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ABSTRACT 

 Cluster analysis of graph related problems is an important issue now-a-day. Different types of graph 

clustering techniques are appeared in the field but most of them are vulnerable in terms of effectiveness 

and fragmentation of output in case of real-world applications in diverse systems. In this paper, we will 

provide a comparative behavioural analysis of RNSC (Restricted Neighbourhood Search Clustering) and 

MCL (Markov Clustering) algorithms on Power-Law Distribution graphs. RNSC is a graph clustering 

technique using stochastic local search. RNSC algorithm tries to achieve optimal cost clustering by 

assigning some cost functions to the set of clusterings of a graph. This algorithm was implemented by A. 

D. King only for undirected and unweighted random graphs.  Another popular graph clustering 

algorithm MCL is based on stochastic flow simulation model for weighted graphs. There are plentiful 

applications of power-law or scale-free graphs in nature and society. Scale-free topology is stochastic i.e. 

nodes are connected in a random manner. Complex network topologies like World Wide Web, the web of 

human sexual contacts, or the chemical network of a cell etc., are basically following power-law 

distribution to represent different real-life systems. This paper uses real large-scale power-law 

distribution graphs to conduct the performance analysis of RNSC behaviour compared with Markov 

clustering (MCL) algorithm. Extensive experimental results on several synthetic and real power-law 

distribution datasets reveal the effectiveness of our approach to comparative performance measure of 

these algorithms on the basis of cost of clustering, cluster size, modularity index of clustering results and 

normalized mutual information (NMI). 
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1. INTRODUCTION 

The main intention of clustering is to achieve some meaningful information by partition a 

dataset into clusters in terms of its intrinsic structure, without resorting to any a priori 

knowledge such as the number of clusters, the distribution of the data elements, etc. This 

clustering process is basically used to sort out some problems incurred into complex systems in 

nature and society. The important thing of clustering is that it can relate with many applications, 

and a number of different algorithms and techniques have emerged over the years. Clustering 

graph in complex network systems is an essential problem with many applications in a number 

of disciplines. Graph clustering algorithms emphasis on clustering the nodes of a graph [1], [2]. 

It can expect from a graph clustering scenario that it contains a collection of sub graphs (nearly 

completely connected) and a small fraction of edges are existed between them for inter 
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connection. For a weighted graph, the edge weight should be considered here for creating sub 

graphs and small weight edges are taking part between them [3].  

 

Graph clustering is a powerful tool and has been studied and applied in many research areas, 

which include image segmentation [4,5], machine learning, data mining [6],  bioinformatics 

[7,8], etc. Spectral methods have been achieved effectiveness in solving a number of graph 

clustering objectives, including ratio cut [9] and normalized cut [10] and has been convenient in 

many areas such as circuit layout [9] and image segmentation [10]. Recently, spectral clustering 

is getting immense popularity because of the convention of eigenvectors applied in various 

machine learning tasks [11]. In the recent past, various other graph clustering algorithms came 

into the field like restricted neighbourhood search clustering (RNSC) [12], Markov clustering 

(MCL) [13], super paramagnetic clustering (SPC), Genetic Algorithm, Molecular Complex 

Detection (MCODE), Local Clique Merging Algorithm (LCMA), etc. 

 

RNSC, which is a cost based clustering method and performs local search iteratively to obtain 

optimum clustering in an efficient way. RNSC is a stochastic technique which uses restricted 

neighbourhood search concept. It also acts like a metaheuristic technique like tabu search, 

described in [14] and also can be used in various search space schematics. It is also known as 

Variable neighbourhood search [15]. A restriction is imposed in the neighbourhood for the 

current clustering while doing iterative local search. The main goal of this algorithm is to find 

the best cost clusterings (lower cost) from the set of clusterings of a graph by assigning some 

cost functions (Naive cost function and scaled cost function). The memory requirement for 

RNSC is O (n^2). The complexity of a move in the naive cost function is O (n), which is the 

size of the restricted neighbourhood of a move M.  

