
International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012

DOI : 10.5121/ijcnc.2012.4303 37

AUTOMATED INFERENCE SYSTEM FOR END-TO-

END DIAGNOSIS OF NETWORK PERFORMANCE

ISSUES IN CLIENT-TERMINAL DEVICES

Chathuranga Widanapathirana, Y. Ahmet Şekercioǧlu, Milosh V. Ivanovich,

Paul G. Fitzpatrick, and Jonathan C. Li

Department of Electrical and Computer Systems Engineering, Monash University,

Australia
{chathuranga.widanapathirana, ahmet.sekercioglu, milosh.ivanovich,

paul.fitzpatrick, jonathan.li}@monash.edu

ABSTRACT

Traditional network diagnosis methods of Client-Terminal Device (CTD) problems tend to be labor-

intensive, time consuming, and contribute to increased customer dissatisfaction. In this paper, we

propose an automated solution for rapidly diagnose the root causes of network performance issues in

CTD. Based on a new intelligent inference technique, we create the Intelligent Automated Client

Diagnostic (IACD) system, which only relies on collection of Transmission Control Protocol (TCP)

packet traces. Using soft-margin Support Vector Machine (SVM) classifiers, the system (i) distinguishes

link problems from client problems and (ii) identifies characteristics unique to the specific fault to report

the root cause. The modular design of the system enables support for new access link and fault types.

Experimental evaluation demonstrated the capability of the IACD system to distinguish between faulty

and healthy links and to diagnose the client faults with 98% accuracy. The system can perform fault

diagnosis independent of the user’s specific TCP implementation, enabling diagnosis of diverse range of

client devices.

KEYWORDS

Automated Diagnosis, Intelligent Inference, TCP, Support Vector Machines, Network Fault.,

1. INTRODUCTION

For the past decade, the most computer network-related developments have focused on

improving connection speeds and developing new applications. However, with the demand for

improved network speeds, the tolerance for connectivity and performance issues has decreased.

With complex communications networks that support many types of Client-Terminal Devices

(CTD), traditional methods of performance and fault diagnosis are increasingly inefficient.

Diagnosis of network performance problems requires a methodical approach. First, the faulty

segment of the network has to be isolated and second, the exact root cause of the problem

should be identified. Analysis of packet traces, especially from the Transmission Control

Protocol (TCP), is a sophisticated inference based technique used to diagnose complicated

network problems in specialized cases [1]. These traces contain artifacts related to behavioral

characteristics of network elements that a skilled investigator can use to infer the location and

root cause of a network fault. The expertise and resources required for this technique, however,

hinders its usability in the conventional fault resolution process of Internet Service Providers

(ISPs).

The most common complaint from broadband users is that their “connection speed is too slow”

[2]. ISPs typically employ experienced technical staff that continuously monitor and resolve

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012

38

performance issues in servers, backbone, and access links. Consequently, in often cases, the true

bottleneck of a user’s connection speed is actually the client device [3]. Commonly, this is the

result of overly conservative default networking parameters supplied with almost all out-of-the-

box operating systems (OS). Correct configuration of these parameters with respect to the

access network technology can improve connection speeds and alleviate user dissatisfaction. In

practice however, these settings are difficult for novice users to manipulate. Recent studies have

found that network data rates reached by novice users are only one-third of those achieved by

expert users, a phenomenon commonly referred to as the ”Wizard Gap” [4]. Many common

performance issues are simple to correct, but difficult to diagnose. As a result, most customer

connection issues persist unresolved [2] and many users experience severely degraded network

performance even when the networks are underutilized [5, 6]. The Internet2 performance

initiative has found that the median bandwidth in their 10 Gb/s backbone in April 2010 was

approximately 3.05 Mb/s [7]. Though solutions have been proposed for improving network

traffic conditions [8, 9], little attention has been given to solving the bottlenecks or diagnosing

faults at the end-user.

Next-generation OSs (e.g. Google Chrome OS) increasingly use cloud computing to deliver all

applications to the user device through the web [10]. A recent report on cloud computing by

Armbrust et al. [11] identify performance unpredictability and network bottlenecks among the

top obstacles for the adoption and growth of cloud computing.

