativity [20]. Transcription of
an mRNA molecule is regulated by transcription factors in active form which are either
activators or inhibitors and can increase or decrease the probability of binding RNA polymerase
to the promoter, respectively. The equation that models regulated transcription is modelled with
Equation (13).

In which trobPr is the probability of transcription of the gene;][T is concentration of the

transcription activator (TF) in active form and n and 50K are defined as above.

nn

n

bi
LK

L
ob

][

][
Pr

50 +
=

(12)

nn

n

tr
TK

T
ob

][

][
Pr

50 +
=

(13)

For unbound promoter, Equation (14) holds if TF inhibits transcription. Note that in Equation
(14) [T] depicts concentration of the transcription inhibitor in active form.

nn

n

in
TK

K
ob

][
Pr

50

50

+
=

(14)

The ODE of Equation (15) can be written to describe activated transcription in which maxV is

the maximum transcription rate,][m and][T are concentrations of mRNA molecule and
transcription activator in active form, respectively. delta is mRNA degradation constant and ‘a’
is the leakage factor that can model promoter basic activity and is a percentage of maxV . For

modelling inhibited transcription we may write Equation (19) and constitutive transcription can
be described by Equation (17) [21].

]}[
][

][
)1({

][

50
max m

TK

T
aaV

dt

md
nn

n

δ−
+

−+=
(15)

]}[
][

)1({
][

50

50
max m

TK

K
aaV

dt

md
nn

n

δ−
+

−+=
(16)

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

10

][
][

mc
dt

md
δ−=

(17)

Assuming that the TF can be activated or inhibited by an inducer factor, which is considered as
an external input, using Equation (18) concentration of bound and unbound TFs can be
expressed as a function of the inducer factor.

tnn

n

b T
TK

I
T][

][

][
][

50 +
=

(18)

tnn

n

bu T
TK

K
TT][

][
][1][

50

50

+
=−=

(19)

In Equations (18) and (19),
bT][,

uT][,
tT][and][I are concentrations of bound TF, unbound

TF, total concentration of the TF and concentration of the inducer, respectively.

ODE for protein production can be written as Equation (20) suggests in which protein
production and degradation are linear.

][][
][

Pm
dt

Pd
βα −=

(20)

In Equation (20)][P and][m are concentrations of protein and mRNA molecule, respectively

and α and β are translation and protein degradation rates, respectively.

Cell population growth in generation of all possible keys is modelled by ODE of Equation (21)
when we have one type of cell. In Equation (21), N denotes the number of cells, mN denotes

the maximum allowed number of cells due to nutrient limitation, µ is a constant coefficient, γ

is the rate constant,][AntiBio is concentration of antibiotics, η is constant for specific genes

and][AntiBioR is concentration of antibiotic resistance enzymes. While two types of cells are
used, Equation (22) can be written to describe dynamics of the number of cells.

)()1(AntiBioRAntiBioN
N

N
N

dt

dN
AntiBioAntiBio

m

A ηγµ −−−=

(21)

)()1(AntiBioRAntiBioN
N

NN
N

dt

dN
AntiBioAAntiBio

m

BA

AA

A ηγµ −−
+

−=

(22)

Expression level of resistance gene can be regulated by AHL-R protein complex. These R
proteins are LuxR proteins that are synthesized sufficiently and therefore, we assume that the
concentration of complex depends only on the AHL concentration. In this regard, we model
expression of resistance genes using Equation (23) [22].

AntiBioRdioRleakyAntiB
mHSLOC

HSLOC
k

dt

dAntiBioR
AntiBioRn

AntiBioR

n

n

AntiBioR −+
+

=
63

63

(23)

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

11

Note that in Equation (23) ioRleakyAntiB denotes leaky production of antibiotic resistance

enzyme, AntiBioRk denotes the maximum synthesis rate of antibiotic resistance enzyme, n is Hill

coefficient and AntiBiom denotes the AHL concentration which is mandatory to produce half

level of antibiotic resistance enzymes.

Synthesis and degradation of AHL has been modelled in the course of our simulations using
Equation (24). Note that AHL is enzymatically synthesized by I protein from some substrates
that are assumed to be sufficient so that we can estimate AHL synthesis rate to be proportional
to the cognate I protein. The degradation rate of AHL is also assumed to decay with first-order
kinetic which is included in Equation (24).