MCL is an efficient clustering method in weighted graphs, based on the prototype of stochastic 

flow simulation technique. In this technique, clusters (a natural grouping of densely flow-

connected vertices) are obtained by using two operators: flow expansion and inflation. MCL 

technique performs well for sparse graphs 

Recently, complex graphs or complex networks are most popular in nature and society. It can 

clarify various complex systems such as the cell, a network of substrates connected by chemical 

reactions [16], the society, a network of individuals linked by various social links [17], the 

Internet, a network of routers connected by various physical connections [18], the World Wide 

Web, etc. The probability P (k) that a node in the network is connected to k other nodes (k=0, 1, 

2,.., n) is called the degree distribution or connectivity distribution. This is a very important 

characteristic of a network. Power-law or scale-free graph was first introduced by Barabasi and 

Albert (1999) [19]. Complex network topology like WWW, the actor collaboration network and 

the citation network, etc., are Scale-free network, which is described by them. Scale-free 

network usually follows the power law degree distribution; where γ  is the degree exponent. 

                                                                                   P[κ] ∼ k
γ−

                                                      (1) 

In this work, the performance of RNSC and MCL is tested on both real and synthetic 

benchmark undirected large-scale scale-free graph. Widespread experimental results on several 

real and synthetic datasets demonstrate the behaviour of both the algorithms. The comparative 

assessment of both the algorithms is measured in terms of cost of clustering, cluster size, 

modularity index of clustering results and NMI value. 
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2. GRAPH CLUSTERING ALGORITHMS AND POWER-LAW 

GRAPH 
 Here we discuss about the graph clustering algorithms mentioned above and the random power-

law graph datasets, used in the performance analysis of these algorithms. 

 2.1. RNSC (Restricted Neighbourhood Search Clustering) 

RNSC is a local search meta-heuristic technique which is used to minimize the cost of 

clustering in the solution space. According to Stijn van Dongen, the vertex-wise performance 

criteria for clustering of unweighted graphs as the sum of the coverage measure taken on each 

vertex. In RNSC, a simple integer-valued cost function (called the naive cost function) is used 

as a pre-processor to produce initial clustering results on a graph and after that to evaluate the 

low-cost clustering result, a  more expressive (but less efficient) real-valued cost function 

(called the scaled cost function) is applied. The scaled function tries to optimize the output from 

naive function and reach to the global optimal solution.  

For a clustering C on a graph G (V, E) in which |V| = n, the coverage measure for Naïve cost 

function is expressed as in eq. (2). 

                               

1 0( , , ) ( , , )
( , , ) 1

1

out in
G C v G C v

Cov G C v
n

≠ + ≠
= −

−                                    (2)
 

Where 1 ( , , )
out

G C v≠ and
0 ( , , )
in

G C v≠  are denoted respectively as a number of cross edges 

incident to v and number of vertices in Cv that are not adjacent to v and for good clustering, 

these noted  parameters should be small. Naive cost function is expressed as follows. 
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The more expressive scaled coverage measure is in the following expression where, N (v) is the 

open neighbourhood of v. 
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The scaled cost function is expressed as in eq. (5). 
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                      (5) 

The pseudo code of the Naive cost scheme and Scaled cost Scheme are presented here. 

                                                                               

//Naive Cost scheme:- 

 

Begin  
Exper =1; 
NE=Total no of Experiments; 

If (Exper≥NE) 
{ 

Then   
Obtain final clustering; 

} 
Else  

{ 
Initial clustering = C0; //Cluster in C with label 0. 
Bestcost =  ∞ (user input); 
Tn= Naive stopping Tolerance; 

If (Bestcost has improved in the last Tn moves)  
{   

Then  
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Make a non-tabu near-optimal move; 
Initial clustering = New clustering; 
If (New clustering is the best clustering so far) 
Then 
Store it as best clustering Cn; 

Bestcost ++; 
Update tabulist and other datastructures; 
Else 
Update tabulist and other datastructures; 

} 
Else  
Run scaled cost scheme; 
       } 
Exper ++; 

 

// Scaled Cost Scheme:- 

 
Exper =1; 
NE= Total no of Experiments; 