In this paper, we address the aforementioned issues by introducing a new intelligent inference

method for diagnosing network problems using TCP packet traces which we call the Intelligent

Automated Client Diagnostic (IACD) system. The system (i) relies only on collection of packet

traces upon reporting of a problem, and (ii) focuses on identifying CTD faults and

misconfigurations. The authors Widanapathirana et al. previously presented a brief overview of

the IACD system in IB2COM 2011.

link problems

detected?

run

LPD classifier

over the trace

solve link

problems

yes

run CFD

classifier over

the trace

no

collect a new

packet trace

set link type

collect a

packet trace

client problem

identification
report

Figure 1: Overview of the operation of the IACD system

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012

39

1.1. Operational Overview of the Intelligent Automated Client Diagnostics (IACD)

system

The proposed IACD system is outlined in Figure 1. The system starts by collecting a TCP

packet trace of a known stream of data between the client device and the ISP’s router. This is

initiated by the user through a specially-created web page that activates the trace collection

application. This trace is then analysed by the IACD system, which contains two machine

learning trained classifiers.

Assuming that the access server is optimized for the connection, performance problems

experienced by the end user can be attributed to either the access link or client device. Since the

system is designed to diagnose client device problems, a test is first performed to identify

whether the performance problem is due to faulty access links.

The TCP packet trace is passed to the first stage of the system, the Link Problem Detection

(LPD) classifier that reports whether an access link is operating as expected. If the LPD

classifier determines that the access link is faulty, then the link issues should be resolved before

attempting to diagnose any client faults. We have left the automatic diagnosis of the access link

problems for future work. If the link is identified to be healthy, the packet trace is passed to the

Client Fault Diagnostic (CFD) classifier to identify the exact root causes of any problems in the

client device.

2. BACKGROUND AND RELATED WORK

The use of TCP packet traces for analysis and inference of connection behavior dates back

several decades to the introduction of the TCP. The tools and techniques developed since then

can be categorized into two main groups: (i) TCP trace visualization tools [12, 13, 14], used to

analyze packet streams for organizing and summarizing large amounts of trace data into an

easily comprehensible format for expert use, and (ii) TCP-based behavior inference methods

using techniques such as packet sequence analysis [15, 16], heuristic analysis [17] and machine

learning algorithms [18, 19, 20] to infer connection behavior. These methods have been

developed for many applications, including network security [18, 21], system fingerprinting [20,

22], The Internet traffic classification [19, 23], network tomography [24, 15, 16, 25], protocol

diagnosis [26, 27, 28], and network diagnosis.

In this paper, we focus our discussion to two categories of diagnostic solutions: (i) rule based

behavior inference using TCP traces, and (ii) machine learning based behavior inference using

TCP or other event traces.

2.1. Rule based behavior inference using TCP traces

The ability to indirectly infer the behavior of protocol layers through the observation of TCP has

motivated researchers to create diagnostic systems. The tools “tcpanaly” by Paxton et al. [26]

and “TCP Behavior Inference Tool” (TBIT) [29] were early attempts at automated diagnosis of

TCP implementations and non-compliance issues, using rule based analysis of TCP packet

sequences. Work by Jaiswal et al. [25, 30] on inferring connection characteristics through

passive analysis of packet traces used heuristic processes and was later extended to include a

more extensive set of rules by Mellia et al. [17, 31, 27].

The project “Web100” [32, 5] focuses on collecting per-connection TCP statistics through

kernel instrumentation (KIS) and has received much attention in the research community. It has

been used extensively for diagnosing high-speed connectivity issues in projects such as the

CERN-Large Hadron Collider and “Visible Human” project [1]. The capability of web100 to

capture major protocol events using parameters otherwise hidden from users has been

instrumental in developing some more recent tools. NPAD diagnostic servers with “Pathdiag”

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012

40

[33] and “Network Diagnostic Tool” (NDT) [28] use the information extracted using Web100

instrumentation to diagnose connectivity problems of the client systems. These solutions,

however, depend on expert-rules for a diagnosis and are unable to detect new faults. With

considerable differences among various TCP implementations, rule based systems cannot

guarantee an accurate diagnosis unless every exception for a specific rule is considered. Further,

the Web100-based tools require dedicated servers or substantial modifications to existing

servers. These limitations in the existing rule based solutions have prevented them from being

used in commercial networks.

