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ABSTRACT 

Image denoising has become an essential exercise in medical imaging especially the Magnetic Resonance 

Imaging (MRI). This paper proposes a medical image denoising algorithm using contourlet transform. 

Numerical results show that the proposed algorithm can obtained higher peak signal to noise ratio 

(PSNR) than wavelet based denoising algorithms using MR Images in the presence of AWGN. 
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1. INTRODUCTION 

Image denoising is a procedure in digital image processing aiming at the removal of noise, 

which may corrupt an image during its acquisition or transmission, while retaining its quality. 

Medical images obtained from MRI are the most common tool for diagnosis in Medical field. 

These images are often affected by random noise arising in the image acquisition process. The 

presence of noise not only produces undesirable visual quality but also lowers the visibility of 

low contrast objects. Noise removal is essential in medical imaging applications in order to 

enhance and recover fine details that may be hidden in the data. 

2. CONTOURLET TRANSFORM 

In the recent years, Do and Vetterli proposed a multiscale and multidirectional image 

representation method named contourlet transform [5, 6], which can effectively capture image 

edges and contours. The contourlet transform is constructed by Laplacian pyramid [4, 7, 10] 

(LP) and directional filter banks (DFB) [1, 2, 3, 9]. The Figure.1 illustrates the contourlet 

transformation, in which the input image consists of frequency components like LL (Low Low), 

LH (Low High), HL (High Low), and HH (High Low).  

The Laplacian Pyramid at each level generates a Low pass output (LL) and a Band pass output 

(LH, HL, and HH). The Band pass output is then passed into Directional Filter Bank, which 

results in contourlet coefficients [8]. The Low pass output is again passed through the Laplacian 

Pyramid [7] to obtain more coefficients and this is done till the fine details of the image are 

obtained. Figure.2 shows the decomposition of brain MR Image. 
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Figure1. Illustration of Contourlet Transform 

 

Figure2. Contourlet decomposition of brain MR Image 

3. PROPOSED DENOISING ALGORITHM 

A common approach for image denoising is to convert the noisy image into a transform domain 

such as the wavelet and contourlet domain, and then compare the transform coefficients with a 

fixed threshold. We propose an algorithm which defines a new threshold value to eliminate the 

corrupted pixels. 

3.1 Estimation of Parameters 

In this section we formulate the parameters which are utilized for denoising. 
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3.1.1 Estimation of noise variance 

The noise variance is estimated using the mean absolute deviation (MAD) method and 

is given by 
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Where  ,i jc
 
 is the contourlet coefficients of noisy image 

3.1.2 Estimation of threshold 

The threshold T for the contourlet coefficients of noisy image is given by 
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Where N  is total number of pixels in the image and
gσ  is the standard deviation of the noisy 

image 

3.2 Algorithm Description 

 The denoising method based on contourlet transform can be described as follows: 

1. Perform contourlet transform to the noisy image; from the decomposition process the 

coefficients are extracted  

2. Estimate the noise variance for each noisy image pixel using equation (1) 

3. The threshold T for the contourlet coefficients of noisy image is calculated using 

equation (2) 

4. If the contourlet coefficients are greater than the threshold, those coefficients are 

remained unchanged. If they are less, they are suppressed.  

5. Then all the resultant coefficients are reconstructed by applying inverse contourlet 

transform, which results in denoised image. 

4. RESULTS 

In this section, simulation results are presented which is performed on the Spine and Brain MR 

images. Zero mean additive white Gaussian noise is added to the MR Images and denoised with 

wavelet based methods and the proposed method. The performance of the proposed method is 

compared with the hard threshold, soft threshold and Wiener filter in the wavelet domain 

using PSNR , which is defined as  
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Where MSE  denotes the mean square error for two m n× images ( , )I i j & ( , )I i j$   where one 

of the images is considered a noisy approximation of the other and is given as 
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For different Gaussian noise level densities we have obtained various PSNR values of Wavelet 

based methods and the proposed algorithm using contourlet transform, that are plotted. There is 

a significant improvement in PSNR values in the proposed algorithm.Figure.3 and Figure.4 

show the comparative results among wavelet based methods and proposed algorithm using 

contourlet transform. From these quantitative results we infer that the new proposed algorithm 

using contourlet transform outperforms Wavelet based methods. This can be clearly seen from 

Figure.5 and Figure.6 that the background of the denoised images with contourlet transform 

appears smoother. The contourlet transform removes the noise pretty well in the smooth regions 

and also along the edges. So it is evident with the results that this proposed algorithm based on 

contourlet transform is best suit for Medical image applications. 

 

 

 Figure3. The PSNR value of the de-noised Spine MR Image vs. Variance of the noise 
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Figure4. The PSNR value of the de-noised Brain MR Image vs. Variance of the noise 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure5.  Denoising of Spine MR Image for variance=25 (a) Original image (b)Noisy image 

(c)Denoised image with hard threshold (d) Denoised image with soft threshold (e) Denoised 

image with Wiener filter (f) Denoised image with contourlet transform 
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(c) 

 

(d) 

 

(e) 

 

(f) 

Figure6.  Denoising of Brain MR Image for variance=30 (a) Original image (b)Noisy image 

(c)Denoised image with hard threshold (d) Denoised image with soft threshold (e) Denoised 

image with Wiener filter (f) Denoised image with contourlet transform 

5. CONCLUSIONS 

In this paper, the removal of Gaussian noise from MR Images has been discussed. Hence the 

new proposed algorithm based on the contourlet transform is found to be more efficient than the 

wavelet methods in Image Denoising particularly for the removal of Gaussian noise. Thus the 

obtained results in qualitative and quantitative analysis show that this proposed algorithm 

outperforms the wavelet methods both visually and in terms of PSNR.  
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