Mobile Ad-Hoc Network Based Relaying Data Sysem for Oceanic Flight Routes in Aeronautical Communications

Ho Dac Tu and Shigeru Shimamoto

Graduate School of Global Information and Telecommunication Studies Waseda University 29-7 building, 1-3-10 Nishi-Waseda, Shinjuku-ku, Tokyo 169-0051 Japan hodactu@suou.waseda.jp, shima@waseda.jp

ABSTRACT

This paper proposes a reliable system to overcome the weakness of current HF radio communication system for oceanic aeronautical flight routes. This system uses only one aeronautical VHF channel with air-to-air radio relay system based on local mobile Ad-hoc networks. For access of all aircrafts in the system, a TDMA (Time Division Multiple Access) scheme is proposed to be used where each aircraft is assigned with one time slot during its presence in the system in order to transmit its own packet by itself or to be relayed its packets by neighbour aircrafts. These packets contain aircraft position, ID, relative direction and all of which are used to build a routing table at each aircraft. In addition, several algorithms for relaying packets; schemes to reduce the packet-loss-ratio as well as to reduce the interference caused by surrounding aircrafts have been proposed. The simulations have shown the improvement of such proposals when examining system performance under the real air-traffic scenarios. This system strengthens the reliability of oceanic aeronautical communication and increases situational awareness of all oceanic flights as an effective solution to operate more flights on the ocean but in higher safety.

KEYWORDS

Air traffic control communications on the ocean, air-to-air communication, mobile Ad-hoc networks

1. INTRODUCTION

With the development of global economy, airplanes have become an indispensable transportation mean, connecting all the places around the globe. As a result, the number of international flights has increased considerably. Almost all international flights pass through the major oceans such as the North Pacific Ocean (NOPAC), the North Atlantic Ocean (NAO) etc. The statistical air traffic data in Japan showed that, on NOPAC routes in 2000 has increased 1.5 times compared with 1993 [1] and it is going to double in 2010 compared with air traffic in 2000 [2]. For international flights, takeoff time should be comfortable for travellers in local time which leads to some specific air traffic peak periods. The difference in time zones among those places makes peak periods of outbound flights and inbound flights various and dispersive during the day [see Fig. 6]. At uncomfortable time, aircrafts for goods transportation are preferred to operate. This feature increases the possibility to set up a local mobile Ad-hoc network at each aircraft by establishing air-to-air links in its communication range.

To avoid any collision between flights and to use the airspace more efficiently, ATC centres are operated where ATC controllers keep the aircrafts separated from each other and keep providing necessary guidance to the pilots. In continental areas, VHF system is currently deployed for communication between pilots and the controllers (air-to-ground) within a specific distance of 300 km. In oceanic and polar areas, long distance communication system in HF band is used instead. To ensure the aircrafts are separated, a minimal interval is always requested at 5 Nautical Mile (NM) for continental flights and controlled by several ground based surveillance radars. However, on the oceanic areas, out of radars range, the safety interval is required much longer at 50 NM [2].

Nowadays, communication model between pilots and controllers for oceanic flights is operating as described in Fig. 1.

Fig. 1. Current aeronautical communication systems for oceanic flights

The pilots contact ATC controllers mainly use HF radio system (i.e., 2.8-21.99 MHz) to report the aircraft position, aircraft status etc. Theoretically, HF radio waves are reflected on ionosphere tier; therefore, they can provide a multi-hop communication beyond the horizon. However operating frequencies must be adjusted accordingly to different weather condition, time periods and regions. As a result, it normally takes 2 minutes to setup a report with a successful rate around 80% in average [3]. In addition, HF communication is easily affected by interference during the flights which can disturb this communications. To back up HF system, a controller pilot data link communication (CPDLC) based on satellite communication (SATCOM) has been prepared. However, SATCOM systems are not widely and frequently used because of their high cost. Besides, HF data link (HFDL) system has also been attempted to be used in Japan but its remained issues have been reported in [3] and [4]. Therefore, HF radio system is still the main method to provide verbal communication between pilots and ATC controllers; meanwhile SATCOM system is used as a backup for HF system [5]. In this paper, we proposed a highly-stable relaying system to relay any aircraft position report to relevant ATC controller with just only one VHF radio channel.