If (Exper≥ NE) 
      { 
Then   

Obtain final clustering; 
   } 

Else  
{ 

Input the Naive cost clustering Cn; 
NumMoves = 0; 
DivCount = 0; 
Bestcost =∞ ; 
TS = Scaled stopping Tolerance; 

'

DF =Destructive diversification frequency; 

If (Bestcost has improved in the last TS moves) 
Then 

Output final Clustering 
Else 
   { 

If (DivCount≥ '

DF ) 

   { 
Then 

Destroy a random cluster; 
DivCount = 0; 
Obtain New clustering; 
If (The New clustering is the best clustering so far) 
   { 

Then 
Store it as best clustering CS; 
Bestcost ++; 
Update tabulist and other data structures; 

   } 
Else 
Update tabulist and other data structures; 

   } 
Else 
Make a non-tabu near-optimal move. 
NumMoves ++; 
DivCount ++; 
Obtain New Clustering; 

If (The New clustering is the best clustering so far) 
Then 
Store it as best clustering CS; 
Bestcost ++; 
Update tabulist and other data structures; 
Else 
Update tabulist and other data structures; 

} 
}  

Exper ++; 
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2.2. MCL (Markov clustering) 

The Markov clustering, proposed by Stijn van Dongen, this delivers a very fast clustering 

method and also provides a natural clustering in weighted graphs [20]. This algorithm is based 

on the prototype of stochastic flow simulation technique. Two operators, flow expansion and 

inflation are used to create a natural grouping of densely flow-connected vertices, clusters. 

These two operators are constructed from the input graph and they are used to transform the 

probability of the random walk in the Markov chain like way to another. Actually, the inflation 

is used for strengthening the flow where it is strong and also weakening the flow where it is 

already weak and the flow expansion is used for propagating the flow within the graph. MCL is 

fast for sparse graphs. MCL Algorithm is explained step by step below. 

 

Step1: Input weighted directed or undirected graph; 

Step2: Create the adjacency matrix of the graph; 

Step3: Add self-loop to each vertex; 

Step4: Normalize the matrix
k lR ×

; 

Step5: Expand the matrix with e
th
 power i.e. ( )e

kl
R   

Step6: Inflate the matrix by taking inflation of the resulting matrix with parameter r; 

Step7: Repeat step 5 and 6 until a steady state is achieved; 

Step8: Interpret resulting matrix to discover clusters. 

The inflation operator is denoted as 
rΓ with power coefficient r, a real nonnegative number. The 

matrix is denoted as M∈
k lR ×

, M ≥0.The matrix resulting from rescaling each of the columns 

of M with power coefficient r is denoted as r MΓ i.e. 

                                  1

( )
( )

( )
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pq

r pq k
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iq

i

M
M

M
=

Γ =

∑
                                                                (6)

 

2.3.   Power-law Graph 

It follows power law distribution, as shown it before in eq. (1).  The exponentγ  is scattered 

between 2.1 and 3. The power-law tailed degree distribution is remarkably different from the 

Poisson distribution. Scale-free networks are inhomogeneous, leading over time to some 

vertices that are highly connected, a “rich-get-richer” phenomenon that can be easily detected in 

real networks as shown in figure 8 and figure 11.  

3. Few Parametric Concepts 
 
The evaluation of clustering results, produced by algorithms is performed on the basis of some 

metrics. Some of the metrics are defined here such as modularity index, NMI value and cluster 

size. Graph size is a basis, depend on which all the computation are performed to obtain the 

characteristics of both the algorithm. 

3.1   Modularity Index 

A topology-based modularity metric, originally proposed by Newman and Girvan [21], is used 

in this investigation to check the performance. This is a square symmetric matrix of clusters 

where each element dij represents the fraction of edges that link nodes between clusters i and j 

and each dii represents the fraction of edges linking nodes within cluster i. The modularity 

measure is given by eq. (1). 
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3.2 Normalized Mutual Information (NMI)  

It is the measure of the quality of clusters, which is the mutual information shared between 

clusterings. This is originally proposed by Alexander Strehl and Joydeep Ghosh [22]. Assume, 

there are set of groupings of clusterings as 
( ){ | {1,.., }}q

q rλ ∈
which is denoted by ^. Let 

( )a

h
n

be the number of objects in cluster hc
 according to 

( )aλ and 
( )b

ln
 be the number of objects 

in cluster l
c

 according to
( )bλ . Let ,h ln

represents the number of objects that are in h
c

 

according to 
( )aλ and in cluster lc

 according to
( )bλ . The symbol 

( )NMIφ is denoted as the 

estimation of NMI. 
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3.3   Cluster Size 

Cluster size can determine the quality of clusters produced in clustering by any algorithm. It is 

also computed as the number of clusters, produced from the clustering results.  

