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ABSTRACT

Tree routing is one of the detouring strategies employed in geographic routing to help find a detour for a
packet to leave a local minimum. The effectiveness of tree routing depends on the quality of the
pre-constructed routing trees. Existing tree construction methods build trees in a top-down and centralized
fashion and do not consider the traffic pattern and residual energy of the network. Therefore is likely to
create trees with poor routing performance. In this paper, we propose a novel routing tree, namely
Energy-Efficient Traffic-Aware Detour Tree, which is constructed completely in a bottom-up fashion, with the
consideration of both traffic load and residual energy. The simulation shows that our detour tree rarely
encounters the problem of conflicting hulls, has much higher average path residual energy and throughput
than other detour trees, leading to a better routing performance.
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1. INTRODUCTION

Wireless network routing can be roughly divided into two categories: proactive routing and reactive
routing [1-7]. Maintaining updated routing information to any other nodes in the network introduces
high overhead in proactive routing. Longer response time and poor scalability due to expensive
network flooding are the major drawbacks of reactive routing. Though hybrid of reactive and
proactive routing [8, 9] is designed to balance the tradeoff between both routing protocols, it still
suffers from high complexity.

As a special kind of wireless network routing protocol, geographical routing [10-14] has several
advantages over traditional routing algorithms. In general, geographic routing is simple, efficient,
and scales better. As demonstrated in [14, 15], the routing state maintained by each node depends
only on the local network density, but not the network size. Recently, geographic routing
algorithms have also been widely applied to data-centric applications [16, 17]. Even when physical
locations are not available, geographic routing can still be applied using virtual coordinates [18, 19].

Geographic routing forwards a packet in a greedy manner whenever possible and makes use of
localized geographical location information. Thus, it is able to avoid most of the communication
and storage overhead. Each packet carries the position of its destination. Each node in the network
is assumed to know its own location and its neighbor’s location. So, a node can always forward a
packet to its neighbor that is geographically closest to the destination, so long as that neighbor
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exists. This improves the routing scalability. Local minimum may exist where no neighbor is closer
to the destination. In such case, greedy forwarding would fail, and a detour strategy must be applied
to continue making progress toward the destination.

Different geographical routing protocols have different detour strategies to guarantee packet
delivery. Flooding is used in [10] for finding a detour when a packet reaches a local minimum. This
detour strategy is expensive especially in large networks. In [11, 12], the network topology is first
reduced to a planar graph in a distributed manner [20, 21], and then a certain heuristic traversal is
applied on the planar graph to find a detour. This detour strategy has an advantage over flooding in
terms of the communication overhead, but it requires several impractical assumptions to work
correctly, such as the unit disk link model and a flat network topology. Cross-Link Detection
Protocol (CLDP) proposed in [14] solved the problem of these impractical assumptions. However, it
still introduces extra overhead caused by “probe” packets for planarization.

To avoid this problem, [13, 22] construct a few pre-constructed routing trees to search for a detour.
These simple and effective detour trees do not require impractical assumptions and still can achieve
really good routing performance. [13] introduces the idea of convex hull to tree routing. In essence,
each node keeps a convex hull of all nodes in the sub-tree rooted at the node. When a packet
reaches a local minimum, it is forwarded to the child node whose convex hull contains the location
of the destination. If no such child is available, the packet is forwarded to the parent node. In the
worst case scenario, if there are overlapping or conflicting convex hulls, which means multiple
children’s convex hulls contain the location of the destination, they will be explored in turn until a
node closer to the destination than the current local minimum is found, where greedy forwarding
takes over again. For this reason, reducing the number of conflicting hulls will certainly remove
routing ambiguity and improve the routing efficiency.