The rest of the paper is organized as follows. Section 2 describes the multiple access scheme used in this system. Section 3 describes the air-to-air propagation model by practical experiment and signal to noise ratio (SNR) adjustment scheme while section 4 explains the operation of the proposed mobile Ad-hoc networks model for relaying data from any aircraft on the oceanic area to ground stations. Simulations in section 5 introduce optimal combination of interval value, SNR adjustment scheme, improved packet-loss-ratio scheme and packet-relaying algorithms by examining the proposed model with real statistical air traffic model on NOPAC routes. Some concluding remarks are presented in the last section 6.

2. MULTIPLE ACCESS SCHEME

2.1. Description and Structure

At present, the IEEE/802.11 CSMA/CA has been used widely and effectively by using request-tosend (RTS), clear-to-send (CTS) and ACK/NACK packets. This one-radio-channel model might be inappropriate to such wide area network in aeronautical communication on the oceans; which has a communication radius up to 650 km or more [see Fig. 4]. In our large area network, time to send or receive packets RTS/CTS, ACK/NACK is relatively long and system performance is properly down. Another factor, there is not much data to be transmitted or relayed in this system but operate quite frequently; hence, strengths of CSMA/CA are not useful. Based on these reasons, we proposed a single TDMA channel that accommodates for all aircrafts in a certain oceanic area

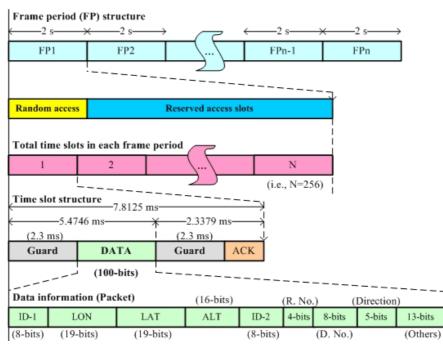


Fig. 2. TDMA frame and time slot structure

Once an aircraft joins the system, it must listens to all neighbour transmissions within a FP and then sends a request to the nearest ground station (GS) with a pre-determined time slot by using a time slot in random access part. It is supposed to use slotted-aloha scheme for this random access to the channel. This aircraft needs to wait until being assigned properly with a time slot by the ground station. Similarly, when an aircraft leaves the system, it sends a request to the GS to release its own time slot. During the flight, its assigned time slot is used and unchanged until completely released.

Each time slot is divided into two parts. One part includes a guard time of 2.3 ms to compensate the free space propagation delay; and data part of 3.17 ms that contains aircraft ID, position information (i.e., longitude, latitude and attitude as regulated by International civil aviation organization-ICAO); some idle time could be used to transmit ground speed, oil status, surrounding weather information to report to ATC centre or broadcast to all other neighbour aircrafts as well. In the other part, a guard time of 2.3 ms and a time to send ACK/NACK plus signal noise ratio to allow transmitter adjust transmitted power to eliminate interference to others. Those relation between time and bit are based on the assumption that a 31.5 kbps VHF transmission system is applied, which is being used widely now in aeronautical communications.

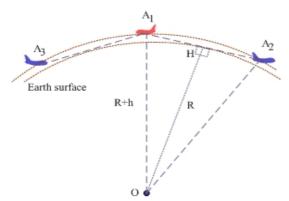
With above design criterion, at frame period of 2 s, the system can provide a maximum of 256 aircrafts [Fig. 2]; which is three times larger than the maximum number of flights on NOPAC routes or two times larger than total flights on NOA routes at any time. Assumes relevant ground stations e.g. GS1, GS2 are synchronized with Global Positioning System, connect and share the channel control information.

Theoretically, guard time length is proportional to communication distance and considered as a dead time period. However, the larger distance the higher possibility of establishing local Ad-hoc networks, which is proportional to relaying performance. Based on theoretical evaluation, a basic communication distance of 678 km is selected for further estimation [see Fig. 4].

2.2 Packet Generation and Relaying Mechanism

This part explains how each aircraft generates its own packets or relays neighbours' packets. As described in Fig.2, all aircrafts and ground stations are required to synchronize time slot configuration by using their GPS receiver. Each aircraft is assigned by a unique time slot upon the entry to the system. The general way of processing the aircraft packet is in any frame period, at the aircraft time slot, only its own packets are to be processed. This process contains two sub processes. First, it could be done by the aircraft itself when generating a new packet. Second, its packet is

processed by another aircraft when its packet is staying at some other aircraft. There is only one sub process or both sub processes are happening at the aircraft time slot depends on how many packets of the aircraft are on the whole system. In addition, to keep position report updated, after a predefined interval of several frame periods, the aircraft regenerates its position report.