HSLOCdNLuxIk
dt

HSLOCd
HSLOCHSLOC 63...

63
6363 −=

(24)

Production of protein under control of AHL dependent promoter can be modelled by Equation
(25).

LuxId

m

HSLOC

k

dt

dLuxI
LuxI

n

LuxI

LuxI .
1)

63
(

−

+

=

 (25)

In Equation (25), LuxIk denotes maximum production rate of LuxI which is achieved when the

concentration of AHL is zero. n is Hill coefficient and LuxIm denotes the AHL concentration

which is required to produce half level of I proteins and LuxId is constant coefficient. Based on

the parameters which have been adopted from [22-27], we simulated different parts of our
cipher cracking system.

250 min 280 min 310 min 340 min 370 min

Figure 5. Simulation of growth of E. coli in different times

In order to generate all initial keys and growing the culture using cellular division on agar plate,
a simulation has been conducted to model proliferation and mortality rate of bacteria which
basically utilizes differential equations to provide necessary means for modelling. Results of
simulations are depicted in Figure 9 in which half-life of the initial plate containing all possible
keys can be estimated. We assume that bacteria culture grows on a radially symmetric agar plate

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

12

with diameter of cm9 and we simulate diffusion and distribution of bacterial culture as well as
nutrient distribution in Figure 6 [28]. The rest of parameters for simulations are as follows.

Table 3. Parameters of simulations

Value Description Parameter
2.8 [OD600] The maximum value of cell

density
mN

1.8 [1/hour] Cell growth rate coefficient
for cell A Aµ

2 [L/g.hour] Antibiotic resistance
coefficient AntiBioγ

[g/L.nM] 0.005 Antibiotic resistance gene
coefficient

AntiBioη

[1/hour] 8 Hill coefficient for antibiotic
AntiBiom

9cm

The diameter of culture

d

M
810− Threshold concentration for

communication between
layers of circuit

Threshold

Figure 6. Diffusion of bacteria culture (left) and nutrient (right) on agar plate

For encoding all possible combinations of a 10-bit binary number which is to be used as the
key, genes are cloned in a plasmid as shown in Figure A.1.

Figure 7. Graph for representation of all keys

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

13

In Figure A.1, gene halves are demonstrated by and . And hixC sites are depicted
with . .. Also transcription terminator gene is shown with . By exposure to Hin protein
We can produce all combinations of ia , ib and jb)101,111(≤≤≤≤ ji in plasmid of

Figure A.1 which is depictive of all possible combinations of the key. Note that a gene can be
expressed if and only if a promoter, an RBS and a coding sequence exist for it. In 3’ end, a
transcription terminator (TT) exists to prevent transcription mechanism of transcription machine
and has been put in the last node of the graph. We have simulated the process of generation of
all possible keys from an initial key under exposure of Hin protein using BioBrick library with
MATLAB software [29]. Therefore, by putting together 31 different genes each of which is
representative of a specific node, and by finding appropriate cut points for insertion of 26bp-hix
sites as well as RBS sequences between gene halves and by putting promoter PBad at the
beginning of genes and cloning all these sequences into a BioBrick standard plasmid [28], we
can get to Lipton graph of Figure 7. Furthermore, another plasmid is to be made that contains
HinLVA gene. And after co-transformation of these plasmids into the cell and exposure of Hin
protein to the genes located between hixC sites in the plasmid containing Lipton graph, we can
achieve to all possible combinations of the key. The secondary plasmid containing HinLVA is
also simulated using MATLAB simulink as shown in Figure 8.

Figure 8. The secondary plasmid containing HinLVA gene (Kanamycin vector)

In Figure 8, AraC is repressor of PBad promoter and Hin gene is characterized with resistance
against Kanamycin antibiotic. In this stage, cells that carry primary and secondary plasmids are
appropriate for usage in a plate containing Ampicillin and Kanamycin after transformation to E.
coli cells. The resulting agar plate contains cells that have two plasmids, one of which is the
vector of initial genes in an scrambled order (the Lipton graph encoding plasmid or primary
plasmid) that from now on in this paper, is called Amp vector and the other one (secondary
plasmid) is vector of Hin gene that we name Kan vector. The operation of Hin-mediated
recombination is simulated by inverting the DNA sequence between two sites which is similar
to Equation (26).

hixhixhixhix
TAGCA

ATCGT

TGCTA

ACGAT → (26)

In this way, all possible paths of Lipton graph that begin from 1a and end with na and

introduce all possible keys are represented. By simulation of cutting the BioBrick standard
plasmid using appropriate enzymes and then simulation of ligase enzyme to paste different gene
halves in the abovementioned plasmid [29] using MATLAB and finding cut points and then
insertion of hix DNA sequences between genes, we simulated Amp plasmid and by simulation
of cutting for Kan plasmid and cloning HinLVA gene in it, Kan plasmid is also simulated.
Afterwards, by inversion of genes existing between two hix sites between any two consecutive
nodes, we can get to all possible combinations of the key. The graph of Figure 9 demonstrates
all naturally-generated bacteria in different times.