3.4 Graph size 

It is obtained by computing the total number of nodes of the input graph. It is a basic parameter 

used in testing the behaviour of algorithms with different approach. 

4. Experimental Results and Discussions 
 
The efficiency and robustness of the RNSC and MCL algorithm are to be tested on few 

benchmark power-law graphs. To carry out the experiments, it needs real and synthetic data sets 

as input of the algorithm. The performance of the algorithms will be verified by comparing the 

clustering results of both the algorithms.  

All the experiments are carried out with the following initial configuration for RNSC and MCL. 

For RNSC, the following parameters are set like as d (diversification Length) = 10; D (shuffling 

Frequency) = 40; t (tabu-length) = 250 and e (number of experiments) = 1000 and in case of 

MCL, the inflation (I) value is 4; reweight loops c= 0. 25; pre-inflation value p= 0. 8 and preset 

resource scheme= 5. 

4.1 Evaluation on Real-World Network Datasets 

All the evaluations of the performance behaviour of RNSC and MCL are carried out by using 

some of the real-world datasets like scale-free networks and using computer-generated 

benchmark synthetic scale-free datasets. Here in this section, all the real scale-free graphs, taken 

for the experiments, are shown in table 1 with the detailed parametric knowledge.   
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Table 1. Real power-law Network Data sets 

 Real Networks Graph 

Size 

Average 

Degree  

<k> 

Degree 

exponent 

(γout) 

Degree 

exponent 

(γin) 

Electronic circuits [23] 329 3.17 2.5 2.5 

Protein, S. Cerev [24] 985 1.83 2.5 2.5 

Software [25] 1376 6.39 2.5 2.5 

Protein, S. cerev. [26] 1870 2.39 2.4 2.4 

Internet, router [27] 3,888 2.57 2.48 2.48 

Internet, domain [27] 4,389 3.76 2.2 2.2 

Prot. Dom. (PromDom) [28] 5995 2.33 2.5 2.5 

 

4.1.1 Cost of Clustering vs Increasing Graph Size for RNSC and MCL 
 

This table comprises of the cost of clustering results, produced by RNSC and MCL. The 

computation of the cost is performed on real scale-free network with increasing graph size. 
 

Table 2. Cost of Clustering with increasing Graph Size of Real Scale-free network 

 

Real Scale-free Networks Cost of Clustering 

(RNSC) 

Cost of Clustering 

(MCL) 

Electronic circuits 20809.51 35552.36 

Protein, S. Cerev 197488.1 322559.9 

Software 452564.8 629417.7 

Protein, S. cerev. 781375.4 1163968 

Internet, router 3233392 5032580 

Internet, domain 4497642 6411685 

Prot. Dom. (PromDom) 7738787 9652835 
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Figure 1. Cost of clustering on real scale-free graphs 

It is observed from figure 1 that the cost of clustering is high in case of MCL compared to 

RNSC with increasing graph size. The cost is increasing gradually for all the test dataset in case 

of both algorithms. But, RNSC is behaving less costly compared to MCL. It can be concluded 

that RNSC is producing clusters with lower cost compared to MCL.  

4.1.2 Modularity of Clustering Results vs Increasing Graph Size for RNSC and MCL 

 
Table 3 gives the facts about the entire computed modularity index of clustering results, 

produced by RNSC and MCL. The evaluation of modularity is done on real scale-free network 

with increasing graph size. 

