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ABSTRACT

In this paper we propose an easy algorithm for real time hand finger counting involving one or more than
one hand. Hand finger counting is a simple medium for Human-Computer Interface which can prove to be
a convenient input method for driving interactive menus, small applications and interactive games. Here,
we also calculate the orientation of the hand which can be used to provide inputs for the direction and/or
speed control of a robot, controlling mouse cursor or slide-show presentations. If being used by a single
person, with his or her two hands, the person can trigger ten different commands with fingers in addition to
the orientation of the hand. We tried to use very simple algorithm using very basic mathematics of 2D
coordinate geometry and avoided the conventional use of calculus, contours and convex hull. Anyone
seeking for an easy to implement hand finger counting algorithm can refer to it.
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1. INTRODUCTION

Technology has always developed in the direction to simplify our day to day life. Today we are
developing towards creating technology even more easy to use. Human Computer Interface (HCI)
is the term used to refer the technologies that have been developed for interacting with machines.
Till date, a number for hand gesture base HCI have been introduced. Yet here, we want to just
add a bit of ease by bringing up an easy to use algorithm that uses computer vision to count
fingers of our hands. In an intermediate step we also calculate orientation of our hand which itself
can be used for interacting with computer.

2. METHOD

We can sub-divide the whole procedure into small manageable fragments described as under.

1. Hand Extraction
2. Noise reduction
3. Calculation of Centroid and orientation



Advances in Vision Computing: An International Journal (AVC) Vol.1, No.1, March 2014

12

4. Scan for lowest valley
5. Create separate images by finding a split line at lowest valley point
6. Recursively find centroid and orientation of each images and again scan for lowest valley
7. Under no valley condition check if it is a finger

2.1. Hand Extraction.

Standard image from the camera consists of coloured pixels in usually RGB format, each of
which has a value ranging from 0 to 255 for each of red, blue and green values. This data is stored
in a matrix form where each element of the matrix represents a pixel or picture element.

Hand extraction is done by background elimination. [1] It is assumed that the first fame contains
only static background. There after the subsequent frames are checked for changes with respect to
the first background frame. We use Gaussian blur [2] of 5x5 on the background so as to remove
bit of noise and detect sharp changes. We construct a binary image (black & white image) out of
the hand that comes over the background. Hand is represented in white on the otherwise black
background. We use linear blur of 3x3 and threshold the image such that at least 7 pixels of the
concerned 9 pixels have to be white to consider the central pixel to be white. This is a strong way
to ensure that no noise speckles arise unless the image is badly affected by noise due to
significant movement of camera or in background. This also makes the valleys more prominent
and thus they are easier to locate.

Figure 1. The left binary images are noisy images. The right binary images after application of noise
reduction.

The matrix so formed is further reduced by a factor of 3 by spatial sampling in both coordinates
to form a much smaller matrix which gives similar image with reduced dimensions. The idea is to
replace the bulky matrix with a smaller one so that the calculations can be done in a much faster
way involving fewer iterations.

The factor by which the matrix is reduced is a point of trade between speed of the algorithm and
the distance of the hand from the camera till where it can detect individual fingers correctly.

2.2. Centroid & Orientation

Finding Orientation is an important factor in the algorithm as it helps the algorithm to be valid
even if the hand is placed slightly inclined or slanted rather than in the ideal upright orientation. A
very simple and basic approach has been followed to find the orientation of the hand.
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2.2.1. Calculating centroid

We calculate centroid of the white pixels by finding the spatial mean along x and y direction by
giving equal unity weights to each pixel.

Centroid(x, y) = ∑ xi / n, ∑ yi / n

Where, xj and yi represent the x and y coordinates of the pixel in row i and column j. Total
number of pixels are represented by n.

2.2.2. Calculating orientation

We use a line that gives us the idea about the orientation of the hand. If we show our hand with
open palm to the camera such that our middle finger points vertically upwards, then the line
perpendicular to our hand, which happens to be the horizontal line in this case, can be termed as
base line. Here on, the base line will be used to refer the line which is perpendicular to the hand
or to any part of it.

To find the base line, we take the centroid of all points of hand that happen to lie on the lowest
horizontal line. Then we find the line joining this centroid to the centroid of the hand that we
found in section 2.2.1. Let that line joining the two centroids be represented by y = m1.x + c1. A
line perpendicular to this line will have slope of (-1/m1). This line, if has to pass through the
centroid of lowest horizontal line (xcb, ycb), will have the equation as

y = (-1/m1).x + {ycb + (1/m1).xcb}

This line intersects the hand almost perpendicularly and here we get our first base line. It roughly
replicates the orientation of the hand within the range of ±45º from vertical axis. This orientation
can itself serve as a simple way for human computer interaction.

(a) (b)

Figure 2. Images depicting orientation. (a) Camera image, (b) the processed image. White line representing
the base line.

2.3. Scan for lowest valley point

We start scanning the image upwards from the base line mentioned in section 2.2.2 till we find a
valley point. Here, we define valley point as spatial mean of the black pixels lying between two
white regions. We scan the image along the slope of the base line and for scanning the next upper
line we change the y intercept of the line by 1. Thus, we scan the image along a non-conventional
axis rather than conventional x-y axis.



Advances in Vision Computing: An International Journal (AVC) Vol.1, No.1, March 2014

14

The minimum width of the white regions can be fixed according to the expected maximum
distance of the hand from the camera. Also, the minimum width of the black region can also be
fixed in order to take the minimum spread of fingers in consideration. If minimum width of the
black and white regions are not satisfied then it is not considered as a valley point and scanning
for valley point is continued. While scanning for a valley point, we turn the scanned pixels to
black till we meet the first valley point.