After generation of all strings in Yin since there are a multitude of meaningless combinations
that are generated and do not encode Lipton graph of Figure A.1, we must design and simulate a
filter to select molecules that represent all possible key combinations. Therefore, only those
combinations are desired for us for whom the gene that is activated by signal generated from
Equation (27) is expressed.

RBS TT TT HinLVA AraC PC TT TT

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

14

Figure 9. Natural growth of E. coli bacteria in different times

))()(...)((1

||||

11

||

111

11

+

−−−−−−−−
′′

−−−−−−−−−−
′′

−−

−−−−−−−−
′′

∧′∨∧∧′∨∧∧′∨∧

−

n

b

nnn

b

nn

b

abbabbbba

nn

(27)

In Equation (27),)1(,),11(njbbnia jji ≤≤′+≤≤ are signals that represent expression of

genes ia , jb and jb′ respectively. All possible combinations of the key are generated if and

only if the logical expression of Equation (27) becomes True and then all bacterial colonies
containing all possible combinations are sent to the next node. We propose the genetic circuit
depicted in Figure A.2 to implement Equation (27).

Therefore, by expression of genes of Figure A.2 that contain all possible combinations which
demonstrate cipher key, these strings are sent to the next node. The communication interface
node can be simulated as shown in Section 4.2.

4.1. Simulation of XOR operation

We simulated the XOR operation in MATLAB and to evaluate our XOR scheme, we utilized
GFP protein as the output of our genetic circuit. The graph for expression of GFP in different
times has been shown in Figure 10 and behaviour of molecules containing proteins and mRNAs
is demonstrated in Figure 11.

Note that in Figure 10, the dotted curve depicts expression of GFP which belongs to logical one
(01 or 10 inputs) and the other curve marked by demonstrates logical zero (00 or 11 inputs).

4.2. Designing genetic interface circuit between string generating nodes

 After generation of strings in generating nodes of Figure 1, through genetic circuit of Figure 12,
they are transferred to the next node. It is worthwhile that in Figure 12 iS , 181 ≤≤ i ,

demonstrate generated strings in the thi node.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

15

Figure 10. Expression of GFP vs. time in evaluation of XOR

Figure 11. Behaviour of proteins (left) and mRNAs (right) in calculation of XOR

Figure 12. The proposed genetic interface circuit

The genetic interface circuit between nodes of Figure 1 is simulated and HSL and luxI protein
concentrations over time are shown in Figure 13.

4.3. Simulation of permutation operation by engineering gene networks

We simulated the permutation operation by modelling the problem of string permutation as
solving an instance of the burnt pancake problem using bacteria [6]. A mathematical modelling
based on markov chain model is presented. To this end, we consider random walk on the graph

�
�

����
�� 	

��
���
�

�+1
	��

+1

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

16

of Figure 14. In [6] it is shown that from point A one may arrive at point B by applying three
steps of flipping operations. Figure 14 is the basis for all permutations of S-DES cipher and as
can be seen in Figure 15, the percentage of plasmids that depart from A to B is converged and
therefore, we can engineer bacteria to flip two numbers.

4.4. Design and simulation of the S-box operation

In node Y24, there are plasmids for which promoters need inducers for their activity and are
identified, transformed and extracted as shown below: consider that four bits of input that enter
into S-Box are represented as ai (1≤i≤4) and if we received “1”, direction of the promoters are
not changed and otherwise, their directions are reversed. (Considering that promoters are
between two hixC sequences). This flipping operation takes place by exposing Hin protein to
proper points in plasmid. Therefore, either one of downstream or upstream genes of each
promoter is always expressed and so, zero/one information of node Y23 will be intelligible for
node Y24. Now, to apply S-Box tables, we assume that input strings of S-Box are of the form
a1a2a3a4 in which, ai (1≤i≤4) depicts generated signals in Y23 that have either one or zero
meaning. As a result, the genetic model of Figure15 demonstrates all possible combinations for
S-Box. Due to lack of space, we have shown the S-Box circuit only for substitution of “0000” to
“01” in S0.