Each position report includes at least the aircraft position, aircraft ID and its relative direction etc. After receiving, the receiver sends a feedback of ACK or NACK to the sender depends on the correction of received packet. If the feedback is ACK, the receiver continues to relay the received packet to the next appropriate relay aircraft at the same time slot that the packet arrives but in the next frame period. In case of NACK, the sender tries to retransmit its own position report after the mentioned interval. This relaying process is continued until the relay aircraft is the relevant ground station.

To describe the interference of transmitting neighbour aircrafts at the same time slot, the aircraft neighbours are divided in to two groups: adjacent-relay aircrafts (ARA) where their communication is affected on each other and the opposite group, distant-relay aircrafts (DRA) where they are separated enough and their communication do not make any interference on each other. In time domain, after the interval, the aircraft packets are to be processed by some neighbour aircrafts. These neighbour aircrafts may belong to ARA or DRA depends on the value of this interval. The shorter the interval the more regularity of the aircraft position reporting. However, the shorter interval means after a shorter time, the aircraft will re-generate its own position report, which may cause unexpected interference to other aircrafts that are relaying the aircraft packets at the same time slot but just in a different frame period. To find the optimal value of this interval, several analysis and simulations have been done and described on section 5.2.

3. AIR-TO-AIR COMMUNICATION

3.1. Theoretical Air-to-Air Communication Distance in VHF Band

For oceanic flights, aircraft altitude is fluctuated between 8 and 10 km and propagation among them is line-of-sight in VHF band. Therefore the maximum distance for air-to-air communication, $A_1A_{2,}$ can be calculated [see Fig. 4].

The length of A_1A_2 could be calculated by following equation:

$$A_1 A_2 = 2\sqrt{\left(OA_1^2 - OH^2\right)} = 2\sqrt{\left((R+h)^2 - R^2\right)} \quad (1)$$

R is the earth radius (i.e. 6378 km); h is average altitude of the aircraft (i.e. 9 km).

Therefore A_1A_2 reaches to a maximum value of 678 km. In reality, this value could be larger when the effect of the Earth curve is accounted.

Fig. 4. Air-to-air communication range

3.2. Receiving Power in Air-to-Air Communication

3.2.1. Experiment Description

The study of air-to-ground propagation channel model was studied in [6]. However, as our knowledge, air-to-air communication between the two aircrafts has not been studied by experiment so far. We have carried out a real experiment to evaluate the relation between bit-error-rate (BER) and receiving power which is presented in [7]. In this paper, the experiment is briefly introduced to show only the relation between receiving power and relative distance between the two aircrafts. Table 1 shows brief configuration of the air-to-air experiment.

Frequency		123.45 MHz
Transmit RF power		+45 dBm
Modulation		AM
Receiver sensitivity (S/N=6dB)		-98 dBm
Transmitter/Receiver	Gain	0 dBi
antenna	Direction	None
	Polarization	Vertical
Aircraft speed		250 m/s

Table 1. Air-to-air experiment configuration

3.2.2. Experiment Data Analysis

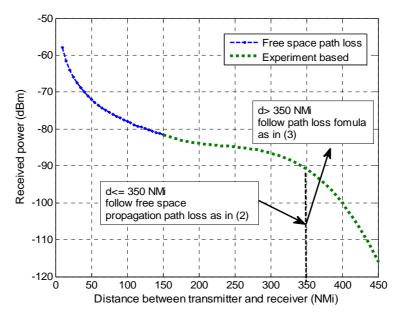


Fig. 5. Relation between receiving power and TX-RX distance

In our experiment, only receiving power at distance of larger than 150 NM was recorded. At distances of less than 150 NM, the two aircrafts are always in line of sight communication range of each other; therefore, the propagation path loss definitely follows free space path loss formula. Based on theoretical analysis (for d < 150 NM) and experimental data analysis (for $d \ge 150$ NM), the complete relation between receiving power and the two aircrafts distance can be described as in following equations:

$$\begin{cases} P_r(d) = \frac{P_t G_t G_r \lambda^2}{(4\pi)^2 d^2 L} \\ = P_t(dB) + G_t(dB) + G_r(dB) + 20\log_{10}\lambda(m) - 20\log_{10}d(m) - 20\log_{10}4\pi - 10\log L \ d \le 150 \ NM \ (2) \\ P_r(d) = -45.39 - 0.468d(NM) + 0.0019d^2(NM) - 2.752d^3(NM)10^{-6} \\ d > 150 \ NM \ (3) \end{cases}$$

 P_t : transmitted power; G_b , G_r : antenna gains of transmitter and receiver; d: distance between transmitter and receiver; λ : signal wave length; L: adjustment factor.