 

Table 3. Modularity of Clustering with increasing Graph Size of Real Scale-free network 

 

Real Scale-free Networks Modularity Index (RNSC) Modularity Index (MCL) 

Electronic circuits -107.417 -14.6429 

Protein, S. Cerev -354.502 -46.9323 

Software -632.844 -57.5208 

Protein, S. cerev. -891.266 -117.11 

Internet, router -1652.29 -243.728 

Internet, domain -2343.96 -291.768 

Prot. Dom. (PromDom) -2523.57 -390.877 
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Figure 2. Computation of Modularity index on real scale-free graph 

Modularity Index is an important measurement technique to check the performance or accuracy 

of the clustering results of different graph clustering methods. It is also used to compute the 

strength of the clusters, produced during clustering. Figure 2 shows that the modularity index of 

clustering results is decreasing in case of both the algorithms with increasing graph size. The 

modularity index of RNSC’s clustering results is gradually lowering compared to MCL’s 

modularity index. It can be stated by observing the figure that MCL gives clusters with better 

modularity compared to RNSC’s clusters.  

4.1.3 Cluster Size vs Increasing Graph Size for RNSC and MCL 

 
Table 4 represents the cluster size values which are produced during clustering by RNSC and 

MCL algorithms. The computation of cluster size is done on real scale-free network with 

increasing graph size. 
 

Table 4. Cluster size with increasing Graph Size of Real Scale-free network 

 

Real Scale-free Networks Cluster Size (RNSC) Cluster Size (MCL) 

Electronic circuits 187 54 

Protein, S. Cerev 602 183 

Software 805 397 

Protein, S. cerev. 1311 253 

Internet, router 2589 700 

Internet, domain 3084 572 

Prot. Dom. (PromDom) 4003 1005 
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Figure 3. Cluster size computation on real scale-free graph 

It is clearly observed from figure 3 that the cluster size evaluation is performed correctly by 

RNSC and MCL algorithms. From the figure, it can assume that RNSC is producing more 

number of clusters compared to MCL’s clusters. It can state that RNSC is exploring more 

number of clusters compared to MCL’s exploration. In this case, RNSC may possibly be more 

accurate than MCL. 

4.2 Evaluation on Synthetic Graph 

Synthetic benchmark scale-free graphs with increasing graph size are used for the performance 

evaluation of these graph clustering algorithms. 

4.2.1 Cost of Clustering vs Increasing Graph Size for RNSC and MCL 

It is observed from figure 4 that the cost of clustering evaluation curve of RNSC and 

MCL is increasing gradually with increasing of graph size. But, RNSC is giving less 

cost compared to MCL for all the test graphs. 

 

Figure 4. Cost of clustering on synthetic scale-free graph 
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It can be concluded that RNSC is producing less costly clusters compared to MCL for the 

synthetic graphs also. 

4.2.2 Cluster Size vs Increasing Graph Size for RNSC and MCL 

 
Figure 5 shows that the cluster size is evaluated for RNSC and MCL for all the test graphs and 

RNSC is producing more number of clusters compared to MCL’s clusters for all the test cases. 

RNSC is exploring the network more compared to MCL. 

  

 

Figure 5. Evaluation of cluster size on scale-free graph 

It can be concluded that RNSC is giving more number of meaningful clusters compared to 

MCL’s clusters. 

4.2.3 Modularity of Clustering Results vs Increasing Graph Size for RNSC and MCL 

Modularity Index is an important approach to check the performance or correctness of 

the clustering results of different graph clustering methods.  

 

Figure 6. Modularity computation on scale-free graph 



Advanced Computing: An International Journal ( ACIJ ), Vol.3, No.5, September 2012 

30 

 

 

 

It is observed from figure 6 that RNSC’s modularity is decreasing gradually whereas MCL is 

performing better in that case. Modularity of clustering results evaluated by MCL is decreasing 

with increasing of graph size but it is better compared to RNSC’s modularity of evaluated 

clustering results. 

4.3 NMI Value vs Number of Experiments for RNSC and MCL on real scale-free 

network 
The NMI value plays an important role in checking the optimal nature of clusterings of different 

clustering methods. It evaluates the algorithm’s behaviour in information passing through 

different clustering results. 

 

Figure 7. NMI value computation on real power-law graph (Prot. Dom.) 

