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ABSTRACT

In operational networks, nodes are connected vidtipte links for load sharing and redundancy. Thes
done to make sure that a failure of a link does distonnect or isolate some parts of the network.
However, link failures have an effect on routing, the routers find alternate paths for the traffic
originally flowing through the link which has faile This effect is severe in case of failure of itical

link in the network, such as backbone links or lthks carrying higher traffic loads. When routing i
done using the Open Shortest Path First (OSPF)imguprotocol, the original weight selection for the
normal state topology may not be as efficient lfer failure state. In this paper, we investigate shegle
link failure issue with an objective to find a wieigetting which results in efficient routing inrmal and
failure states. We engineer Tabu Search Iteratimeristic using two different implementation stragsg

to solve the OSPF weight setting problem for liatufe scenarios. We evaluate these heuristics and
show through experimental results that both heiggsefficiently handle weight setting for the fadu
state. A comparison of both strategies is also qmée.
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1.INTRODUCTION

OSPF is an intra-domain routing protocol that usdsweights to make routing decisions and
compute the shortest paths. Different weight assam strategies have been discussed in the
literature [11] including the Unit OSPF, Inversep@eaity OSPF, Random OSPF etc. A better
selection of the OSPF link weights can lead tocidfit network utilization [1, 2]. Iterative
heuristics have been extensively used [10, 3, d]implemented using different strategies to
achieve this goal.

Ericsson et al. [4] proposed a Genetic Algorithrd ased the set of test problems considered in
[11]. A hybrid GA was also proposed by them [5] ethimakes use of the dynamic shortest path
algorithm to recompute shortest paths after theification of link weights. Sridharan et al. [6]
developed another heuristic for a slightly différearsion of the problem, in which the flow is
split among a subset of the outgoing links on tiertest paths to the destination IP address.

In this work, we have used a Tabu Search (TS) ghgor[7] to solve the OSPFWS problem.
Tabu search is an iterative heuristic that has laggtied for solving a range of combinatorial
optimization problems in different fields. The dktd description and related references for
tabu search can be found in [7].
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However, all strategies work on the assumption thattopology is fixed and there are no
failures in the network. A network may experiencdirk failure resulting in a change in
topology due to the loss of a link, when the nelwstate changes (Failure State) due to link
failure, the routing paths are also not the saménabe original state (Normal State). The
optimized weights for the original topology and dermd may no longer be good enough for the
new topology with the failed link. The absence loé failed link causes the traffic which was
originally flowing through this link to flow throug other available links. The fact that the
network was not optimized for these flows can resubn inefficient mapping of traffic on to
available links. This may also cause congestiosoime parts of the network, especially in the
case of higher demands.

One solution to this issue is to apply a new s&@8PF weights to links which optimize the new
topology (Failure State). However, it is cumbersdmehange the weights on each link in the
entire topology and also not very practical in cabéarger networks. One would suppose that
once the set of OSPF weights have been fixed, pleeator would not want to change these
weights in order to adapt for such changes in thte ©f the network. Hence, it is required to
adapt the original heuristic to optimize link weighaking into consideration single link failure

scenarios. In other words it is required to fingkaof weights that work for both the normal and
failed state of the network without considerablgrdéation in performance in both states.

Link failure scenarios require dealing with twotetaof a network. The first state where all
links are functional is denoted as Normal state #nedother state where a link has failed is
denoted as Failure state. In this paper, whicmigxension of Sqalli et al. [8], two different
strategies are devised and implemented to addresissue. The first strategyz. LinkFailure-

FT is similar to the approach adopted by Fortz @hdroup [9] with some modifications.
Another new strategyiz. LinkFailure-SS is proposed, where the weightsfiase optimized for
the Failure state. Keeping these weights fixed,cathbinations of weights are tried for the
added link to find the best cost for the Normatest8oth strategies are discussed further in this
paper.

Similar problem has been attempted by Fortz anddup[9]. In their approach, a set of links
was considered as critical, and in each iteratioa of these links was failed based on the
maximum utilization among critical links. The castnormal topology and the resulting failed
topology was averaged and the search was driveiindoa solution which minimizes the
average cost. One of our implementations in thiskvi® similar to this approach but with the
modification that the link failed is always the otennected between nodes carrying the highest
demand. This simulates the worst case scenario.