Figure 5 shows the description of equations (2) and (3). From this figure, with $d \le 350$ NM, receiving power could be estimated by applying free space path loss equation as in (2). At d > 350 NM, equation (3) could be used to calculate receiving power. Actually, our experimental data analysis results are suitable with theoretical analysis; because at d > 350 NM (d > 650 km), almost beyond line of sight range [see Fig. 4], the receiver and transmitter can not see each other; therefore receiving power will be decreased more sharply than that in the area at $d \le 350$ NM.

3.3. SNR Adjustment Scheme to Reduce Interference

In our scheme, the aircraft packet is regenerated frequently after a specific interval. In other way, at the same time slot, one aircraft position reports are generated/ relayed by several other aircrafts that are far from each other in distance or separated by a time interval. This leads to the capability that these aircrafts may cause interference to other aircrafts that are transmitting/relaying packets at the same time slot.

This part introduces a method to keep signal to noise ratio (SNR) higher than the predefined threshold SNR. As explained above, upon receiving a packet, the receiver sends a feedback to the transmitter. In case of packet lost due to high interference caused by other neighbour aircrafts, the feedback should contain the measured SNR level and send to the transmitter. In a short time, ground speed of aircrafts are almost unchanged, so the relative distance between the two aircrafts is assumed unchanged (if the same direction) or shorter than before (if opposite direction); therefore to increase SNR, the simplest way is to adjust transmitting power by following the established formulas in section 3.2. There are two ways to adjust transmitting power. The transmitter can increase transmitting power when retransmitting packet to the receiver. Another way, the transmitter could find a nearer node that ensures that at this receiver, the SNR is higher than the threshold SNR. In the first way, higher transmitting power may cause stronger interference to other aircrafts and may not improve packets loss in general. However in the other way, the near node will receive the higher signal power and the transmitter should adjust to a lower power according to the shorter distance which helps to reduce interference to other aircrafts. This method is selected to reduce the packet loss due to interferences caused by surrounding transmitters.

4. THE PROPOSED MOBILE AD-HOC NETWORK FOR OCEANIC FLIGHT ROUTES

4.1. Description of the Mobile Ad-hoc Network Model

Nowadays, aeronautical telecommunication network (ATN) has several shortcomings including the usage of aircrafts only as end nodes; hence, data must be transmitted via ground stations. This leads to one of the bottlenecks for future expansion of aeronautic networks; and the free flight concept in [8] is difficult to be realized. This also makes it impossible for a new concept of networking the sky as in [9]. However, with mobile Ad-hoc networks, both intermediate and end systems can be provided, thus bypassing current ATN limitations. On those considerations, we propose to use local mobile Ad-hoc networks are established locally at each aircraft; that are symbolized with circles which these aircrafts are located at the central points [Fig. 6].

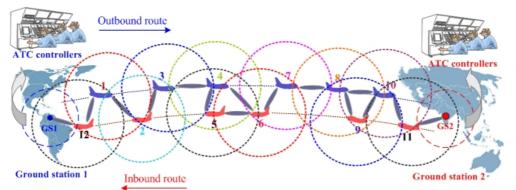


Fig. 6. Model for oceanic flights route employing mobile Ad-hoc network

In this proposal, system relays position reports of any aircraft to its relevant ground station by relaying via other aircrafts inside the local Ad-hoc network. Each aircraft transmits or relays these packets to the next aircrafts as explained in 2.2. It is necessary to equip the aircraft with one router to route packets to the next destination; and one server to store these packets in a pre-determined delay time if the packets are allowed to stay at each aircraft in case of waiting for link availability. This property is discussed in the section 4.3.

4.2. Routing Table and Packet Relaying Algorithms

Based on the model in 4.1., this part describes how the aircraft selects the next aircraft to relay the packet or the relaying algorithms. Recently, mobile Ad-hoc routing protocols for aeronautical communication have been reported in [10] and [11]. However, the protocol in [10] is used with satellite communication system while some additional internet gateways are essential with model in [11]. Both protocols discuss on internet services for oceanic flight routes which are not for general air traffic control. This paper proposes a communication system to provide position reports of all aircrafts on the oceanic routes for ATC communication without any other infrastructure except existing GPS systems already installed on any aircraft.