Figure 7 shows that the NMI value is high in case of RNSC compare to MCL. So the quality of 

the clusters of RNSC is better compared to MCL. After 300, 500, 700 runs with using real 

large-scale scale-free graph (Prot. Dom. [15]), NMI value is obtained in case of RNSC and in 

case of MCL; experiments are performed by changing the inflation value as I= {2.5, 3.5, 4.5}. 

The mutual information sharing between clusterings is more effective for RNSC whereas MCL 

can’t provide good quality clusters due to the less NMI value compare to RNSC. For all the 

three experiments, the NMI value of RNSC’s clustering is stable and in a much high position 

compared to the MCL’s NMI value of clustering results on real scale-free networks. MCL is not 

giving accuracy in producing optimal clusters compared to RNSC. It can be concluded that 

RNSC is producing meaningful clusters compared to MCL’s produced clusters. So, RNSC is 

more optimal than MCL. 

 

4.4 Visualization of Real power-law graph and Clustering results of RNSC and 

MCL on real power-law graph   

Figure 8 shows the visualization of real scale-free graph Protein, S. Cerev. It is observed from 

figure 8 that it is a complex model with 985 nodes and huge interactions exist between the 

nodes. Figure 11 shows the visualization of real scale-free graph Protein, S. cerev. It is also a 

complex model of 1870 nodes with huge interactions and it maintains the scale-free nature i.e. 

power-law distribution.  It is observed from figure 9 and figure 10 that the clusters, evaluated by 

RNSC are more accurate and clearly visible compared to MCL’s cluster evaluation on Protein, 

S. Cerev graph respectively. Figure 12 and figure 13 show the same results in visualizing the 

clusters, produced by RNSC and MCL on Protein, S. cerev. RNSC always produces meaningful 

clusters compared to MCL. For both the test graphs, RNSC is performing better in producing 
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clusters compared to MCL. It is clear from visualizations that RNSC is more optimal compared 

to MCL. Figure 14 and figure 15 show the size distribution of clustering results, produced by 

RNSC and MCL respectively on Protein, S. Cerev graph. The modularity marking after 

clustering process is basically used to shrink the cluster size, computed by these methods, 

following some similarity measures i.e. depend on various properties of a complex network. 

The figures show that RNSC is responding better in shrinking cluster size compared to MCL’s 

response to modularity shrinking size. It can be concluded that the shrinking size is done for 

RNSC better compared to MCL. RNSC is more appropriate compared to MCL. 
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5. CONCLUSIONS 

This paper presents a comparison between RNSC and MCL algorithm on real and synthetic 

benchmark scale-free graphs in terms of cost of clustering, modularity index of clustering 

results, cluster size and quality of clusters on the basis of NMI value. Robustness and optimality 

of evaluated clustering results of RNSC and MCL algorithms are computed based on above 

mentioned parameters.  The result shows that RNSC is more optimal than MCL. RNSC is 

getting better NMI value compared to MCL using real scale-free graphs. The quality of the 

clusters found in RNSC is better compared to MCL. It is clearly observed from the cluster size 

figure for both test datasets that RNSC can find more number of clusters compared to MCL. So 

RNSC is more significant compared to MCL. The modularity curve is showing better results in 

case of MCL’s clustering compared to RNSC’s clustering for both the test datasets. The cost 

curve shows that RNSC is producing lower-cost clustering results compared to MCL. It can be 

concluded that for both the case of real and synthetic benchmark scale-free graphs, RNSC is 

performing well compared to MCL in producing quality clusters with lowering cost. From the 
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visualization, one’s attention can be attracted certainly on RNSC’s clustering results compared 

to MCL’s clustering on real scale-free graph.The time complexity of RNSC is O(n^3).The time 

complexity of MCL is O(n.k^2) where n is the number of nodes and k is the number of 

resources allocated per node. RNSC can be further extended by implementing it for weighted 

and directed graph where the weight can be added to the cost functions (naive and scaled cost), 

which will change and will give better results. Also, it can be further extended by a parallel 

move method which will give better results in the case of run-time or average cost. MCL can be 

further extended to produce good quality clusters. 
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