The rest of the paper is organized as follows; D®PFWS problem statement and the cost
functions proposed in the literature are preseintegkction 2. The two Link Failure algorithms
are discussed and analyzed in Section 3. Thidlmafed by the experimental results including
the comparison of both algorithms under Normal Eailure state in Section 4. Finally, we
conclude in Section 5.

2.PROBLEM STATEMENT AND COST FUNCTION
The OSPF weight setting problem can be statedlmsvia Given a directed network of nodes
and arcsG = (N, A), a demand matrbD , and capacityC, for each arcal A, determine a

] for each arcal A such that the objective function or

cost functionF is minimized. When routing is done using OSPF dksigned link weights
completely determine the shortest paths, and hémedraffic flows. Based on these traffic

positive integer weighw, T [1,w,
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flows the partial loads on each arc for a giventidason are computed. This is done for all
destination nodes. The aggregated partial loadalfatestinations on a particular arc give the

total load|, on that arc. The cost of sending traffic throubis tarc is given bf ,(I,). The

cost value depends on the utilization of the axt iargiven by the linear function proposed by
Fortz and Thoroup.

1 forO£l/c, <1/3,
3 forl/3£l/c, < 2/3,
. 10 for2/3£1/c, <9/10,
Fa()= @
70 for9/10£ l/c, <1,

500 forl£l/c, <11/10,
5000 forl1/10£ l/c, <infinity

The Fortz cost function is given in equation 2.

F= F.) @

al A

The objective is to minimize , subject to these constraints:

= feYal A (3)

a
(s,t)l NXN
030 @

In constraint 3, for traffic between source degtorapair (s,t), fa(s‘” indicates the amount of
traffic flow that goes over arc a.

The detailed steps showing the formulation of tidst function can be found in the literature
[11, 10].

3.LINK FAILURE

Handling link failure scenarios requires dealinghwiwo states of a network. In the Normal
state, the topology is said to hamer 1 links. There exist a set of weights W which optienthe
cost for this topology. The cost function for trisdenoted bj (n+1),,, , where OH stands for
Original Heuristic andn +1 indicates a topology withn +1 links. In the case of failure, these
weights for the new topology will result in anothesst and is denoted By([n+1]- 1), .
Here,[n+1]- 1 indicates failure of link and topology change framt 1 to n links. The above

functions are representative of the costs wherNibienal state topology was optimized using
the original heuristic.

3.1. LinkFailure — FT

In LinkFailure — FT strategy, to find optimum wetghrepresenting both the normal and the
failed states, the idea is not to minimize the adstach state individually but to minimize the
combined or average cost of both states.
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For a given solution or set of weights W for theridal state, the cost is denoted By(n+1)
and for the Failure state with the same set of signinus the failed link (W-a) the cost is

F (n). The objective is to find the set of weightsiethminimizes the new cost function:
Fag = l/2 (F (n+1) +F (n)) (%)

Starting with a random initial solution for the Maal state T,,,) the same set of weights,
except the weight of the failed link, are transédrto the failed statel(,, ) and both topologies
find the shortest paths and the cost of the ing@ution. Tabu Search is started oy, by
making random moves, and every time the same nsoagaiin transferred to.; .

Both topologies find the shortest path and theesponding cost after a move. The cost of the
new solution forT, is denoted as=(n+1),, and the new cost ol is denoted as

Norm

F (n) oy The cost of the current solutidn , , is the average oF (n+1),,, andF (n) -

Avg

F Avg = 1/2 (F(n+1)Avg + F(n)Avg) (6)

Here, F(n+1),, and F(n),, indicate the cost off,, and T, respectively while

orm
optimizing the average cost function. We continadd Search and compute the average cost
for each iteration until the termination critereamet. The set of weights which gives the least

value of F ,, is the best solution obtained by the new heurigiigure 1 shows the structure of
the LinkFailure — FT algorithm.

3.2. Performance Evaluation of LinkFailure — FT

The performance of this strategy can be evaluagembmparing the cost obtained féy,,,, and
T.,, using this heuristic with that of the original. & fdifference between the costs of the

original and the new heuristic would indicate angai loss in the solution quality. Fdr,
this difference would be:

orm?

aNorm =F (n +l)OH -F (n +1)Avg (7)

Optimizing weights using the original heuristiceigpected to give a better cost than optimizing
for average cost. Hence, the value @, is expected to be negative, indicating a loss in

solution quality in the Normal state. A smallex, value or a value close to zero would

indicate that the heuristic is performing well iretNormal state.