Figure 13. Concentration of HSL molecules (left) and protein (right) in genetic interface circuit

Figure 14. The graph of sorting two signed numbers

A

B (1,2) (-1,2)

(-2,-1)
(-2,1)

(2,1) (2,-1)

(-1,-2)

(1,-2)

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

17

Figure 15. Mathematical modelling of behaviour of plasmids in computing P-box and S-boxes

Genetic circuit of Figure A.3 operates as follows. As soon as a specific combination from all 16
possible combinations of four input bits has been identified, a signal is generated that induces
promoter of the plasmid that contains Hin gene which is supposed to convert output plasmid of
S-Box (Erith plasmid that is characterized by resistance against Erythromycin antibiotic) to a
specific combination that is dictated by S-Box table. For instance, in Figure A.3, if logical AND

of output of genes,
0

1luxIP ,
0

2luxIP ,
0

3luxIP ,
0

4luxIP equals to ‘one’, then, input bits of S-Box
are of the form “0000” and by activation of the plasmid carrying HinLVA (that we call

Chloramphenicol), 1ps promoter flanked by hixC sites is reversed,
)0(

1luxIps gene is expressed

that encodes “zero” and promoter 2ps is not reversed. Therefore,
)1(

2luxIps is expressed that
encodes “one” in the output of the S-Box. Hence, chloramphenicol encodes output sequence of
“01”. Genetic circuit functionality of the other 15 combinations of the S-Box table are justified
and designed just similarly.

5. PERFORMANCE EVALUATION OF THE PROPOSED SCHEME

In order to accomplish the initial permutation operation, we need 48 flipping steps. Realization
of permutation PC1 needs 75 flipping operation as well. Implementation of the E- table in the
cipher system needs 18 flipping operation. Applying S-Box table on each input string needs 16
flip operation that generates 32 flipping operation in total. Permutation operation of Equation

(10) also needs 6 flipping operations. PC2 permutation operation needs 45315 =× Hin-
mediated flipping operations. One and two-unit circular left shift operations also need

2137 =× and 30310 =× flipping operations, respectively. IIP operation needs 48 flipping
operations. In each round, 12 XOR operations are mandatory which makes a total number of 24
for our cipher system. In general, 24 XOR operations and 323 flipping operations are required.

6. CONCLUSIONS

In spite of growing interest in developing novel approaches for the state of the art block cipher
design, Feistel schemes and DES-like ciphers remain widely used in practice. Efforts to break
ciphers based on this structure in a naïve fashion yield no much better result than the brute force
attack which exhibits an exponential complexity by increasing the key size [31]. Linear attacks
that are considered as one of the most effective attack on these structures [32] also need

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

18

impractical information on adversary’s side. In this paper we proposed a gene regulatory
network to break Feistel ciphers which utilizes quorum sensing mechanism of Vibrio Fischeri
bacteria and we simulated it to break S-DES cipher. Our proposed scheme exhibits a better
result than previous results on breaking block ciphers using DNA computing as it combines the
advantages gained by inherent cellular division of bacteria as well as massive parallelism
offered by DNA computing.

This main idea of this paper considers some phenomena which take place during in-vivo
biological natural processes or in-vitro operations in genetic engineering laboratories. These
operations are Hin-mediated recombination and quorum sensing. On the other hand, the
required operations for breaking the considered cipher are: generation of all keys from an initial
key; the permutation operation (P-box); the substitution operation (S-box) and the logical XOR
operation. Inspired by these biological operations, in the course of this paper as Figure 16
demonstrates, we proposed to do the computation operations of breaking the cipher according to
the following classification: the operation of generation of all possible keys from an initial key
and P-box and S-box operations are accomplished by Hin-mediated recombination of DNA
strings and also, the logical XOR operation and the communication of strings between string
generating nodes of graph of Figure 1 are done by the quorum sensing mechanism explained in
section 2.1.

