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ABSTRACT :  

Computer networks form an essential substrate for the multitude of distributed application which is now 

an essential part of modern business and personal life. It is important to optimize the performance of 

computer networks, so that users can derive optimum utility from the expertise in network infrastructure. 

Most   networks perform well when lightly used, but problems appear when network load increases. This 

loss of network performance when a network is heavily loaded is called congestion. Wired networks are 

becoming an integral part of the Internet. Unlike wireless networks, random packet loss due to bit errors 

is not negligible in wired networks, and this causes significant performance degradation of transmission 

control protocol (TCP). We propose and study a novel end-to-end congestion control mechanism called 

TCP Veno that is simple and effective for dealing with random packet loss. A key ingredient of Veno is 

that it monitors the network congestion level and uses that information to decide whether packet losses 

are likely to be due to congestion or random bit errors. Specifically: A). it refines the multiplicative 

decrease algorithm of TCP Reno—the most widely deployed TCP version in practice—by adjusting the 

slow-start threshold according to the perceived network congestion level rather than a fixed drop factor 

and B) it refines the linear increase algorithm so that the connection can stay longer in an operating 

region in which the network bandwidth is fully utilized, based on extensive network testbed experiments 

and live Internet measurements.  
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1.INTRODUCTION 
 

Random packet loss in the wireless access networks can cause performance degradation in an 

end-to-end TCP connection. We have proposed and demonstrated that a novel TCP version 

called TCP Veno can deal with random packet loss effectively on an end-to-end basis. 

Numerous experiments [1]have been conducted in experimental networks and live Internet 
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straddling across different areas in Hong Kong, and Mainland China. The detailed 

investigations clearly indicate that TCP Veno can achieve significant improvement without 

adversely affecting other concurrent TCP connections in the same network. Veno is desirable 

from the following three standpoints. 

1).Deploy ability: For any improved TCP to be worthwhile, it must be easy to deploy over 

the existing Internet. Therefore, before modifying the legacy TCP design, we must ask the 

question: “Is this modification or design amenable to easy deployment in real networks?” 

To realize this goal, ideally, there should little or preferably no changes required at 

intermediate routers. For the two ends of the communicating terminals, it is preferred that 

only one side requires changes, so that the party interested in the enhanced performance can 

incorporate the new algorithm without requiring or forcing all its peers to adopt the 

changes. Generally, it is preferred that the sender that sends large volumes of data to many 

receivers to modify its algorithm (e.g., the Web server) rather than the receivers. The 

simple modification at the TCP sender stack makes Veno easily deployable in real 

networks. Any party who is interested in the enhanced performance can single-handedly do 

that by installing the Veno stack. 

 

2)  Compatibility: Compatibility refers to whether a newly introduced TCP is compatible 

with  

the legacy TCP in the sense that it does not cause any detrimental effects to the legacy TCP, 

and vice versa. When they are running concurrently in the same network, Veno coexists 

harmoniously with Reno without” stealing” bandwidth from Reno. Its Improvement is 

attributed to its efficient utilization of the available bandwidth. 

 

3) Flexibility: Flexibility refers to whether the TCP can deal with a range of different   

environments effectively. It is difficult to categorically declare one TCP version to be 

flexible or not flexible. We can say, however, Veno is more flexible than Reno in that it can 

deal with random loss in wireless networks better, alleviate the suffering in asymmetric 

networks [1], and has comparable performance in wired networks. Although the idea of 

Veno is straightforward on hindsight, it was not that obvious in the beginning when this 

work was first started. It combines elements from two opposing TCP camps: 

 

• Reno which uses reactive congestion control and 

• Vegas which use proactive congestion control.   

 

Veno can still be regarded as a reactive algorithm because it certainly does not aim to 

eliminate packet loss entirely: it makes use of the idea of state estimation in Vegas to 

formulate better strategies to deal with packet loss and to stay in the “optimal” operating 

region longer. This paper has not addressed the issue of bursty packet loss in wireless 

networks. SACK [14] option has been proposed and shown to be effective in dealing with 

multiple packet losses within a congestion window. Veno by itself does not solve the 

problem of multiple packet losses.  
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However, Veno and SACK can be combined easily to yield an enhanced TCP 

implementation, SACK Veno. Reference [2] has investigated the performance of SACK 

Veno under different network conditions. The results show that SACK Veno can increase 

the throughput of pure SACK by up to 60% at packet loss rate of 0.01. As with comparison 

between Veno and Reno, experiments show that the improvement of SACK Veno can be 

attributed to its better efficiency rather than aggressiveness in grabbing bandwidth from 

other connections. Many TCP protocol stacks are now providing the SACK option. If 

SACK is already available on the receiver side, SACK Veno requires only the modification 

of the sender stack. 

