
Advanced Computing: An International Journal ( ACIJ ), Vol.3, No.5, September 2012 

DOI : 10.5121/acij.2012.3510                                                                                                                     93 

 

 

 

Justification of Montgomery Modular Reduction 
 

By: Dr. Salem Sherif Elfard 

Department of Computer Science, Faculty of Science 

University of Az-zawia , Zawia-Libya 

E-mail: s_elfard@yahoo.com 

 

Abstract: one of the most known and widely used methods in Cryptography is the method suggested by 

Peter Montgomery; this method is based on the changing of the original reduction modulo by some other 

convenient modulo, the original Montgomery paper gives the algorithm without any considerations 

leading to that algorithm.  
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Introduction: The Montgomery method is the most famous and untraditional, by 

representing the residue classes modulo m in a non standard way, Montgomery’s method 

replaces a division by m with a multiplication followed by division by a power of b. this 

operation will be called Montgomery reduction. 

There are different forms of Montgomery that can be applied to the modular 

exponentiation problem. There are bit-serial architectures [1], where special purpose circuits 

perform multiplication and reduction simultaneously. Recently, Fischer and Seifert [2] made an 

interesting observation that there exists a duality between multiplication and modular reduction. 

 

Justification of Montgomery Scheme: first of all let us describe some ideas which 

allow to obtain this algorithm in natural way as consequence of the number theory facts, in the 

original Montgomery paper [3], there is no such justification. 

As well known in realization of number of data protection such that RSA or logarithmic 

exchange fast modular reduction method over large numbers are required. The effectiveness of 

this scheme to much extent depends on the effectiveness of algorithm of modular reduction. 

Traditional method of representing large numbers is their representation as the 

representation in calculation base with some basis b. In computer applications b is usually 

defined as power of 2 which is equal to a computer word size [4]. Arithmetic over such 

numbers (addition, subtraction, multiplication, division, powers) is called multiple precision 

arithmetic. 

Let m and x be multiple precision numbers with calculation base b, 
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Computing x mod m is called modular reduction, x is an argument. 

There are a few known modular reduction algorithms: classical method, Barrett’s 

method and Montgomery’s method. As was mentioned by many researches Montgomery 

reduction is the fastest in computing a reasonably long seria of modular reductions, for instance 

in computing exponential function  x
y
 mod z.[5]. It turns out that Montgomery method is based 

on the simple well known fact of representing gcd (greatest common divisor) of tow integers as 

linear combination of these integers . 

Let x and y be tow positive integers and let d = gcd (x,y). then d could be expressed as a 

Linear combination of x and y , Ax – By = d. 

Moreover integers A and B could be found effectively on logarithmic on x and y time. This fact 

could be easily obtained for instance from Euclidean algorithm of finding gcd of tow integers. 

 If x and y are coprime numbers then “greatest common devisor”  gcd (x,y) =1, and one 

can find integers A and B such that  the following relation holds true :  

Ax – By =1                               (1) 

In this case for any integer k the following holds true : 

(A - ky)x - (B - kx)y =1.              (2)   

This implies that if B – kx = B mod x, then A - ky = A mod y .the inverse statement is 

also true . thus it is possible to consider A and B in representation (1) to be remainders in 

modulo respectfully y and x. 

 Computations of type x mod m for some integers m are simple to be fulfilled and for 

some others are complex . for instance when m = 2
k
, k – size of computer word, this operation 

is very easy and inexpensive. So an idea arise to transform reduction computations of arbitrary 

modulo to reductions only of “Good” modulo [6].  

Firstly this idea was developed by P. Montgomery he suggested a method for 

computing arithmetic operations on modulo m  in which operations of addition and subtraction 

are practically unchanged but multiplication is slightly changed on a simple procedure not using 

reductions modulo m. Montgomery method demands nonstandard representation of residue 

classes modulo m and thus some necessary precomputations of input initial values should be 

performed in computer programs. Such precomputations are done only once before running a 

program and do not affect the speed of program executions. 

Therefore; Montgomery method is very effective only in programs with active use of 

modular reduction inside bodies of cycle. Typical example is modular exponential function x
y
 

mod z . 