To build a routing table, firstly each aircraft listens to its neighbour aircrafts information through their transmissions within any frame period and then build a routing table with distance-based and then load-based priority. This is possible because each position report includes aircraft ID, position and its direction etc. The routing table at each aircraft must contain at least aircraft position, relative distance between the aircraft and its neighbours, data load and the relative direction etc.

In consideration of unequal air traffic scenarios at different time of the day showed in several aeronautical reports on typical oceanic routes such as NOA routes in [11][12], NOPAC routes in [13][14], we propose following packet relaying algorithms to find the most effective one:

- 1) Algorithm 1: each aircraft insists on replaying packets to aircrafts ahead, furthermost and only those with the same direction.
- 2) Algorithm 2: each aircraft insists on relaying packets to the aircrafts ahead and furthermost. However, if there is no same direction aircraft, it can select opposite direction aircraft.
- 3) Algorithm 3: the whole airspace is divided equally into several parts where each part is assigned with one ground station. If an aircraft belongs to some part, its packets will be relayed to the next aircraft in the same part which is closest to ground station of that part. If there is no same direction aircrafts, it selects opposite direction aircrafts.

4.3. Improved Packet-Loss-Ratio Scheme

The air traffic in almost oceanic routes is not distributed equally during the day; therefore, some times there are few aircrafts located inside an aircraft communication area leading to high packet-loss-ratio due to low probability of finding an air-to-air link to relay packet to the next. To increase the availability of air-to-air links, we propose a scheme to allow some certain waiting-time at each aircraft in order to keep packets in a longer time before relaying to the next aircraft. For end-to-end system, this proposal does not affect on frequency of packet arrivals. Because the interval of regenerating new packet of the aircraft is fixed and if all packets experience the same delay on each node, the arriving time of these packets is also not changed significantly. Another factor is the report interval in current oceanic communication is relative large, i.e. 5-10 minutes at horizontal separation of 50 NM. The working process of this scheme is explained as following:

- 1) Just apply for delaying packet after its arrival at an aircraft.
- 2) Packets are allowed to wait within the waiting-time (wt) before the aircraft relays to the next aircraft. This waiting time is activated at the first time once this aircraft can not find the route to relay the packet.
- 3) The value of waiting time is assumed to be a multiple of frame period since frame period is relatively small compared to the total delay allowed.
- 4) As explained above, after an interval, another updated position packet of an aircraft will arrive. If the older packet of this aircraft is still waiting at some aircraft, the newer packet will replace the older one and continue to wait until the allowed wt.
- 5) During waiting at some aircraft, if this aircraft can find a route to relay the packet, the packet is relayed to the next aircraft immediately and the waiting process is reset.
- 6) If waiting time reaches to wt and this aircraft still can not find any route to relay the packet, this packet is counted as failed and packet-loss counter is incremented by '1'; waiting process is also reset.

Both relaying-packet algorithms and this scheme are evaluated in the next section.

5. SIMULATION AND NUMERICAL RESULT

5.1. Input Data and Simulation Conditions

As explained about the air traffic scenario on oceanic routes, it is impractical to assume a fixed air traffic model in the whole day and use for simulation. In our end-to-end system, the packet-loss-ratio is expected to be lower in higher air traffic routes because high availability of aircrafts to relay. In addition, the reports in [8] and [14] show that air traffic density on North Atlantic Ocean routes is higher than that in NOPAC routes. Therefore, air traffic model in NOPAC routes are selected for initial input data in our simulation. After analyzing data that are collected on the inbound, outbound of NOPAC routes between Japan and America from March 2000 to February 2001 using Flight Data Processing System described in [14], arrival and departure aircrafts distributions in 24 hours of the day on NOPAC routes were obtained in Japan standard time (JST). Based on [2], it is possible to assume that the current number of aircrafts (in 2008) is 1.5 times larger than that in 2000. Therefore, the input data for our simulation is described as in Fig. 6.