2.2. Machine learning based behavior inference

When trained with packet traces representing a specific behavior, supervised machine learning

algorithms can identify a similar behavior in test traces. Machine learning based inference of

TCP traces have been used in several applications. In recent studies, Dondo et al. [18] used

Artificial Neural Networks (ANN), Shon et al. [34] used SVMs, and Kuang et al. [35] used K-

Nearest Neighbor (KNN) algorithms to infer network intrusion events using TCP packet traces.

With the emergence of a diverse range of internet applications, Internet traffic classification has

gained substantial momentum. Hong et al. [36] used Bayesian classifiers for inferring traffic

categories from packet traces, and similarly, SVMs have been used by Yuan et al. [19]. Machine

learning algorithms have also been used for network tomography applications such as TCP

throughput prediction using SVMs [37] and packet loss estimation [38] using Bayesian

networks. TCP inference using Bayesian classifiers has been used for remote system

fingerprinting by Beverly [20], and in a similar study, Burroni et al. [39] introduced a remote

OS identification tool using ANN.

A number of studies have used machine learning for root cause diagnosis of enterprise networks

[40, 41, 42, 43, 44], access links [45, 46], home networks [47], and computer systems [48, 42].

These diagnostic tools lack the functionality and generalization required for a broader solution.

For example, the decision tree-based “NEVERMIND” [45] is a tool developed only for the

diagnosis of ADSL link problems, while the “Netprints” [47] is only used for diagnosing

WiFi home network issues. Furthermore, these methods require information such as user

requests, event logs, system calls or private network traffic, which demands privileged

access.

Figure 2: Comparison of machine learning algorithms. Performance of SVM is superior to the

others except for speed of learning.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012

41

These limitations can be avoided by using an inference based method with an end-to-end TCP

connection, independent of the link layer. Our literature survey did not find any comprehensive,

scalable, intelligent inference techniques using TCP packet traces for an automatic diagnosis of

network performance problems.

The learning algorithm is a critical choice for the intelligent diagnostic system. For this purpose,

we first identified candidate algorithms (Decision Trees [49], Artificial Neural Networks [50],

Naive Bayes (NB)[51], k-Nearest Neighbor [52], and Support Vector Machines (SVM) [53]),

conducted a comparative analysis, and tested their performance with respect to generalization,

classification accuracy, number of training samples required, and training speed. Thus, we have

chosen the SVM approach because of its superiority in yielding the most accurate results. It also

exhibits higher tolerance and requires fewer training samples. The comparative performance of

the methods is shown in Figure 2.

3. IACD SYSTEM CLASSIFIERS

3.1. Link Problem Detection (LPD) classifier

The LPD classifier detects the artifact patterns which exist only when a link’s performance

degrades from the expected baseline. We define an access link performing at the expected

baseline as a healthy access link and a link with degraded performance as a faulty access link.

The performance expectation of a healthy link is network-specific. The operator has the freedom

to train several LPD classifier modules, each trained for a specific link type and baseline

performance (e.g. 24Mb/s or 12Mb/s DSL link, 14Mb/s HSDPA link, 54 Mb/s 802.11g link

with 1% packet loss or 5% packet loss).

The problem presented to the LPD classifier conforms to a binary classification problem with

two outcomes, either a faulty or a healthy link. The design, as shown in Figure 3 has two

phases: first, the training phase creates an appropriate classifier model using two sets of trace

samples from faulty and healthy links. The training phase includes signature extraction, data

pre-processing and feature selection before pattern classifier training. Second, the diagnostic

phase uses the trained classifier model to determine the artifacts hidden in an undiagnosed trace.

After pre-processing and feature selection, the training data set lpdΘ of n instances is in the form

1{(,) | , { 1, 1}}m n

lpd i i i i iy y =Θ = ℜ + −x x ò ò (1)

with xi being an m-dimensional feature vector and class label yi, either +1 for the faulty link or

−1 for the healthy link, to which each xi belongs. For example, a sample trace (i=1) from a

faulty link, with four features (m=4) is denoted by 1{0.5,0.03,0,0.99, 1}i=+ (e.g. 1).

We have chosen the L2 soft-margin SVMs [54, 55] with kernel mapping to model the best non-

linear separating hypersurface between the faulty class and the healthy class. For an m-

dimensional input feature vector, the resultant class boundary is an m-dimensional hypersurface

that separates the two classes with the maximum margin.