The detour tree strategy does not rely on aforementioned assumptions and has been shown in [13,
22] to perform well compared to other geographical routing protocols [11, 12]. However, the
success of the tree-based detour largely depends on the quality of the pre-constructed tree. In [13],
several different types of routing trees are studied and the minimum path tree is suggested to be the
better choice. However, in their study, the root of a tree is always fixed. This places a serious
constraint to the construction of the tree. Without knowing the locations of nodes in the tree, a bad
selection of the root can easily lead to a large number of conflicting hulls. Additionally, two
important factors: residual energy distribution and traffic pattern of the network are not taken into
account in their study. In their case, if two geographically close nodes with traffic volume are
placed logically far apart in the tree, it would not only create bottlenecks, but also increase energy
consumption.

In this paper, we propose a different routing tree algorithm to find a detour out of dead-end nodes. It
is built completely in a distributed bottom-up fashion. This allows the number of conflicting hulls to
be reduced significantly. In addition, the network residual energy distribution and traffic patterns are
considered in the detour tree construction. We call this detour tree Energy-Efficient Traffic-Aware
Detour Tree (ETDT). ETDT makes detour tree routing more efficient. The simulation results show
that our detour routing tree rarely encounters the problem of conflicting hulls and has a much higher
average path residual energy and throughput compared to other routing trees.

The remainder of the paper is organized as follows. In Section 2, we review the different types of
spanning trees. In Section 3, we propose our detour tree and the distributed algorithm for
constructing it. In Section 4, we present the simulation results. Finally, we provide the conclusion
and future research directions in Section 5.
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2. RELATED WORK

In this section, we review several existing geographical detour methodologies including
planarization and detour tree algorithms. Detour tree methods have several advantages over
planarization detour methods. In detour tree strategy, data packets are delivered toward their
destinations along a path in the pre-constructed spanning tree topology. A spanning tree of a
connected network is defined as a tree that contains all the nodes in the network. For a given
network, there are many different spanning trees. In this section, we not only point out the
drawbacks of planarization detour, but also investigate several spanning tree algorithms and discuss
their applications in wireless networks routing.

2.1. Geographical Routing Algorithms
2.1.1 Planarization

In geographical routing, detouring packets out of a void area is a major research issue. There are a
numbers of solutions available for solving this problem. GPSR [11]combines face routing with right
hand rule to traverse the perimeter of void area. This traversal is not so efficient if the correct face
cannot be found quickly. In the worst case scenario, all the faces would have been traversed before
the last face is found to be the correct one. GOAFR [23] improves GPSR, by adopting adaptive face
routing (AFR) to detour. AFR adjusts the boundary of a traverse ellipse area around the face and
chooses an optimal value to reach the destination. Both GPSR and GOAFR depend on planarization
to support face routing. Planarization assumes that the connectivity between nodes can be described
by unit graphs. [14, 24] discovered that unit graph assumption cannot always be satisfied in reality.
Instead, a distributed Cross-Link Detection Protocol (CLDP) has been proposed by [14] to planarize
the network and solve the problem of GPSR and GOAFR. However, CLDP has to pay the
expensive price of extra overhead caused by probe packets for planarization.

2.1.2. Search Trees

Detour tree methods are alternative to planarization. In the routing tree detour strategy, data packets
are delivered toward their destinations along a path in the pre-constructed tree topology. Depth-first
search (DFS) and breadth-first search (BFS) are two principal algorithms for traversing a connected
network and creating routing trees [25].

In the DFS algorithm, the starting point of a traversal becomes the root of the tree. At each step of
the traversal, DFS visits neighboring unvisited nodes as deep as possible until no such node is
available. Whenever a new unvisited node is reached for the first time, it is attached as a child to the
node from which it is being reached. If there are multiple such unvisited nodes, a tie can be resolved
arbitrarily. This process continues until a dead-end node is reached, i.e., a node without adjacent
unvisited node, is encountered. At a dead-end node, the tree construction method backs up one link
to the node where it came from and tries to continue visiting unvisited node from there. Eventually,
it halts after backing up to the starting node, with the latter being a dead-end node. By then, all the
nodes in the same connected components as the starting node have been visited.

The BFS algorithm, on the other hand, visits the neighboring unvisited nodes as wide as possible
until no such node is available. It proceeds in a concentric manner by first visiting all the nodes that
are adjacent to the starting node, then all unvisited nodes two links apart from it, and so on, until all
the nodes in the same connected component as the starting node are visited.