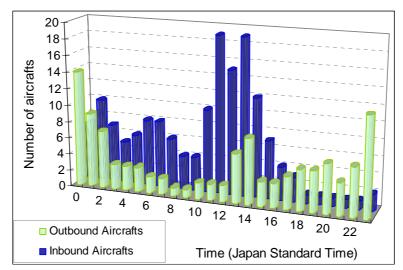


Fig. 7. The number of outbound and inbound aircrafts on NOPAC route

Before the discussion on numerical results, following conditions are explained more in details:

- 1) The average interval time of arrival/departure aircrafts is calculated based on average hourlyaircraft distribution [see Fig. 6]. Based on the interval time, the aircrafts in each hour are generated randomly but ensured that the minimum interval in time between any two aircrafts is always kept at least 3 minutes for both outbound and inbound flights.
- 2) The maximum radius for air-to-air transmission between aircrafts is supposed to be of 678 km; for the case of air-to-ground between aircrafts and ground stations, this value is set to 300 km.
- 3) Once a packet arrives at a relay aircraft, based on routing table of relay aircraft, it decides the optimal destination and relay the packet accordingly. If there is no route founded, packet-loss counter is incremented by '1'.
- 4) Once packet is arrived at ATC station successfully, the successful packets are incremented by '1'.
- 5) Three packet-relaying algorithms [see 3.3] were coupled to validate our system proposal. Each case is simulated in 25 days (or 600-hour flying time period) to evaluate the packet-loss-ratio.
- 6) The distance between ground stations i.e. GS1 and GS2 in our end-to-end system is assumed to be 8100 km. The average ground speed of aircraft is of 900 km/h.

5.2. Numerical Results

5.2.1. Optimum of time interval and SNR adjustment

Fig. 8 shows the packet-loss-ratio occurred during relaying packets from all aircrafts in the end-toend system to their relevant ground stations. This is the ratio between the total numbers of packet loss and generated packets. The ratio is evaluated for end-to-end system at every hour in the day in JST.

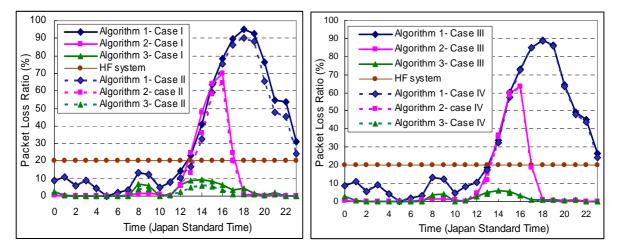


Fig. 8. Packet-loss-ratio of the end-to-end system in the whole day a) without SNR adjustment and b) with SNR adjustment

In Fig. 8a (left side), cases I and II are corresponding to the situations when intervals are 3 and 4 frame periods while SNR adjustment scheme in 3.3 was not applied. In Fig. 8b (right side), cases III and IV are corresponding to the intervals of 3 and 4 frame periods but was combined with SNR adjustment scheme. In Fig. 8a, the packet-loss-ratio in cases II is better than in case I because in case II, the aircrafts transmit packets at the same time slot are more separated than in case I, thus avoid packet loss due to high interference caused by the neighbours. Mean while in Fig. 8b, packet-loss-ratio in case III and IV are almost the same and same as case II [Fig. 8.a]. This means that at the interval of 4 frame periods, packet loss due to interference of neighbours was ignorable and power adjustment scheme was not useful. However, at interval of 3 frame periods, the power adjustment scheme was useful and has improved the packet-loss-ratio.

In addition, the packet-loss-ratio in the first two algorithms 1, 2 are relatively high in some periods of time compared to that in algorithm 3. The aircraft distribution is not actually equal in all hours for inbound and outbound flights but the first two algorithms do not allow the flexibility to find the next aircraft. Meanwhile, algorithm 3, the sparseness of inbound flights could be covered by the density of outbound flights or inversely, which could improve the performance.

From these results, the optimums of interval should be 4 frame periods without SNR adjustment scheme or 3 frame periods with SNR adjustment scheme. The latter option with two algorithms 2, 3 will be used to analyze more when coupling with packet-loss improved scheme in the next part.