In the case of the Failure state the cost differemould be indicated as:
Oy = F(N+1]-1)oy - F(N)ny (8)

The purpose of optimizing the weights for link m# is to achieve a better cost in case of a
Failure state than would have been achieved wetotiginal heuristic. Henceg,, must be a
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positive value indicating an improvement in theusioh quality. A largera,, value would
indicate that the new heuristic is performing wellthe case of a Failure state. Hence, a
combination of smallem,,, value and larged,,, value would be an ideal case indicating

minimal loss in the case of the Normal state amgghicant improvement in the case of the
Failure state.

Algorithm: LinkFailure-FT
S,: initial solution.
S: solution.
S, : best solution.
a: failed arc.

W, : Weight of arc i.
norm- NOrmal state.

T
T, : Failure state.
Begin
Tyom:
1. Generate5,;
2. Transfer {S;- a}to T, ;
3. ComputeF (N+1),,,;
Teair:
4. ComputeF (N) o4
do

Taom:
5a. Move(i,W);
6a. Compute- (n+1),,;
Teai
5b. Move(i,W,);
6b. ComputeF (N) 5,4
7. F pg =15 (F(n+1)Avg+F(n)Avg;

Avg —
While (Termination criteria is not met)
8. §, =S forminF ,,);

End
Figure 1: Structure of the LinkFailure — FT algbni.

3.3. LinkFailure — SS

In the previous strategy, we have tried to optimiegghts for the average cost @f,,,and
T - In this section, we propose another strategy lwbjatimizes weights foil -, and finds

the best solution fol ., by keeping the weights obtained frofp,, unchanged and trying all

possible weights for the one additional link. Thsttcases and benchmark topologies used were
the same as for the previous strategy.

172



International Journal of Computer Networks & Comigations (IJCNC) Vol.3, No.1, January 2011

We start with a random initial solution fdr.,;, and find the shortest paths and corresponding

cost for this solution. Tabu Search is startedTep by making random moves and after each
move, the shortest paths and corresponding costoanputed. The cost of the new solution for
T, is denoted as (n),, which indicates that the cost is for the topolaggh n links
optimized using the original heuristic. Once theri@ation criterion is met, we obtain the best
solution for T, and compute its best cost.

The final n weights are transferred t®,,,,. The weight on the additional (n}1 link is
assigned values from 1 to 20. For each welyht the cost of thé™ solution is computed. The
twenty costs obtained are compared to find the bekttion for T,.,. This is denoted by

F ([n]oy *+1),, which indicates that the cost is for topology with-1 links wheren links are

optimized using the original heuristic and one &ddal link is optimized by finding the best
solution from the twenty possible combinations.ufeg2 shows the structure of the LinkFailure
— SS algorithm

Algorithm: LinkFailure-SS
S : initial solution.
S: solution.
S : best solution.
a: failed arc.
W, : Weight of arc i.
Tyorm: NOrmal state.

Norm *

T, : Failure state.
Begin
Teai -
1. Generatey);
2. ComputeF ,(N)gy;
do
3. Move(i,WN);
4. ComputeF (N)oy;
While (Termination criteria is not met)
5. § =S for minF (n)gy);
6. Transfer§ to T
Taom:
7. ComputeF (n+1),; for a={1, 2, ..., 20}
8. F([N]oy +1)5 = min(F (n+1),);
9. §, =SforF ([n]oy +1);
End
Figure 2:Structure of the LinkFailure-SS algorithm.

orm?
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3.4. Performance Evaluation of LinkFailure — SS

Similar to the FT approach, the performance of shigtegy can be evaluated by comparing the
cost obtained fofl,., and T, using the SS heuristic with that of the originalifistic (OH).
The difference between costs of the original ardriw heuristic would indicate a gain or loss
in the solution quality. Forl this difference would be:

Norm
Qvorm= F(N+1)g, - F([n]oy +1),, (9)

In the case of the Failure state, the original iséiarwill end up with a cosF ([n+1]- 1),
and the SS heuristic with a costéf{(n),, . Hence, the cost difference would be indicated as:

O = F([n+1]- 1)o, - F(N)oy (10)

In the SS approach, the weights are optimizedlfgr and are expected to achieve a better cost

in the case of a link failure than would have beaehieved with the original heuristic. Hence,
a.,; must be a positive value indicating an improvemerihe solution quality.