While DFS tries to go as far as it can, BFS tries to exhaust the neighborhood first. The results of
these traversals are the DFS trees and the BFS trees. Both DFS and BFS trees provide a route to
reach every node in the network.
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2.1.3. Minimum Spanning Trees

A spanning tree of a connected network is defined as a tree that contains all the nodes in the
network. Clearly, both DFS and BFS trees are spanning trees of the original network. While a
network can have many spanning trees, a minimum spanning tree has the smallest total weight of
links among all spanning trees of the network. The minimum spanning tree for a network can be
constructed by using either the Prim’s or the Kruskal’s algorithm [25]. If additional nodes and links
may be added in the process of constructing the minimum spanning tree, the total weight can be
further reduced. The result is called a Steiner tree [25].

2.1.4. Minimum Path Trees

A minimum path tree optimizes the spanning trees in another fashion. It first selects a node at the
extreme end of the network as the root. When building the tree, each node chooses the neighbor
with the minimum number of hops to the root as its parent. If a node has a choice between multiple
neighboring nodes that are the same number of hops from the root, the geographical closest node is
chosen. The shorter links in the tree construction process reduce the occurrences of crossing links,
and result in a tree with sub-trees that are more clustered together, thereby reducing the probability
of intersections between convex hulls and creating fewer conflicting hulls. However, the
disadvantage of the minimum path tree is that the root is pre-selected without knowing the locations
of the nodes in the network. This puts a serious constraint in the tree construction. In case if the root
is poorly chosen, it may lead to a large number of conflicting hulls.

2.2. Common Issues of Existing Tree Algorithms

The above tree construction methods all follow the top-down approach. They usually require
centralized knowledge about the entire network, and therefore are difficult to develop a distributed
algorithm to construct the trees. In practice, the centralized algorithms are implemented by sending
information from all nodes to a centralized node, and then disseminating the decision to the entire
network. This normally involves intensive message exchanges and may cause low reliability.
Clearly, distributed algorithms are more preferred in practice. In addition, these methods construct
the trees according to the node locations, but ignore the traffic load and its tight relationship with
residual energy. Therefore, some nodes lack residual energy but are fully congested with high
traffic volume, while other links with full residual energy end up with no traffic. The reason is that
the tree is not constructed with the full use of relationship between residual energy and traffic
distribution. Consequently, the result routing is neither optimal nor efficient.

In the following, we will develop a greedy spanning tree construction algorithm that considers the
location, the residual energy and traffic pattern of the network with the intention of minimizing the
number of the conflicting hulls, optimizing the energy usage and balancing the traffic load of the
entire network.

3. ENERGY-EFFICIENT TRAFFIC-AWARE DETOUR TREE
3.1. Design of Energy-Efficient Traffic-Aware Detour Tree

As described in Section 2, the existing routing trees suffer from a number of issues that will cause
the tree construction as well as the tree routing to be inefficient. To address these issues, we propose
to build the tree in a distributed bottom-up fashion. The notations and terms used for the remainder
of the paper are defined as follows. A cluster is defined to be a set of nodes. Each cluster has a
cluster head (or simply head if there is no confusion), and each node belongs to exactly one cluster.
The center of a cluster is defined to be the average of the locations of nodes in the cluster. The
distance between two clusters CI and C2, denoted as dist (C1, C2), is defined as the Euclidean
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distance between their centers. If at least one node in a cluster is a neighbor of a node in the other
cluster, the two clusters are neighboring clusters. Notice that in our definition the distance between
neighboring clusters can be greater than the transmission range of a node. To take into account the
energy distribution and traffic tendency, we assume each node learns about its neighbor’s average
residual energy and average available bandwidth from their past history. To make the problem
simple, we assume the initially energy for each node in the network is same and each transmission
consumes the same mount of energy. The virtual energy of two neighboring clusters C/ and C2,
denoted as energy(C1,C2), is defined as the sum of all residual energy of the two clusters’ nodes.
The virtual bandwidth between two neighboring clusters C/ and C2, denoted as bandwidth(CI1,C2),
is defined as the sum of all available bandwidth between the nodes of two clusters. The virtual
bandwidth-energy product (which we will simply call virtual product) is defined as the product
value of virtual bandwidth and virtual energy. Notice that the virtual energy of two neighboring
clusters is an estimation of their actual average residual energy, while the virtual bandwidth
between two neighboring clusters is an estimation of the actual average available bandwidth
between them. The reason to use the virtual value instead of the actual average available value is
because it requires much lower computational and communication overhead to compute the virtual
values after the merge of clusters. The head of a cluster maintains the cluster information, including
the center of the cluster, the size of the cluster, and the virtual values as well as the link with the
largest virtual product of each neighboring cluster.