Figure 16. Our proposed bacterial computer for breaking S-DES in a nutshell

Although in some papers such as [33], novel and robust ideas for enhancing practicality and at
the same time security of unconventional cryptographic schemes are proposed, but our proposed
DNA computer for breaking the S-DES cipher has shown to be more practical than any other
unconventional computer for doing encryption and decryption such as the quantum computer
for cryptography [34] which is just a potential and hypothetical computer. The practical

The logical
XOR

operation

Communic
ation of
strings

Quorum Sensing

Generation
of all

possible
keys

The
operation
of P-box

The
operation
of S-box

Hin-mediated recombination

Simulation of
Bacterial life-time
and proliferation

Simulation of the
Quorum sensing

and Hin-mediated
recombination

Simulation of
statistical properties

of the designed
genetic circuits

Initialization

Breaking S-DES

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

19

experiments of [6-7] show how near we are to building a computer for cryptanalysis of a
sophisticated cipher.

ACKNOWLEDGEMENTS

The work of this paper is done in Iran University of Science and Technology as a part of MSc
Project which is supported by a grant from Iran Telecommunication Research Center (ITRC).
Authors would like to thank ITRC for their supports.

REFERENCES

[1] Drew Endy (2005) “Foundations for engineering biology,” Nature, 436:449–453, 2005.

[2] Adleman LM (1994): Molecular computation of solutions to combinatorial problems. Science,
 266:1021-1024.

[3] M. Elowitz and S. Leibler (2000) “A synthetic oscillatory network of transcriptional regulators,”
Nature, 403:335–338.

[4] Amos M. (2009) “Bacterial computing,” Encyclopedia of complexity and systems science. pp.
417-426.

[5] Lingchong You, Robert Sidney Cox III, Ron Weiss, and Frances H. Arnold, (2004),
“Programmed population control by cell-cell communication and regulated killing,” Nature, 428,
pp. 868–871.

[6] Harden WL, Heard LH, Jessen EL, Malloy KJ, Ogden BJ, Rosemond S, Simpson S, Zwack E,
Campbell AM, Eckdahl TT, Heyer LJ, Poet JL: Engineering bacteria to solve the burnt pancake
problem. Journal Biol En 2008, 2:8.

[7] Baumgardner J, Acker K, Adefuye O, Crowley ST, DeLoache W, Dickson JO, Heard L, Martens
AT, Morton N, Ritter M, Shoecraft A, Treece J, Unzicker M, Valencia A, Waters M, Cmpbell
AM, Heyer LJ, Poet JL, Eckdahl TT. “Solving a Hamiltonian Path Problem with a bacterial
computer,” Journal of Biological Engineering. 3:11. (2009).

[8] Boneh, D., Dunworth, C., Lipton, R., “Breaking DES Using a Molecular Computer,” Princeton
CS Tech-Report CS-TR-489-95.

[9] National Bureau of Standards: “Data Encryption Standard,” U.S. Department of Commerce,
FIPS, pub. 46, January 1977.

[10] Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N. V., Goodman, M.F., Rothemund, P. W.
K. Adleman, L.M. “A Sticker Based Model for DNA Computation,”

[11] Krishna, S. N., and Rama, R., Breaking DES Using P System. Theoretical Computer Science,
299, 495-508, 2003.

[12] Ashish Choudhary, Kamala Krithivasan, “Breaking DES Using Networks of Evolutionary
Processors with Parallel String Rewriting Rules,” International Journal of Computer
Mathematics, Vol. 86, No. 4, 2009, pp. 567-576.

[13] Alberghini S, Polone E, Corich V, Carlot M, Seno F, Trovato A, Squartini A. “Consequences of
relative cellular positioning on quorum sensing and bacterial cell-to-cell communication,” FEMS
Microbiol. Lett. 292: 149-161. (2009).

[14] Edward Schaefer (1996), “A Simplified Data Encryption Standard,” Algorithm,Cryptologia 96.

[15] R. Lipton, “Using DNA to solve NP-Complete Problems," Science 268, pp. 542-545, April
1995.

[16] Nanassy OZ, Hughes KT: In vivo identification of intermediates stages of the DNA inversion
reaction catalyzed by the Salmonella Hin recombinase. Genetics 1998, 149(4):1649-1663.

[17] Zieg J, Silverman M, Hilmen M, Simon M: Recombinational switch for gene expression.
Science 1977, 196:170-172.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

20

[18] Zieg J, Simon M: Analysis of the nucleotide sequence of an invertible controlling element. Proc

Natl Acad Sci USA 1980, 77:4196-4200.