3.5. FT versus SS

In the case of LinkFailure-FT, we simultaneouslyimjize two states of a netwomkz. Ty,

and T.,,, whereas in LinkFailure-SS we only optimide,, and then try the best possible

weight for the one additional link to optimizg,,,. Hence, the SS approach has a faster

convergence when compared to FT; which is a majctof when dealing with larger networks
and higher demands.

As discussed earlier, SS is optimized for the Faiktate and hence should not only give better
solution when compared to OH but also should perfbetter than FT in the Failure state. In
the FT approach, the weights are selected to oggihie average cost and not the best cost for
individual states. Any heuristic, to be acceptalnheist not degrade the performance of the
network in the Normal state. In other words it ddoesult in a solution quality as close to the
Original Heuristic (OH) as possible.

4. RESULTS

In this section, we present the experimental residt the two heuristics mentioned in the
previous section. The benchmarks used for the atiatuof the original heuristic for no failure
case [12, 11] were also used for the link failuasec Due to the change in topology (different
number of links) in the two states, the originattease would represent only one of the states
and a modified test case would represent the cthée.

Representing the failed state with a modified tease would require deletion of the

corresponding link entries from the files representhe graph and capacity of links. This could
also result in a disconnection of the graph. Taatais, we represented the Failure state with
the original test cases. To represent the Nornaé stve add an additional link between two
nodesnl and n2. The nodes selected were the ones with the higleesand between them in

the demand matrix. Failing this particular link whiis directly connected between the two
nodes having the highest demand between them wauige the worst effect on the network.
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Hence, if our heuristic is able to optimize weigftisthe worst case scenario then it is expected
to be robust.

The notations used to denote Cost in the NormalFaildre state are shown below:

FTy SS OH,

F(N+1) F(INI+1), | F(N+1),

avg

FT, Ss OH,

F(N) F(N)on | F(IN+1]-12),,

avg

4.1. FT versus OH

Experimental results for the two strategies impletaé for the single link failure scenario are
presented in this section. The individual perforoeaf each strategy can be evaluated by
comparing its results in Normal and Failure Stédehie Original Heuristic.

Table 1 shows the Cost values obtained using Fitegfy and OH for five different demands
using the test case h100N360a. From the tablanitbe seen that in the Normal state the Cost

of FT is marginally higher than OH, which can bersén thea,,,, column which shows the

Cost difference for the two strategies in the NdrBtate. Negative values indicate a loss. As
expected, there is some loss in the Normal Stat¢he Failure State, for all demands except
Demand-9, the FT Cost is less than the OH Cogtdisdted by a positive value in the column

a.,; . Hence, there is some gain in the Failure State.dverall gain or loss is indicated in the
columng .

The value ofa,,, is more than the value @, for higher demands D11, D12 which implies

that the margin of loss in Normal state is morenttiee gain in the Failure State for this case at
higher demands. Results also show an overall gaithé two demands D8 and D10.

Table 1: Cost Comparison FT versus OH in Normalleaiture State for h100N360a Network.

D FT, OH, ay FT. OH. a: a

D8 1.313 1.320 0.006 1.336 2.743 1.40p 1.413
D9 1.482 1.448 -0.033 1.538 1.494 -0.044 -0.077
D10 2.096 1.985 -0.111 2.315 5.711 3.39%6 3.285
D11 4.498 4.369 -0.129 6.017 6.057 0.04D -0.089
D12 17.973 14.076 -3.897 24.398 25.487 1.089 -2.809
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4.2. SS versus OH

Table 2 shows similar comparison for the SS StsatBgen in this case, the valuesa@y,,,, for

SS are marginally higher than those of OH, andvtliees ofa,,, for SS are well below those
of OH for all five demands shown in the table. Thiwws that there is a slight loss in the
Normal State and a significant improvement in tladlufe State. There is an overall gain as

indicated by a positive values in the last column Hence, there is an improvement in
performance due to the use of SS strategy compar@ti.

Table 2: Cost Comparison SS versus OH in NormalFaildire State for h100N360a Network.

