
Advanced Computing: An International Journal ( ACIJ ), Vol.3, No.1, January 2012 

DOI : 10.5121/acij.2012.3105                                                                                                                     65 

 

COLLABORATION FOR ENHANCING THE SYSTEM 

DEVELOPMENT PROCESS IN OPEN SOURCE 

DILIGENCE. 

Murtaza Hussain Shaikh
 

Department of Computer and Information Science, Norwegian University of Science 

and Technology (NTNU), Trondheim – Norway.  Phone: +4796826676 
 Shaikh@stud.ntnu.no 

 
 

 

ABSTRACT 

According to different opponents and commercial giants in software industries, the open source style 

software development has enough capacity to complete successfully the large scale projects. But we have 

seen many flaws and loops in collaboration and handling of mega scale projects in open source 

environment. Perhaps the collaboration is a key of successful project development. In this article we 

have tries to identify different feasible and reliable solution to a better collaboration ways in the open 

source system development. Some of the issues also that are found in the development phase of the open 

source have been identified and a proposed solution by explaining Successful communities such as GNU, 

the Apache Software Foundation, and Eclipse Foundation is discusses in this research article.  It must be 

kept in mind that to improvement the collaboration in open source environment both the development 

community and the people should be more creative. 
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1. INTRODUCTION 

As the computer science field has grown to be ubiquitous part of human`s life the need for 

making s software and hardware support to fit the needs of users is constantly increasing. Open 

source development projects are generally internet base communities of system developers. The 

systems that are developed made freely available to all that adhere to the licensing terms 

specified by the open source project. The open source system projects and their development 

processes have spread rapidly and widely, and many thousands exist in today’s era. The number 

of developers and communities participating in each project ranges from a few too many 

thousands and the numbers of users of the software produced by open source systems 

development projects range from few too  many millions [1].  Well known examples of open 

source systems having many users are LINUX / UNIX operating systems, Apache server and 

Perl Programming language. 

The phenomenon of open source systems with better development process is interesting. Its 

functionalities in the market together with its novel modes of operation and security pose major 

and exciting questions regarding lot of uncertainties & risks today concerning our privacy and 

trust, principles by which productive work can best be organized in secure manner. There are 

different collaborative solutions that are proposed on these special issues as a form for some 

exciting new work and voices on open source systems [1]. 
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2. THE OPEN SOURCE DILIGENCE 

Today in software industry, firms, individuals appropriate and secure financial rewards from 

their packaged software products by two main principle means. The first is software industry 

uses licensing arrangements based on copyrights law. A software license provides individuals 

and group with the legal rights to use a piece of software often in return for a licensing fee [2].   

In current commercial practice, most software is licensed rather than sold to a third party as 

intellectual property. A software license typically restricts the numbers of computers the 

software can run on, the number of software users, backups, and simultaneous use of backups. 

Second, many commercial software firms protect the software’s “source code”, which is a 

sequence of instructions to be executed by a computer to accomplish a program’s purpose. 

Programmers write software in the form of source code, and also “Document” that source code 

with brief written explanations of the purpose and design of each section of their program [1].   

In the early days of computer programming such commercial, protected, and packaged software 

was a rarity; if you wanted a particular program for a particular purpose you typically wrote the 

code yourself or hired it done. Much of the software development in 1970`s was carried out in 

academic and corporate laboratories by scientists and engineers [14].   

These individuals found it a normal part of their research culture to freely give and exchange 

software they had written, to modify and build upon each other’s software both individually and 

collaboratively, and to freely give out their modifications in turn. The free software idea did not 

immediately become main stream, and industry was especially suspicious of it.  It is agreed in 

[14] that a significant part of the problem resided in Stallman’s term “free” software; which 

might understandably have an ominous ring to the ears of business people. Accordingly they, 

along with other prominent hackers, founded the “open source” software movement. 

3. PROBLEM DESCRIPTION 

OS (open source) software development projects are typically initiated by an individual or a 

small group with an idea for something interesting .They themselves want for an intellectual or 

business reason. In [4] the author suggests “Every good work of software starts by scratching a 

developer’s personal itch, software developers spend their days grinding away for pay at 

programs they neither need nor love”. The source code for this first version is then made freely 

available to all via downloading from an Internet website established by the project [1]. In the 

case of projects that are successful in attracting interest, others do download and use the code 

and some of these do go on to create new and modified code based on their own interests. Most 

then post what they have done on the project website for use and critique by anyone who is 

interested.  