 

Generally speaking, we can see TCP Veno borrows the idea of congestion detection scheme 

in Vegas and intelligently integrates it into Reno’s additive increase phase. Its state 

estimation is used as supplementary reference information to decide how to refine additive 

increase at the next step and how much the window is to be reduced once fast retransmit is 

triggered. Of course, principally, we could also use other predictive congestion detections 

(e.g., PBM [7], Packet Pair [25]) or/and the other better predictive congestion detection 

schemes, or combinations of these schemes to refine Reno evolution. 

 

What TCP Veno proposes is to refine Reno’s AIMD evolution over heterogeneous 

networks by using the complete judgment of network state estimation – congestive state or 

non-congestive state, rather than merely depending on packet loss occurrence. 

 

To date, much work has been explored to center on accurately making out which of packet 

losses are due to congestion and which are due to bit-errors or other no congestion reasons, 

but, limited to too many uncertain factors (i.e., background traffic changing along the 

connection path) in real networks, progress in this kind of judging looks very slow. 

Perhaps, it may be more meaningful and more practical for a TCP connection to 

differentiate between congestive drops (occurring in congestive state) and no congestive 

drops (occurring in non congestive estate).  Veno adopts such differentiation to circumvent 

the packet-loss-type-distinguishing 

 

1.CONGESTION AVOIDANCE:  
 

Congestion avoidance techniques monitor network traffic loads in an effort to anticipate and 

avoid congestion at common network bottlenecks. Congestion avoidance is achieved through 

packet dropping. Among the more commonly used congestion avoidance mechanisms is 

Random Early Detection (RED), which is optimum for high-speed transit networks. Cisco IOS 

QoS includes an implementation of RED that, when configured, controls when the router drops 

packets. If you do not configure Weighted Random Early Detection (WRED), the router uses 

the cruder default packet drop mechanism called tail drop for an explanation of network 

congestion. This is the default congestion avoidance behavior when WRED is not configured. 
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1.TCP VEGAS 

 
Following a series of congestion collapses starting in October of '86, Jacobson and Karels 

developed a congestion control mechanism, which was later named TCP Tahoe [5]. Since then, 

many modifications have been made to TCP, and different versions have been implemented 

such as TCP Tahoe and Reno. TCP Vegas was first introduced by Brakmo et al. in [2]. There 

are several changes made in TCP Vegas. First, the congestion avoidance mechanism that TCP 

Vegas uses is quite different from that of TCP Tahoe or Reno. TCP Reno uses the loss of 

packets as a signal that there is congestion in the network and has no way of detecting any 

incipient congestion before packet losses occur. Thus, TCP Reno reacts to congestion rather 

than attempts to prevent the congestion. TCP Vegas, on the other hand, uses the difference 

between the estimated throughput and the measured throughput as a way of estimating the 

congestion state of the network. We describe the algorithm briefly here. For more details on 

TCP Vegas, refer to [2]. First, Vegas sets Base RTT to the smallest measured round trip time, 

and the expected throughput is computed according to  

     

       Expected = Window Size 

                               Base RTT 

 

Where Window Size is the current window size. Second, Vegas calculate the current Actual 

Throughput as follows. With each packet being sent, Vegas records the sending time of the 

packet by checking the system clock and computes the round trip time (RTT) by computing the 

elapsed time before the ACK comes back. It then computes Actual throughput using this 

estimated RTT according to 

 

   Actual =        Window Size 

  RTT 

 

Then, Vegas compares Actual to Expected and computes the difference 

 

Diff = Expected - Actual; 

 
This is used to adjust the window size. Note that Diff is non-negative by definition. Define two 

Threshold values, 0<α<β. If Diff<α, Vegas increases the window size linearly during the next 

RTT. If Diff > β, then Vegas decreases the window size linearly during the next RTT. 

Otherwise, it leaves the window size unchanged. What TCP Vegas attempts to do is as follows. 