5.2.2. Numerical Results with Packet-Loss Improved Scheme

Even though the packet-loss-ratio in the system coupled with relaying-packet algorithm 3 was the best and much better than that in HF system. However, to overcome the sparseness of aircrafts in some periods of time and make this ratio lower is essential for this relay system. This part describes the results of simulations when applying the two algorithms 2, 3 [see 4.2] with the improved packet-loss scheme [see 4.3] combined with SNR adjustment scheme [see 3.3]. Typical values of waiting time (wt) are used in each case, for example:

- 1) In algorithm 2, waiting time values are selected at: 10, 20, 40, 60, 80 and 100 s [see Fig. 9].
- 2) In algorithm 3, waiting time values are selected at: 10, 20, 40, 60 and 80 s [see Fig. 10].
- 3) Each simulation was also done in 25 days (600-hour flying time), the same as in 5.1.
- 4) Other conditions such as end-to-end system and air traffic models are the same as in 5.1.

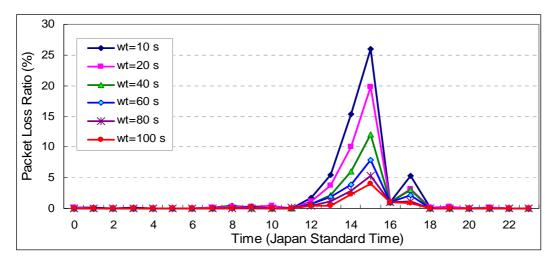


Fig. 9. Packet-loss-ratio of algorithm 2 coupled with a waiting time and SNR adjustment scheme

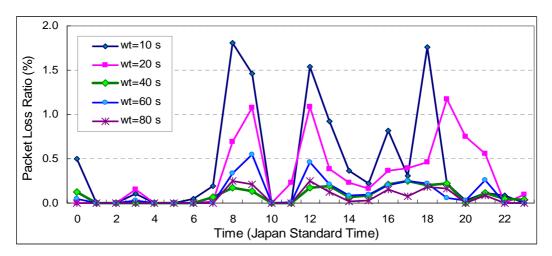


Fig. 10. Packet-loss-ratio of algorithm 3 coupled with a waiting time and SNR adjustment scheme

By using the packet-loss-ratio improved scheme in section 4.3 with a specific allowed maximal waiting time (wt), packet-loss-ratio has been improved significantly, especially at some peaks of packet-loss-ratio in both algorithms 2 and 3 [see Fig. 9-10]. As explained above, even the delay occurred at each aircraft node but for end-to-end system, the packet arrival interval still equal to the packet generation interval (this case is 3 frame periods) and does not affect on the position reporting.

In addition, wt will be active and effective at only periods where the aircrafts are few and sparse; means the packets are additionally delayed only on those periods and on other periods the packets are relayed without any additional delay. For example, at some periods of time such as $[7H\div9H]$ and $[13H\div17H]$ in Japan time, the packet-loss-ratio in algorithm 2 and 3 already reached to the peak [see Fig. 8] but they became much lower after applying this scheme [see Fig. 9-10].

From Fig. 9 and Fig. 10, the larger wt is, the lower packet-loss-ratio is obtained in both algorithms. The algorithm 3 always gets a better outcome compared with that in algorithm 2. For instance, with wt of 40 s, the packet-loss-ratio is much improved and reaches below 0.2%.

6. CONCLUSIONS

In this paper, a high reliable communication system, using a single aeronautical VHF channel with air-to-air links based on local mobile Ad-hoc networks, and a TDMA access scheme for aircraft in a wide area has been proposed for oceanic flight routes. The system provides only one channel digital data link connecting aircrafts in a specific oceanic area and relays position reports of any aircraft in

the system to the relevant ground station (i.e. ATC centre) more frequently and much more reliable than current systems without using any other infrastructure.

The numerical results show the best performance of system is when applying an interval at 3 frame periods combined with SNR adjustment scheme and a packet-relaying algorithm 3. In addition, with an allowed maximal waiting time i.e. wt of 40 s [Fig. 10], the packet-loss-ratio was improved significantly compared with non-waiting case [Fig. 8] and packet-loss-ratio is always below 0.2% in all cases of air traffic on NOPAC routes [Fig. 10]. Therefore, all flights on the ocean are controlled easily via precise and frequent position reports by relaying from this system.

This feature allows aeronautical authority (ATC centre) to reduce the interval in time or horizontal separation in distance between consecutive flights safely since their situational awareness has been improved greatly.

The proposed system can be used independently with current systems to be in charge of reporting all oceanic aircrafts positions to their relevant ATC stations or be used to supplement the current existing HF/SATCOM systems and become a completed system that is essential to any oceanic flights. However, satellite communication is still recommended to use as a backup for this system in case some position reports are not reached to ATC centres in time or for some emergency cases where verbal communication with ATC controllers is needed.