2.4. Finding a split line

Upon getting a valid valley point, we must have two disjoint matrices of white pixels. Here, we
wish to draw a line such that the two disjoint matrices lie on either of the line. We refer this line
as split line, which is a straight line passing through the valley point and has no white pixels on its
locus. We find such a line by scanning along the line through valley point starting with the angle
180º and decreasing it gradually down to 0º. We stop scanning as soon as we find a split line. If
we do not find any split line upon full scanning then we reject that valley point and again start
scanning for new valley point.

On finding a valid split line, we create two copies of the image. Each of the images have white
pixels of only one side of the split line. Thus, we separate the two disjoint matrices into two
separate matrices. Two points (x1, y1) & (x2, y2) are on the same side of the straight line ax + by +
c = 0 if,

[ax1 + by1 + c / ax2 + by2 + c] > 0

Figure 3. Images depicting the centroids, base lines, valley points and split lines

The yellow lines are split lines, Yellow dots are valley points, white lines are the initial or the first
base line, the green lines are subsequent base lines and red dots are subsequent centroids.

2.5. Going through recursion

Once we get the two separate images, we find the centroids of each of the images. Then we
calculate new base line for each of the images. For calculating the new base line we use the base
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line of the parent image passing through the valley point that produced the separate images and
we choose a line slightly higher to it by changing its y-intercept. Along this line we find centroid
(Cn). The line passing through the valley point and perpendicular to the line joining the centroid
of the image and Cn becomes the base line for the new image. Now we scan for valley points in
these images. We stop scanning once we cannot find any more valley point.

Figure 4. The intermediate steps involved. (a) Image from camera, (b) Binary image with noise, (c) After
noise reduction, (d) The split line shown, (e) & (f) are the two separate images from the parent image

shown in (c), (g) the binary image at the instant when valley point is found in the image (e), (h) & (i) are
the split images of the parent image (e), (j) & (k) are the images from the parent image (f), (l) the image

showing all the split lines, base line and valley points after the whole algorithm has executed.

2.6. Identifying Fingers

Once we get an image in which no more valley point is present, we need to check if that image
represents a single finger or not. At first we reject the images that do not have the certain
threshold number of pixels. This threshold number is calculated by squaring the value that was
used for minimum number of white pixels in the white region for finding the valley point in
section 2.3.
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Of the remaining images, we find the number of white pixels lying on the locus of the line
parallel to the base line and passing through the centroid. Let the number of pixels found be ‘W’.
Next we find the number of white pixels lying on the locus of the line perpendicular to the base
line and passing through the centroid. Let the number of pixels found be ‘H’. We found that we
got good results for H/W ratio of more than 1.3.

2.7. Performance Analysis

We tested on individuals in different age groups involving different palm sizes. In our tested age
range (14 to 52 years) we did not find any accuracy variation on the basis of age but difference in
palm size of individuals did affect position of their hands from the camera. Here, under we
tabulate the data from 5 users we selected who showed most variations in the readings. User 1 to
User 5 are arranged in ascending order of increasing palm size.

Table 1. Accuracy in percentage for different users for all finger counts

Finger Count User 1 User 2 User 3 User 4 User 5 Overall
1 100.0 99.0 99.3 97.6 98.6 98.89
2 96.4 100.0 98.8 84.3 92.6 94.41
3 97.0 84.6 97.0 96.8 96.6 94.39
4 100.0 100.0 99.6 98.8 93.8 98.34
5 96.0 96.6 98.0 96.0 97.6 96.84
6 87.2 86.6 95.0 88.4 92.8 90.00
7 84.0 87.0 90.0 88.6 94.4 88.81
8 95.2 93.8 96.0 98.8 95.4 95.83
9 93.6 90.2 86.4 89.2 92.2 90.32

10 98.0 97.6 95.3 97.8 97.2 97.18
Mean for all

Users
94.74 93.54 95.53 93.61 95.12

Due to the auto white balance adjust of the camera, we got a lot of noise when posing with both
hands. Thus, users had to adjust the distance of their hands from the camera so as to minimise the
changes due to white balance adjust. Our code provided visual feedback of number of fingers
being detected in each frame, so users could easily adjust their hands to get the best results.

In most cases we got a few erroneous results in first few frames when the hand was slowly
entering the view field of camera. This was because of the fact that all the fingers were not at
once inside the view frame of camera. So, the frames captured while the hand was moving inside
the view field of camera yielded erroneous detection results.

All the errors that we found occurred due to two reasons as mentioned above - auto white balance
adjust and frames in which the hand was not completely in the view field of the camera. If we
neglect the effect of auto white balance, the distance of hand from the camera did not cause any
significant problem to any user. Usually, all users put their hands at a distance in between 30cm
to 100cm from the camera.

3. CONCLUSIONS

We intended to develop a very easy algorithm and we were successful in our endeavour. The
algorithm has great amount of flexibility and thus can be used for numerous applications with
accurate results.
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We proceeded with few assumptions. Firstly we assume that the hand is shown from bottom of
the image such that fingers lie on relatively upper part of the image with respect to the rest of the
hand. Secondly, we assume that whenever the hand comes into view, it shows fingers and not a
closed fist.

We successfully used the algorithm to count up to ten fingers under the resolution of 640x480. If
not constrained by the resolution of the camera we can have any number of hands for finger
counting.

The code was written in C using Visual Studio 13 with OpenCV. The algorithm was tested on a
machine featuring AMD Quad-Core A10 2.5GHz processor and 8GB RAM on Windows 7
platform. We used Creative VF0520 Live! Cam Sync webcam having USB interface.

It can primarily be used for Human-Computer Interaction. For example, controlling mouse cursor,
slide shows and can even be used for controlling a robot. By using our two hands we can trigger
10 unique commands and by changing the orientation of our hands we can provide even more
commands like changing the direction of movement of a robot or speed control of robot.
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