Information systems are any combination of information technology and people’s activates 

using that core technology to support management and decision-making [5].  The scope of 

information systems is pervasive; it extends to need people in different sectors apart from the 

commercial business settings. One of the fields which information systems can support is the 

open source systems in collaborative support environment. The main focus of this article is to 

understand “how the open source systems can be useful to automate in computer support & 

collaboration and what is the basic terminology that plays a vital role in the Collaboration”? 

4. SYSTEM`S TOPOGRAPHY 

To a large scale, there are many features of open source systems, but few are as described as 

below; 
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4.1. Free Redistribution 

Licensing of the open source software system shall not restrict any party from selling it or 

giving any of its components [8]. 

4.2. Source Codes 

The program must include source code, and must allow the distribution in source code as well 

as compiled form. Where some form of a product is not distributed with source code, there must 

be a well-publicized means of obtaining the source code for no more than a reasonable 

reproduction cost preferably, downloading via the Internet without charge [8]. 

4.3. Derived Works 

The license must allow modifications and derived works, and must allow them to be distributed 

under the same terms as the license of the original software [8]. 

4.4. Integrity in Codes 

The license may restrict source-code from being distributed in modified form only if the license 

allows the distribution of "patch files" with the source code for the purpose of modifying the 

program at build time [8].  The license must be explicitly permit distribution of software built 

from modified source code. The license may require derived works to carry a different name or 

version number from the original software. 

4.5. No discrimination against individual / group 

The license shall not be discriminate against any individual or group [8]. 

4.6. No discrimination against fields of endeavour 

The license must not restrict anyone from making use of the program in a specific field of 

endeavour [8].   For example, it may not restrict the program from being used in a business, or 

from being used for generic research.  

4.7. Distribution of license 

The rights attached to the program must apply to all to whom the program is redistributed 

without the need for execution of an additional license by those parties [8]. 

4.8. License must not be specific only to a product 

The rights attached to the program must not depend on the program's being part of a particular 

software distribution [8].  If the program is extracted from that distribution and used or 

distributed within the terms of the program's license, all parties to whom the program is 

redistributed should have the same rights as those that are granted in conjunction with the 

original software distribution. 

4.9. License must not be restricting other software 

The license must not be place restrictions on other software that is distributed along with the 

licensed software / application [8]. 

4.10. License should be Technological and Neutral 

No provision of the license may be predicated on any individual or group of people’s in 

technology or style of interface [8]. 
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5. CATEGORICAL SUPPORTIVE TOOLS 

Supportive tools in open source environment can be classified broadly in many categories (e.g. 

autonomous creative tools, domain-specific tools, domain-independent process support tools, 

computer supported collaborative tools etc). 

5.1. Research tools 

The research tools help the user in process of researching & improving the knowledge by 

disseminating the work previously done in the field [6, 17].  The search engines and the citation 

tracking tools fall into this category. 

5.2. Computer supported collaborative tools 

The CSCW tools allow the user to produce creative work using shared collaboration between 

multiple users [6, 15].  The collaboration becomes a need for a project involving multiple 

participants. The tool such as shared documents, shared editors and shared spreadsheets are the 

some examples of this category. 

5.3. Domain-specific tools 

These kinds of tools which allows the user to work at higher abstraction levels. Such kinds of 

tools are GIMP (GNU Image Manipulation Program) fall into this category and GIMP is an open 

source platform for image manipulations [6].  This tool allows the user to work with the images 

at higher abstraction levels such as photo retouching without paying attention to the fine details 

such as pixel setting etc.  

5.4. Domain-Independent tools 

Domain independent process support tools are the tools which support the process of creative 

works. The tool such as versioning systems like (SVN and CVS) that helps the user to check the 

alternative possibilities for the creative works without losing data [6]. 

5.5. Autonomous creative tools 

The tools which facilitate the user to produce create works little or no input from the user. 