o

@ Cluster member with higher residual energy

Figure 1. An Example of Clusters Combination
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Table 1. Energy-Efficient Traffic-Aware Detour Tree Algorithm

/* The cluster head of a cluster C runs the following */
if ICl=1{// Initialization
compute the gravity G;to its neighboring clusters C;
find the largest gravity G =max,,G,
set target cluster as Cr and timer T as 7,,,/Gr
set state to comparing }
while (true) {
if ( state = comparing) {
repeat {
reduce timer Tvalue
if ( receive an update message from cluster C,)
update information about Cy
}until (7 expires ) or ( receive a m-request)
if ( Texpires )
send a m-request to Cr and set state to requested
else {
set target cluster Cy to the one sending m-request
send a m-response to Cy and set state to responded}
}else if ( state = requested) {
wait for 7., for m-response
if (T}.rq €Xpires before receiving a response)
rollback Cy and 7, and set state to comparing
else
send a commit message and set state to committed
}else if ( state = responded) {
wait for T, for the commit message
if (T, €xpires before receiving the commit message)
rollback Cy and T, and set state to comparing
else
set state to committed
}else if ( state = committed) {
if (ICI<ICA) {
send cluster info to the cluster head of C;
turn into a regular cluster member }
else {
wait for 7, for the cluster info from Cr
if (T, €xpires before receiving the cluster info )
rollback Cr and 7, and set state to comparing
else {
add the link with highest available bandwidth to Cy in the tree
compute the gravity G;to its neighboring clusters C;
find the largest gravity G =max,, G,
set timer T as T,,,/Gr
set state to comparing}}}}

The basic idea of our Energy-Efficient Traffic-Aware Detour Tree algorithm is that each pair of
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neighboring clusters has a gravity, which is computed according to a function of the square of their
distance and the virtual product. The larger the gravity value of two neighboring clusters the earlier
they will be merged together. The process will keep repeating until there is only one cluster left or
zero gravity between any pair of neighboring clusters. For instance, in Figure 1, the cluster with
cluster head P has two neighboring clusters Q and R. The virtual bandwidth between the cluster
with head P and that with head Q is the sum of their bandwidth between neighboring pairs (A, X),
(B, Y), and (C, Y). The virtual energy of cluster P and Q is the sum of residual energy of nodes A,
B, C, X, and Y. The size of a cluster C is the number of nodes in C, and is denoted as ICl. In the
case of Figure 1, it is obvious that the gravity of cluster P and cluster Q is greater than the gravity of
cluster P and cluster R. Thus, the neighboring clusters P and Q will merge with each other first.

The cluster head can be in one of the following four states: comparing, requested, responded, and
committed. To form the detour tree, each cluster head runs the detour tree algorithm described in
Table 1. In the algorithm, Tmax is the longest timer for a beacon period that a node is allowed to set.
Initially, each node is treated as a one-node cluster and the target cluster is the neighbor with the
strongest gravity to itself. The timer is set to be Tmax divided by the gravity value to the target
cluster. When the timer of a cluster head expires, the event of sending a merge request is triggered.
The merge request including the size of the cluster is sent to the head of its target cluster in order to
solicit a merge response. A merge response will be returned, if the target cluster decides to commit
the merge. After exchanging merge request and response, the two cluster heads execute the merge
process. The head of the larger cluster becomes the head of the merged cluster, and the head of the
smaller cluster submits its cluster information to its new cluster head and turns into a regular cluster
member. In each merge, the head of the merged cluster includes the link with the highest product of
available energy and bandwidth between two original clusters to connect them. The algorithm will
naturally form a detour tree, which is an Energy-Efficient Traffic-Aware Detour Tree (ETDT).
According to our algorithm, the cluster head is not necessarily the root of the tree.