[19] Ángel Goñi Moreno, “Arquitecturas de comunicaciones para la computación algorίtmica en
poblaciones de bacterias multi-cepa,” Tesis Doctoral, Universidad Polit_ecnica de Madrid ,Año
2010.

[20] Subhayu Basu; “A synthetic multicellular system for programmed pattern formation.” Nature
April 2005: 434, 1130-1134

[21] Bintu, Lacramioara, Terence Hwa. “Transcriptional regulation by the numbers: applications.”
Current Opinion in Genetics & Development 2005, 15:125–135.

[22] Goryachev, A.B., D.J. Toh and T. Lee. “System analysis of a quorum sensing network: Design
constraints imposed by the functional requirements, network topology and kinetic constant.”
BioSystems 2006: 83, 178-187.

[23] Alon, Uri. “An Introduction to Systems Biology Design Principles of Biological Circiuts,”
(2007) London: Chapman & Hall/CRC.

[24] Kepes, A., “Etudes cinetiques sur la galactoside-permease D'Escherichia coli. Biochim,” (1960),
Biophys. Acta 40, 70-84.

[25] Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, Molin S. (1998) “New Unstable
Variants of Green Fluorescent Protein for Studies of Transient Gene Expression in Bacteria.”
Appl Environ Microbiol, 64(6):2240-6.

[26] ETHZ 2007. “Engineering” iGem wiki. 13th August 2009.

[27] Bo Hu, Jin Du, Rui-yang Zou, Ying-jin Yuan, (2010) “An Environment-Sensitive Synthetic
Microbial Ecosystem,” PLoS ONE, volume 5 issue 5.

[28] Frank C. Hoppensteadt, Charles S. Peskin, (2001) “Modeling and Simulation in Medicine and
the Life Sciences,” 2nd Edition, Springer, pp. 321-324.

[29] Knight T, Rettberg R, Chan L, Endy D, Shetty R, Che A: “Idempotent Vector Design for
Standard Assembly of Biobricks”

 [31] M. Wiener, (1993) “Efficient DES Key Search," Crypto 93 rump session.

[32] M. Matsui, (1994) “The first experimental cryptanalysis of the Data Encryption Standard,"
Proceedings Crypto 1994, pp. 1-11.

[33] A. Singh, N. Sharma (2011) “Development of Mechanism for Enhancing Data Security in
Quantum Cryptography,” Advanced Computing: An International Journal (ACIJ), Vol.2, No.3,
May 2011.

[34] Shubhra Mittal, “Quantum Cryptography”, Department of Computer Science, Project report,
 Montclair State University, New Jersey, 2008.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

21

Arash Karimi Received the B.S. and M.S. degrees in the Dep. Of Electrical
Engineering from Amirkabir University of Technology (Polytechnic of Tehran)
and Iran University of Science and Technology (IUST), Tehran, Iran, in 2008
and 2011, respectively. His research interests include cryptography,
unconventional methods in computation with a focus on cryptanalysis,
Biochemical computing, and formal languages and automata.

Hadi Shahriar Shahhoseini received B.S. degree in electrical engineering
from University of Tehran, in 1990, M.S. degree in electrical engineering from
Azad University of Tehran in 1994, and Ph.D. degree in electrical engineering
from Iran University of Science and Technology, in 1999. He is an assistant
professor of the electrical engineering department in Iran University of Science
and Technology. His areas of research include networking, supercomputing and
reconfigurable computing. More than 130 papers have been published from his
research works in scientific journals and conference proceedings. He is an
executive committee member of IEEE TCSC and serves IEEE TCSC as
regional coordinator in middle-East Countries.

APPENDIX

In this section, the genetic circuits designed for different parts of the cryptanalysis are shown.

Figure A.1. The plasmid containing all initial keys of the cipher

RB
S

RB
S

RB
S

RB
S

RB
S

RB
S

RB
S

RB
S

RB
S

…

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

22

Figure A.2. Genetic filter to generate all possible combinations of the key

 .

.

.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.1, January 2012

23

Figure A.3. Genetic circuit for implementation of S-box, S0 in S-DES for substitution of ‘0000’ with ‘01’

S-Box output plasmid (‘01’-encoding
plasmid)

Am

rep

luxlux

luxlux

Eco
Xb

Pst
Sp

Chl

RBS-
HinLVA

T

Col

rep

Erith

luxlux