These kinds of tools are explicitly created to transform the thoughts of the user into creative 

forms of work [6, 18]. The examples of autonomous tools are AARON software programming. 

6. PROCESS LIFE CYCLE 

In development cycle, the implementation phase is consisting on six sub-phases [9]; 

1) Writing code and submitting to the OSS community for review. 

2) Strength of OSS is the independent, prompt peer review.  

3) Negative implications of breaking the build ensure that contributions are tested carefully 

before being committed. 

4) Code contributions may be included in the development release within a short time of 

having been submitted. This rapid implementation being a significant motivator for 

developers. 

5) Large number of potential debuggers on different platforms and system configuration 

ensures bugs are found and fixed quickly. 
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6) Relatively stable debugged production version of the system is released. 

Open source system development life cycle is totally in contrast with strategic planning. The 

haphazard principle of individual developers perceiving and itch worth scratching is totally 

suspended by corporate firms considering how to best gain competitive advantage from open 

source. For example, Red-Hat has published an architectural roadmap that details its plans to 

move open source systems towards middleware tools [10]. 

 

Table 1. Characterization in OS Systems 

Process OS-System Phases Product OS-System Phases 

Development 

life cycle 

1) Planning- An itch worth scratching. 

2) Analysis- Part of the conventional 

agreement upon knowledge in software 

development. 

3) Design- Firmly based on principles of 

modularity to accomplish separation of 

concerns. 

4) Implementation- A loop of (coding, 

review, pre-commit tests, development 

release, parallel debugging, production 

release ) 

 

*** Often the planning, analysis and 

designing phase are done by an 

individual/core group, who serves as”tail-

light to follow” in bazaar. 

Domains Horizontal Infrastructures (e.g. Operating 

systems, Utilities, Compliers, DBMS, Web 

and Print servers etc) 

 Primary 

Business 

Strategies 

1) Value –Added-Service-Enabling. 

2) Loss-Leader/Market-Creating. 

Supporting Fairly haphazard’s-much reliable on email list/ 

bulletin boards, or on support provided by 

specialized software firms.  

licensing 1) GPL, LGPL, Artistic License, BSD and 

emergence of commercially oriented MPL. 

2) “Viral” term used in relation to licensing.  

 

Other proprietary companies have also seen the strategic potential of open source to alter the 

competitive forces at play in their industry, perhaps to grow market share or undermine 

competition. For example, IBM is a strong supporter of Linux systems because it erodes the 

profitability of the operating systems market and adversely affects competitors like Sun & 

Microsoft [10]. 

7.  TRIALS FOR COMMUNITIES 

Basically software architecture and functionality are governed by a community consisting of 

developers who can commit code to the authorized version of the software. When joining such 

a community contributors adhere to a social “joining script”, they put in considerably more 

technical and sophisticated work than the average contributor [11, 17].  After being admitted 

into the community, the new developers specialize in mundane software development tasks 

before moving on to more complex and technically difficult work. We think that there are eight 

main challenges that are faced by the open source community in making the open source 
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systems [12].  In order to make efficient open source systems more useful in the computing 

world, theses problems should be addressed properly; 

• Disparity in work & benefits:   Using the application based on open source often 

requires additional work from individuals who do not perceive direct from the use of 

application. 

• Critical dilemma problems: The developers’ may not enlist the critical mass of users 

required to be useful, or can fail because it is never to any one individual`s advantage to 

use it. 

• Disruption of social processes: The development community can lead to activity that 

violates social values, threatens existing political structures or may be de-motivates the 

users crucial to its success. 

• Exception handling: Sometimes the developers may not accommodate the wide range 

of exception handling and improvisation that characterizes much group activity. 

• Unobtrusive accessibility: Features that support group processes are used relatively 

infrequently, requiring unobtrusive accessibility and integration with more heavily used 

features. 

• Difficulty of evaluation: Almost insurmountable obstacles to meaningful, a 

generalized analysis and evaluation of development community prevent us from 

learning from past experiences. 

• Failure of intuitions: Intuition in product development environment is especially poor 

for multiuser applications, resulting in inefficient management decision and error prone 

designs. 

•  Adoption process: The development process requires more careful implementation in 

the workplace than product developers have confronted. 