The center of the cluster is calculated by averaging the locations of nodes in the cluster. Similarly,
by calculating the virtual values of the original cluster and its adjacent cluster, the virtual product of
the newly merged clusters can be determined. The link between the original cluster and the target
cluster is the link with the maximum virtual product.

After two clusters are merged into a larger one, the head of the resulting cluster will send to the
head of each neighboring cluster an update message containing the size of the merged cluster and its
virtual product. A cluster head receiving an update message from a neighboring cluster will update
the information about its neighboring cluster, but will not reset its timer for entering the comparing
state. This is to ensure that the timer of a cluster head will eventually expire.

It is worth noting that before all clusters are merged into one, each cluster already has its own
energy-efficient traffic-aware detour tree. It is used by neighboring cluster heads to exchange the
merge request/response as well as the cluster and update information. These data packets are routed
through tree routing. After the detour tree construction is completed, every node in the tree knows
its convex hull and packets can be forwarded based on the corresponding convex hull.

Our energy-efficient traffic-aware detour tree algorithm is distributed. Cluster merging are localized
operations, which do not necessarily require knowledge of the entire network. Compared to
centralized algorithms, our distributed detour algorithm does not involve route discovery broadcast
or dissemination of the route decision to the entire network. Clearly, our distributed algorithm is
more efficient in practice. It not only avoids expensive broadcast storms and bottleneck events, but
also significantly balance energy cost and improves efficiency.
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3.2. Implementation of the Algorithm

There are two main design issues of this algorithm: What is an appropriate gravity function and how
to deal with concurrent merge requests. In the following subsections, we address each of them
separately.

3.2.1. The Gravity Function

To minimize the possibility of having conflicting hulls between siblings, the closer clusters should
be given stronger gravity so that they are merged earlier. In addition, to alleviate the energy
unbalance and bottleneck issues, the neighboring clusters with higher virtual product should be
merged earlier so that the traffic between them will go through fewer links in the tree, while at the
same time, energy utilization will be more optimal. Given two neighboring clusters C/ and C2,
these observations lead us to set the gravity function between them as followings:
bandwidth(C,,C,)xenergy(C,,C,)
dist(Cl,Cz)2

In the case where two nodes are neighbors of each other, similar to what has been defined in IEEE
802.11b specification [26], they will exchange beacons periodically. The beacon exchange implies
that there is non-zero traffic between any pair of neighboring nodes. To guarantee beacon
exchanges, non-zero residual energy of each individual node is required. Through this beacon
exchange, nodes can also learn about the traffic and energy consumption patterns of their neighbors,
which is necessary for detour tree construction. ETDT is appropriate for applications which
maintain constant traffic patterns and stable energy cost for a certain period of time or where the
change is gradual. To optimize transmission, we investigate the relationship between traffic pattern,
residual energy and clusters’ distance. The neighboring nodes with higher residual energy can
support heavier traffic load between them. The shorter the distance between two clusters the greater
the saving in transmission energy and indirectly facilitate higher traffic load between the clusters.
From this analysis, it is obvious that in the gravity function, both clusters’ distance and residual
energy can better improve transmission. Putting those three factors, i.e. bandwidth, residual energy,
and distance together into the gravity function for building detour trees will surely optimize overall
performance of detour tree routing, since the gravity function determines the quality of detour tree
and also the performance of detour tree routing. The Energy-Efficient Traffic-Aware Detour Tree
(ETDT) is constructed according to this gravity function (Equation 1), under the assumption that
there will be non-zero gravity between any pair of neighboring nodes. Consequently, if the network
is connected, after a series of merges, all nodes should eventually be integrated into one cluster.

gravity(C,,C,) = (1)

Since this detour routing tree is built based on network conditions at a certain time period, it needs
to be reconstructed regularly. The length of reconstruction period depends on each individual
application, for instance, when half of the nodes around a void area have the energy level reduced to
only 50% of their initial energy, when the traffic pattern in the network has changed and when a
new traffic pattern has lasted for a certain amount of time. Those events may trigger a detour tree
reconstruction.