If the actual throughput is much smaller than the expected throughput, then it suggests that it is 

likely that the network is congested. Thus, the source should reduce the flow rate. On the other 

hand, if the actual throughput is too close to the expected throughput, then the connection may 

not be utilizing the available flow rate, and hence should increase the flow rate. Therefore, the 

goal of TCP Vegas is to keep a certain number of packets or bytes in the queues of the network 

[2, 9]. The threshold values, α and β, can be specified in terms of number of packets rather than 

flow rate. Now note that this mechanism used in Vegas to estimate the available bandwidth is 

fundamentally different from that of Reno, and does not purposely cause any packet loss. 

Consequently this mechanism removes the oscillatory behavior from Vegas, and Vegas achieve 

higher average throughput and efficiency. Moreover, since each connection keeps only a few 

packets in the switch buffers, the average delay and jitter tend to be much smaller. Another 

improvement added to Vegas over Reno is the retransmission mechanism. In TCP Reno, a 
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rather coarse grained timer is used to estimate the RTT and the variance, which results in poor 

estimates. Vegas extend Reno's retransmission mechanism as follows. As mentioned before, 

Vegas record the system clock each time a packet is sent. When an ACK is received, Vegas 

calculates the RTT and uses this more accurate estimate to decide to retransmit in the following 

two situations [2] When it receives a duplicate ACK, Vegas checks to see if the RTT is greater 

than timeout. If it is, then without waiting for the third duplicate ACK, it immediately 

retransmits the packet. When a non-duplicate ACK is received, if it is the first or second ACK 

after a retransmission, Vegas again checks to see if the RTT is greater than timeout. If it is, then 

Vegas retransmit the packet. 

 

1.REROUTING 

 
TCP Vegas that was first suggested by Brakmo et al. [2] does not have any mechanism that 

handles 

Rerouting of the connection. In this section, we will show that this could lead to strange 

behavior 

for TCP Vegas connections. Recall that in TCP Vegas BaseRTT is the smallest round trip 

delay, 

Which is an estimate of the propagation delay of the path . First, if the route of a connection is 

changed by a switch, then without an explicit signal from the switch, the end host cannot 

directly detect it. If the new route has a shorter propagation delay, this does not cause any 

serious problem for TCP Vegas because most likely some packets will experience shorter round 

trip delay and Base RTT will be updated. On the other hand, if the new route for the connection 

has a longer propagation delay, the connection will not be able to tell whether the increase in 

the round trip delay is due to congestion in the network or a change in the route. Without this 

knowledge the end host will interpret the increase in the round trip delay as a sign of congestion 

in the network and decrease the window size. This is, however, the opposite of what the source 

should do. When the propagation delay of connection i is di, the expected number of 

backlogged packets of the connection is wi_ridi, where wi is connection i's window size and ri is 

the flow rate. Since TCP Vegas attempts to keep between α and β packets in the switch buffers, 

if the propagation delay increases, then it should increase the window size to keep the same 

number of packets in the buffer. Because TCP Vegas relies upon delay estimation, this could 

impact the performance substantially. We have simulated a simple network in order to see how 

TCP Vegas handles changes in propagation delay. 
Connecti

on # 

Propaga

tion 

Delay 

(ms) 

Starting 

Time 

(sec) 

1  60  0.0 

2  54  2.0 

3  48  5.0 

4  64  7.0 

5  56  10.0 

6  42  15.0 

7  74  20.0 

8  44  22.0 

9  50  25.0 

10  52  40.0 

Table 1: Propagation delays and Starting times 
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The queue size increases with the number of active connections. Even though the existing 

connections reduce their window sizes, the incorrect measurement of the true propagation delay 

causes the new connections to set the window sizes to larger values than they should be. At t = 

50 sec, the average queue size is almost 60 while there are only ten active connections. If each 

connection had an accurate measurement for baseRTT, the average queue size should not 

exceed 30. 

 

1. CONCLUSION AND FEATURE ENHANCEMENT  

Attaching a service policy configured to use WRED to an interface disables WRED on that 

interface. If any of the traffic classes that you configure in a policy map use WRED for packet 

drop instead of tail drop, you must ensure that WRED is not configured on the interface to 

which you intend to attach that service policy. 

RED reduces the chances of tail drop by selectively dropping packets when the output interface 

begins to show signs of congestion. By dropping some packets early rather than waiting until 

the buffer is full, RED avoids dropping large numbers of packets at once and minimizes the 

chances of global synchronization. Thus, RED allows the transmission line to be used fully at 

all times.  

In addition, RED statistically drops more packets from large users than small. Therefore, traffic 

sources that generate the most traffic are more likely to be slowed down than traffic sources that 

generate little traffic. 
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