8.  EXPANSIONS BY DISTINCT ROLES & INCUBATION SOLUTIONS 

In considering the open source system projects, make it a point to understand the community as 

you familiarizes yourself with the code. One of the proposed improvements in the open source 

world for a better collaboration is to define the working process clear and there should be some 

dedicated roles in the environment like describe in the figure1; 
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Figure 1.  OS community (like an onion with distinct roles for developers and leaders) [12] 

 

 

There should clear distinct roles for developers, leaders, and users. As shown in the figure 1 

that in every domain there are dedicated roles that are responsible to perform their tasks. This 

proposed barometer in the development of open source systems shapes the size & tasks.  As we 

know that the Apache and Eclipse both are the open source technologies by given the example 

here like a case study we propose an incubation solution for the effective process of 

development in open source environment [13, 18].  A two-stage incubation model based on 

analysis of Apache & Eclipse processes might help other organizations build their own 

incubation process and better manage risks. Two leading OSS communities, Eclipse and 

Apache, are successfully applying incubation processes. 

Apache Incubation: 

The incubator is the entry path into the ASF (Apache Software Foundation) for complicated 

projects and code bases wishing to become part of the Foundation’s efforts and quality of work. 

The main responsibilities of incubator were; 

a) To filter proposals and helps to create creative projects 

b) Evaluate a project’s maturity promote the creation of a community that shares the ASF 

principles, including meritocracy as one of central element. 

Two types of projects can accommodate: first subprojects that have finalized the incubation 

period and are added into an already existing top-level project, and second the top-level projects 

that shape the main lines of the foundation’s evolution and can sponsor other incubated 

subprojects [13].  The Incubator PMC (Project Management Committee) supervises the incubation 

processes. The PMC accepts projects and provides the technical and administrative support 

required; it regularly reviews incubated projects, proposing them for termination, continuation, 

or escalation [13].  In addition to the PMC, some roles are defined per project. Candidates put 

forward project proposals. The champion is a foundation officer or member who helps 

candidates make their initial submission to a sponsor [13]. 
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Figure 2. (a) Apache phases of establishment, acceptance, and review.  

                                                     (b) Eclipse incubation / validation process [13]. 

 

Eclipse Incubation: 

Here it is EMO (Eclipse Model Operations) that works like the PMC in the apache case. In 

eclipse, projects are incubated within the top-level technology project, concentrating in this area 

all the project creation experience. An eclipse high-level structure differentiates between 

standard and top-level projects. Each top-level project has several projects [13, 20]. Each 

standard project organization consists of the project lead and the development team, who are 

respectively responsible for planning the project and defining the technical architecture [13]. In 

the eclipse incubator evaluates the proposal into check that; 

a) The community is active and the project is operating fully in the open using open source 

rules of engagement. 

b) The project adopts eclipse’s philosophy and principles. 

c) An in-depth review of the project’s technical architecture takes into accounts its 

dependencies and interactions with other projects. 

9. CONCLUSION 

We need better understanding of collaboration in the open source development process. 

Collaboration in the open source project development has been improving these days but 

however there is more scope for these improvements. Adapting the incubation process can be 

used by companies to promote bottom-up innovation inside the corporation. Incubation might 

provide a framework in which individuals can contribute their ideas and gather help and 

feedback in an informal way, while at the same time providing a means for selecting which 

ideas have enough potential to be further developed.  The open source communities are in 

constant evolution: at the time of this writing, the eclipse community is reviewing its incubation 

process to make it more agile, Apache is introducing new initiatives trying to foster innovation, 

and incubation is mandatory in both communities [13, 19].  In order to improvement the 

collaboration in the open source environment both the development community and the people 

should be more creative.  

Of course, in today’s technological era, the perspective of information systems based on the 

open source technology has to be changed towards the non profitable settings such as education 

and community informatics etc. Open source increase the horizons of creative thought process 

as users can use the free tools and can change the binaries of the software to suits to their needs. 
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This facilitates growth of open source community which can engage audience from different 

fields and share the knowledge for producing new versions and software. This will also help in 

making the large projects with the limited resources using a good collaboration between the 

people from the different technicalities. 
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