3.2.2. Concurrent Merge Requests

It is likely that, before the merge process finishes, more than one clusters’ timer expire. In this case,
there will be multiple merge requests sent out concurrently in the network. If the source and
destination of these requests are different, these merges can be performed in parallel. Otherwise, the
merge must be performed in a specific sequential order to avoid creating inconsistent states.
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Figure 2. Number of Conflicting Convex Hulls under different
Network Densities

In Table 1, when the head of a cluster decides to combine with another cluster, it asks for
permission by sending out the merge request to the target cluster. These cluster heads will go
through a process similar to the two-phase commit protocol [27]. The one sending out the merge
request will go through the requested and committed states; while the other one will go through the
responded and committed states. Furthermore, we regard the statements associated with the
committed state as one atomic action. By incorporating these protection mechanisms, a cluster head
will be involved in at most one merge request.
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Figure 3. Average Path Length under different Network Densities

4. PERFORMANCE EVALUATION
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In order to compare the performance of Energy-Eficient Traffic-Aware Detour Tree (ETDT) with
other routing tree methods, such as Breadth First Search Tree (BFST) and Minimum Path Tree
(MPT), we implement ETDT in Matlab. To show the capability of tree routing, the simulations are
carried out in 3D networks.

4.1. Simulation Settings

In the simulation experiment, the transmission range is 300 meters. We randomly generate the
topologies by placing nodes in a 3D cube with each side of length 1000 meters, according to a
uniform distribution. The cube is wrapped around at both ends of each dimension to eliminate the
edge effect. The total number of nodes placed in the cube ranges from 100 to 200, which
corresponds to network densities from 8.5 to 17 neighbors per node. For each network density, we
generate 10 topologies and use them to evaluate the performance of the three detour routing trees.
For each pair of neighbors, the residual energy and available bandwidth of each node is randomly
generated in the range from 1 and 500 with a uniform distribution. The initial energy of each node is
500.

4.2. Simulation Results and Analysis

Four metrics are used to evaluate the performance of routing trees. The first metric is the average
number of conflicting hulls in the routing tree. After the routing trees are produced by the three
algorithms, we calculate the convex hulls of the sub-trees and found the number of conflicting
convex hulls among siblings. Each result in Figure 2 is the average of the number of conflicting
hulls in 10 different topologies under the same network density. As discussed in Section I, more
conflicting hulls result in more complicated routing. As shown in Figure 2, the number of
conflicting hulls of ETDT is close to zero for all density levels and is consistently smaller than the
other methods. The reason is that ETDT is built in a bottom-up fashion. Closer clusters are merged
first so that the convex hulls between siblings are more clustered and have slim chance of
overlapping. Therefore, it results in a geographically “compact” tree and gets rid of routing
ambiguity.
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11.3 12.4 13.6 14.7 15.8 17.0 18.1 19.2 20.3 21.5 22.6

Average Residula Energy (%)

10

Density (Average Number of Neighbors)

Figure 4. Average Residual Energy under different Network Densities

The second metric is the average path hops of the routing path, which is defined as the average
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number of hops between different source and destination pairs. Figure 3 shows the average path
length in term of hop numbers under different network densities. Ten source and destination pairs
are randomly selected to perform routing for each generated network topology. For a given network
density, each result in Figure 3, is obtained by averaging 100 source-destination pairs on top of 10
different network topologies. A smaller number of average path hops means less energy cost on
each routing, which is more energy efficient and prolongs the system lifetime. In addition, a smaller
number of path hops also means that the traffic can reach the destination faster. This will help
reduce the delay and improve the system throughput. For the other case, the shortest paths from
each node to the root forms MPT. The hops count between source and destination may not be the
lowest because neither the source nor the destination may be the root. As shown in Figure 3, ETDT
has the smallest average path hops. MPT has a lower average path hops than BFST, because it
considers the location of the nodes. However, it seems that the location information is not fully
utilized. In ETDT, the merging of clusters is determined by the distance and bandwidth between
neighboring clusters. Thus, the resulting tree has lowest average path hops.