ACKNOWLEDGEMENTS

Authors would like to acknowledge the support of Hitachi Scholarship Foundation of Hitachi, Ltd. Japan and Electronics Navigation Research Institute (ENRI) of Japan.

REFERENCES

- [1] M. Sumiya, S. Nagakoka, O. Amai, "Survey on the Destination Airport of Oceanic Air traffic," Electronic Navigation Research Institute Papers, No. A-18-3, 2001.
- [2] Current and Estimated Air Traffic in Japan. [Online]. Available: http://www.mlit.go.jp/singikai/koutusin/koku/hoan/2/images/sankou2_2.pdf
- [3] ARINC Report 634, "HF Data Link System Design Guidance Material," Maryland, U.S.A, Aug. 30 1996.
- [4] ARINC HF Data Link Protocols, "ARINC Specification 635-3," Maryland, U.S.A., Dec. 29, 2000.
- [5] AMC Reference 02-59/MSG-177, pp.123, Huston, U.S.A., April 2002.
- [6] E. Haas, "Aeronautical Channel Modelling," IEEE Trans. on Vehicular Technology, vol. 51, no. 2, pp. 254-264, March 2002.
- [7] Y. Tsuda, C. Song, S. Shimamoto, S. Matsushita, J. Kitaori, S. Kato, "A Proposal of an Ad Hoc Network on Oceanic Flight Route," EICE Trans. on Commun., vol. J85-B, no. 12, pp. 2054-2062, Dec. 2002.
- [8] National Aerospace Laboratory, a Concept of Free Flight. [Online]. Available:<u>http://www2.nlr.nl/public/hosted-sites/freeflight/main.htm</u>
- [9] M. Schnell and S. Scalise, "Newsky A Concept for Networking the Sky for Civil Aeronautical Communications," 25th Digital Avionics Systems Conference IEEE/AIAA, Oct. 2006.
- [10] E. Sakhae, A. Jamalipour, N. Kato, "Aeronautical Ad Hoc Network", IEEE WCNC, Apr. 2006.
- [11] D. Medina, F. Hoffmann, S. Ayaz, C. Rokitansky, "Feasibility of an Aeronautical Mobile Ad Hoc Network Over the North Altlantic Corridor", IEEE/SECON, Jun. 2008.
- [12] B. Welch and I. Greenfeld, "Oceanic Situational Awareness Over the North Atlantic Corridor", NASA Glenn Research Center, Clevehand, Ohio, Apr. 2005.
- [13] B. Welch and I. Greenfeld, "Oceanic Situational Awareness Over the Pacific Corridor", NASA Glenn Research Center, Clevehand, Ohio, Apr. 2005.
- [14] M. Sumiya, S. Nagakoka, O. Amai, "Survey of Air Traffic Floww on the North Pacific Routes", Electronic Navigation Research Institute Papers, No.114, Mar. 2005.

Authors

Ho Dac Tu was born in Hue, Vietnam, in 1976. He received the ΒE degree from Department of Electronics and Telecommunications at Hanoi University of Technology, Vietnam in 1999. From 1999 to 2003, he joined Vietnam Post and Telecommunications (VNPT) as a telecommunications engineer. He received the M.E degree in communication engineering from Waseda University, Tokyo, Japan in 2005. He has been a doctoral student at the Global Information and Telecommunications Studies of Waseda University, Japan, since 2008. His research interests are in wireless communications especially in aeronautical communications and relaying system. Ho Dac Tu is a student member of IEEE and IEICE.

Shigeru Shimamoto was born in Mie, Japan, in 1963. He received the B.E and M.E degrees in communications engineering from University of Electro-Communications, Tokyo, Japan in 1985 and 1987 respectively. From April 1987 he joined NEC Corporation. From April 1991 to September 1992, he was an Assistant Professor in the University of Electro-Communications, Tokyo, Japan. From 1991 he was an Assistant Professor in Department of Computer Science, Faculty of Engineering, Guma University. From 2000, he was an Assistant Professor, and from April 2002, he has been Professor in the Global Information and Telecommunications Studies of Waseda University, Japan. From July 2008 to December 2008, he was a visiting Professor in Stanford University, U.S.A. His research interests are in the areas related to satellite and mobile communications. Dr. Shimamoto is a member of IEEE.