D SS OH, ay SS OH, a: a

D8 1.32¢ 1.32( -0.00¢ 1.34: 2.74: 1.39¢ 1.39(

D9 1.480 1.448 -0.032 1.487 1.494 0.007 -0.02%
D10 1.986 1.985 -0.001 2.010 5.711 3.701 3.700
D11 4.389 4.369 -0.019 5.330 6.057 0.727 0.708
D12 14.316 14.076 -0.240 18.158 25.487 7.329 7.089

4.3. FT versus SS

We have seen that both strategies are performittgrtiban the Original Heuristic in the Failure
state while OH has slightly better results for Ne@rmal state. We now compare the SS and FT

results to show which of the two heuristics perferoetter. The comparison is shown in Table
3.

In the Normal state, for the demands D8 - D10 lsttategies have almost the same cost values
with marginal differences in favour of SS. For thighest demand D12, SS clearly performs
better than FT. Overall, for the Normal State aib de said that SS performs better than FT for
this test case. For the Failure State, SS cleatiyesforms FT for all demands. This is expected
as the strategy is specifically designed to op#mizights for the Failure State or in other
words to minimize the Failure State Cost. Hence,iS8lways expected to produce better
results for a Failure State. The overall comparisioows superiority of SS over FT for this test
case. Comparison of all three strategies for #asdase is presented below.

Table 3: Cost Comparison FT versus SS in NormalFaildire State for h100N360a Network.

Demand

FTy S§ FT: SS
D8 1.31326 1.32905 1.33621 1.34312
D9 1.48152 1.48005 1.53819 1.48682
D10 2.09604 1.98619 2.31527 2.01001
D11 4.49806 4.38878 6.01734 5.33037
D12 17.9732 14.3157 24.3984 18.1582

4.4, OH versus FT versus SS

Figure 3 shows the graph with the Cost comparisail the three heuristics in the Normal state
and in Figure 4 for the Failure State for the h1860& Network.

In Figure 3, it can be seen that OH has the best @ahe Normal state which is very closely
matched by SS. FT comparatively has the worst (Ddste Normal state. In the Failure state SS
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outperforms both FT and OH as seen in Figure 4ckle®S has proved to be having a marginal
loss (negligible in the case of lower demandshim Normal state and a significant gain in the
case of Failure, which is the ideal requirementli@se types of problems.

Experiments were conducted for five more test caselsare presented in the following figures
for both the normal and failure states. All thegpifes provide a comparison for all three

algorithms, i.e., FT, SS, and OH. A summary of ribsults obtained is presented at the end of
this section.

Normal State (h100N360a)

—e—FTNorm

—m=— SSNorm
8 / —a— OHNorm
6
4
2
o] 1

N
\\
NE™

Cost
o

—

& ——

T T
D8 D9 D10 D11 D12
Demand

Figure 3: Cost Comparison FT, SS and OH in the Nbstate for h100N360a Network.

Failure State (h100N360a)

30 4
25

20

—e— FTFail
15 —m— SSFail

Cost

10 —a— OHFail

D8 D9 D10 D11 D12
Demand

Figure 4: Cost Comparison FT, SS and OH in theuFattate for h100N360a Network.

Figure 5 shows the graph with the Cost compari$ail the three heuristics in the Normal state
and in Figure 6 for the Failure State for the r52B& Network.

In Figure 5, it can be seen that both SS and FWwstwmparable results in the Normal state. In
the Failure state, SS outperforms both FT and Ostas in Figure 6.
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25

20

15

Cost

10

Normal State (r50N228a)

/

-’—*“'//

D8

D9 D10 D11 D12
Demand

—e—FTNorm
—m=— SSNorm

—a— OHNorm

Figure 5: Comparison of FT, SS, and OH in the Nostete for r50N228a Network.

Failure State (r50N228a)

&8 &

30

25

Cost

20

10

A
F 4
/
/ —e—FTFail
/ P —=— SSFail
| A —a— OHFail
R
e D Dlo Dbt Di2

Demand

Figure 6: Comparison of FT, SS, and OH in the Faikiate for r5ON228a Network.

Figure 7 shows the graph with the Cost compari$ail the three heuristics in the Normal state
and in Figure 8 for the Failure State for the r180Ba Network.

In Figure 7, it can be seen that both SS and FWwstwmparable results in the Normal state. In
the Failure state, SS outperforms both FT and Ostas in Figure 8.