The third metric is the average path residual energy. A link residual energy is the sum of two vertex
nodes’ residual energy. On the routing path from a source to a destination, the smallest residual
energy of any link in the path is defined as the average path residual energy. The larger the average
path residual energy the lower is the chance of a network partition. Similar to the average path
length, for a given network density, Figure 4 shows the average path energy of 100
source-destination pairs on top of 10 different network topologies. Figure 4 shows the ratio of
average path residual energy to its initial energy under different network densities. Since the
initial energy is same for all of the nodes, the higher the ratio the higher is average path residual
energy. ETDT has the largest average path residual energy because clusters are merged with
consideration for their residual energy. By merging clusters with more residual energy earlier,
ETDT includes links with more residual energy in the detour tree and supports larger transmission
traffic. An interesting observation is that although the average path residual energy of BFST is
lower than ETDT, it is higher than MPT because a node in BEST includes all unvisited neighbors as
its children during tree construction. This indirectly allows BFST to include links with more
residual energy in the tree than MPT.
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Figure 5. Average Path Throughput under different Network Densities

Our last evaluation metric is average path throughput. On a routing path from a source to a
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destination, the smallest available bandwidth of any link in the path is defined as average path
throughput. The larger the path throughput the lower is the chance of a bottleneck. For a given
network density, Figure 5 shows the average path throughput of 100 source-destination pairs on top
of 10 different network topologies and under different network densities. ETDT has the largest path
throughput because clusters of nodes are merged based on the available inter-cluster bandwidth. By
merging clusters with more bandwidth between them earlier, ETDT includes links with more
bandwidth in the detour tree. Also, although the average path throughput of BFST is lower than
ETDT, it is higher than MPT because a node in BFST includes all unvisited neighbors as its
children during tree construction. This indirectly allows BFST to include links with more available
bandwidth in the tree than MPT.

5. CONCLUSION AND FUTURE WORK

Because of its light-weight and efficient routing algorithm, geographic routing has been applied to
many different applications of wireless sensor networks. The planarization detour method requires
several impractical assumptions to work correctly. In [7], spanning tree routing has been shown to
be a good alternative detour strategy for geographic routing. However, the quality of the
pre-constructed spanning trees determines the performance of the spanning tree routing. Our
proposed Energy-Efficient Traffic-Aware Detour Tree not only considers network traffic patterns,
but also network traffic and residual energy. It is beneficial to consider the relationships between
clusters’ distance, residual energy and traffic pattern when building the detour routing tree since it
improves routing performance compared to other routing tree algorithms, such as MPT and BFST.
Moreover, this detour tree algorithm is distributed. Clusters merging are localized operations, which
do not require the knowledge of the entire network, thus reducing network traffic. Unlike
centralized algorithms, our distributed detour algorithm does not need to send information from all
nodes to a centralized node, and then disseminate the routing decision to the entire network.
Obviously, our distributed detour algorithm is more efficient in practice. This distributed algorithm
does not cause expensive broadcast storms when building the detour tree and improves performance
in the geographical routing detour mode. The simulation results confirm that the spanning tree
detour routing based on ETDT achieves a much better routing performance in terms of the number
of conflicting hulls, average path hops, average path residual energy and average path throughput.

Up to now no pre-constructed spanning tree is designed to be adaptive to network mobility. Even
with slight changes of network topology, the whole routing tree may need to be reconstructed. In
theory, when a link in ETDT is broken due to movements of nodes, the node at one end can do a
local search to find a possible alternative link to reconnect the disconnected component. This option
will be further investigated in our future work.
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