Let m is a given modulo; one can choose R which is coprime with m and such that 

operations x mod R and x div R computationally “Good”, R > m. there exists the representation 

of 1 as a linear combination of R and m, which could be found in logarithmic time: 

RR
-1

 – mm’ =1     (3) 

Where 0 < R
-1

 < m , 0 < m’ < R , m’ = -m  mod  R 

Let x be some integer, it implies from relation 3 that xR
-1

R – xm
’
m =x. the principal 

moment for justification the Montgomery scheme is the following fact analogous to the relation 

(3) which could be verified by simple algebraic computations. 

For any integer k the identity relation holds: 

(xR
-1

 – km) R – (xm
’
 – kR)m = x.  (4)  

Implies that;  xR
-1

 – km = ((xm
’
 – kR)m + x) / R.  
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let  k = xm’ div R.  and s = xm’ – kR = xm’ mod R.  as s ≥ 0  and x ≥ 0,  then such a choice of k 

the value xR
-1

 – km is also positive, so we obtain the following result. 

 

Montgomery theorem The value (xm’ div R) m + x) /R is an integer and   

 xR
-1 
≡ ((( xm’ div R) m+x )/ R) mod m. 

Assume that x < Rm. Consider the expression (xR
-1

 – (k+2) m) R – (xm’ – (k+2) R) m = x.  

this expression is of equal value to (xR
-1

 – (k+2) m) R + (R – s) m Rm  = x. as R – s ≥ 0 and  

according to the made conjecture 0 ≤ x < Rm, then xR
-1 

– (k = 2) < 0. 

Let’s consider the expression (xR
-1

 - (k+1) m) R – (xm’ –(k+1) R) m = x. 

this expression is equivalent to (xR
-1

 – (k+1) m) R + (R – s) m  = x.  

where R – s ≥ 0. If  xR
-1

 – (k+1) m < 0 then  xR
-1

 – km = xR
-1

 mod m. If  xR
-1

 – (k+1) m ≥ 0 

then xR
-1

 – (k+1) m = xR
-1

 mod m. therefore  xR
-1

 mod m. where x < Rm could fifer from  

(( xm’ div R) m+x )/ R  maximum on  m. 

It gives the Montgomery scheme: 

int function REDC (int x)  

     t ≡ ( x mod R) m’ mod R; 

     g ≡ ( x + tm)/R; 

 if ( g ≥ m) return (g –m); 

    else return (g). 

 

The algorithm is based on the fact that the computation of xR
-1

 mod m can be done very 

efficiently by the algorithm REDC [6]. 

The Montgomery multiplication algorithm speeds up the modular multiplications and 

squaring required for exponentiation [7]. It computes the Montgomery product 

MonPro(a,b)=abr
-1

 mod n 

given a ,b < n and r such that the greatest common denominator (n,r) =1. 

To describe the Montgomery reduction algorithm, we need an additional quantity, n’, the 

integer with property rr 
--1

 nn’=1. We can compute both integers r
-1

 and n’ with the extended 

Euclidean algorithm. We compute MonPro(a,b) as follows: function MonPro(a,b)  

t:=ab 

u:=[t+(tn’ mod r)n]/r 
if u >= n then return u-n,   else return u 

However, we did not take into account the space required to keep the input and output values 

a,b,n,n0’, and u 

 
The details of using Montgomery scheme and comparisons with other methods as; 

Barrett’s method, classical method, could be found in [4, 8, 9, 10].  

The arrangement of applying the modular operation after completing the multiplication 

is very expensive because the result of the multiplication by 2
2n-k 

may be much greater than the 

modulus and a large amount of hardware will be required to handle it [11] However, the 

operation can be simplified by introducing the modular reduction after each multiplication by 2 

as the following: 

[((((((((a
-1

2
k-n

).2) mod p).2) .2) mod p).2) mod p)]=a
-1

2
n
mod p 

The modular reduction operation is performed by a subtraction of p whenever the 

number exceeds p [7]. 
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Conclusion and Results: in this paper several contributions have been achieved as summarized 

below: 

- In arithmetic computation Montgomery reduction is an algorithm introduced by Peter 

Montgomery that allows modular arithmetic to be performed efficiently when the 

modulus is large. 

- I proposed a theoretical justification of Montgomery modular reduction. And suggested 

a simple theoretical basis for Montgomery method which could be generalized for other 

applications and even for other schemes based on different basic relations between a 

given modulo and chosen one. 
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