25 4

20

Normal State (r100N503a)

15

Cost

/.
-—-—""‘"’/

D8

D9 D10 D11 D12

Demand

| —e— FTNorm
% —m=— SSNorm
| —a&— OHNorm

Figure 7: Comparison of FT, SS, and OH in the Nostate for rA00N503a Network.
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Failure State (r100N503a)
40 -
35 A
30 //['
25 —e— FTFail
§ 20 /// n —=— SSFail
15 —a— OHFail
10 ,-’7‘/
e
0 : ‘
D8 D9 D10 D11 D12
Demand

Figure 8: Comparison of FT, SS, and OH in the Faikiate for rL00N503a Network.

Figure 9 shows the graph with the Cost compari$ail the three heuristics in the Normal state
and in Figure 10 for the Failure State for the wh68&a Network.

In Figure 9, it can be seen that all strategie$oper equally well in the Normal state for all
demands. In the Failure state, similarly all sgae perform equally well for all demands as
seen in Figure 10. This indicates that a link fa@ldoes not have significant effect on network
performance for this test case.

Normal State (w50N169a)
7 -
6 A
: ra
—e—FTNorm
% 4
8 " —=—SSNorm
5 4/’_/ —a— OHNorm
—
1
0
D8 D9 D10 D11
Demand

Figure 9: Comparison of FT, SS, and OH in the Naostate for w50N169a Network.
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Figure 10: Comparison of FT, SS, and OH in theuraiktate for w50N169a Network.

Figure 11 shows the graph with the Cost comparidoall the three heuristics in the Normal
state and in Figure 12 for the Failure State fenttiOON476a Network.

In Figure 11, it can be seen that all strategigfopa equally well in the Normal state for all
demands. In the Failure state, similarly all sgae perform equally well for all demands as
seen in Figure 12. This indicates that a link fa@ldoes not have significant effect on network
performance for this test case.

Figure 11: Comparison of FT, SS, and OH in the Narstate for w100N476a Network.

Failure State (w100N476a)

25 4

20 /
15 —e— FTFail

"g' —=— SSFail
© 10 '
—a— OHFail
° -————I/"/
o T T T T
D8 D9 D10 D11 D12
Demand

Figure 12: Comparison of FT, SS, and OH in theuraiktate for w100N476a Network.
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Figure 13 shows the graph with the Cost comparidoall the three heuristics in the Normal
state and in Figure 14 for the Failure State fertBON148a Network.

In Figure 13, it can be seen that OH has the best i@ the Normal state which is very closely
matched by SS. FT comparatively has the worst (Ddste Normal state. In the Failure state SS
outperforms both FT and OH as seen in Figure 14.

Figure 13: Comparison of FT, SS, and OH in the Narstate for h50N148a Network.

Figure 14: Comparison of FT, SS, and OH in théduraistate for h50N148a Network.

4.5. Summary of Results

In all the test cases, SS achieves the best résultbe Failure stated,, ) and also for the

overall improvement® ). SS is followed by FT in the Failure state, whperforms better than
OH. In the Normal state, SS performs slightly bettan FT for the two test cases h50N148a
and h100N360a and has comparable results for thedses r100N503a and r50N228a. For the
two Waxman graphs, w50N169a and w100N476a, allegiies perform equally well in Normal
and Failure state for all demands. This indicates & link failure does not have significant
effect on network performance for these two cabewlly, it can also be observed that for
lower demands (Demand-8, Demand-9), the resultalarest the same for all the six test cases.
This indicates that, if the load on the networkois, there is minimum effect of the link failure
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on the network performance and the original heigrigelf is efficient enough to handle single
link failures.

5. CONCLUSIONS

The single link failure issue in OSPF routing wddr@ssed in this work to find a weight setting
for the links which results in efficient routing mormal and failure states. Two new heuristics
based on Tabu Search were proposed in this pag®ely LinkFailure-SS and LinkFailure-FT.
Both heuristics were evaluated and they both predumetter results when compared to the
original heuristic in the Failure state. In additithe SS approach is found to give better results
than the FT approach in both normal and failuréestarherefore, it can be concluded that the
SS approach is an efficient way to tackle singié Failure issues. It was also shown through
experimental results that at lower demands anéiddafds the effect of link failure on network
performance is less and the original heuristic algo handle single link failures if the traffic
load on the network is low.
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