For the data set given in (eq. 1), a linear decision function

() for 1,..., ,T

iD X X b i n= + =w (2)

where, w is the m-dimensional weight vector. The optimum hyperplane is found by minimizing

1

1
(, ,)

2 2

n
T p

i

i

C
Q b ξ ξ

=

= + ∑w w w (3)

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012

42

with respect to w, b and ξ , subject to the inequality constraints:

data

preprocessing

feature

selection

LPD classifier

SVM module

feature filtering

data transform

data filtering

parameters

feature

list

signature

extraction

training

samples

signature

extraction

diagnostic

trace

training

phase

diagnostic

phase

Figure 3: LPD classifier design

() 1 for 1,..., and 0T

i i i iy b i nξ ξ+ ≥ − = ≥w x (4)

where, nonnegative ξ is called the slack variable and allows a degree of inseparability between

the two classes and p = 2 for L2 soft-margin SVM.

This conforms into a convex quadratic programming problem (QP) [56] and solved after

converting the constrained problem given by (3) and (4) into an unconstrained problem

2

1 1

1
(, , ,) (() 1))

2 2

nn
T T

i i i i

i i

C
L b y x bα ξ ξ α ξ

= =

= + − + − +∑ ∑w w w w (5)

where αi (≥0) are the Lagrange multipliers introduced to enforce the positivity of the ξ. The

optimal saddle point (w0, b0, α0, ξ0) is found where L is minimized with respect to w, b, and ξi

and maximized with respect to αi (≥0) following Karush-Kuhn-Tucker (KKT) [57] conditions.

This is called the training of SVM.

However, to enhance the separability of the linearly inseparable data, using the non-linear

vector function 1() (),..., ()lg g g=x x x , the original m-dimensional input vector x is mapped

into the l-dimensional feature space. The linear decision function for the obtained l-dimensional

feature space is given by (2).

() ()T
D g b= +x w x (6)

where w is the l-dimensional weight vector, b is the bias term. According to the Hilbert Schmidt

theory, the mapping function g(x) that maps x into the dot-product feature space satisfies

(,) () ()T

i iK g g=x x x x (7)

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012

43

where K(x,xi) is called the kernel function. The kernel function avoids the actual mapping g(x)

and directly calculates the scalar products g(x)
T
g(xi) in the input space. We cross validated and

analysed the performance of the classifier for multiple kernel functions (eq. 8) to select the best

suitable kernel for the classification problem.

(,) (·)T

i iK =x x x x Linear kernel, (8a)

2(,) (· 1)T

i iK = +x x x x Quadratic kernel, (8b)

3(,) (· 1)T

i iK = +x x x x 3rd degree polynomial kernel, (8c)

2 2(,) exp() / 2i iK σ= − −x x x x‖ ‖ Gaussian RBF kernel, (8d)

The LPD classifier is capable of detecting faulty links, even if both link and client faults

simultaneously cause connection problems. However, this task is challenging because artifacts

created by the client faults either (i) mask those artifacts from faulty links, or (ii) create false

positives as link problems. To create a robust LPD classifier model, the training data should

contain traces collected with faulty as well as healthy clients. Also, a robust feature selection

method to identify the unique features that enable the detection of a faulty path regardless of a

client behavior should be used (Section 4.5).

The use of a mechanism to detect faulty links before diagnosing a client ensures that, traces sent

through the CFD classifier do not contain any faulty link artifacts. This simplifies the design of

the CFD classifier and improves classification accuracy.

3.2. Client Fault Diagnostic (CFD) classifier

The first stage of the IACD system ensures that the access link is not causing the connection

problem. The second stage, Client Fault Diagnostic (CFD) classifier identifies the specific types

of client faults, if any, that cause the performance problem.

Choosing between binary classification and multi-class classification is an important design

choice for the CFD classifier. There are many studies [58, 59] that compare these two types of

classification methods for different applications, each with their own merits.

CF-classifier 1 training data

selection

data

preprocessing

feature

selection

CF classifier

SVM module

feature filtering

data transform

data filtering

parameters

feature

list

...

signature

extraction
...training

samples

signature

extraction
...faulty

sample

training

phase

diagnostic

phase

CF-classifier N training data

selection

data

preprocessing

feature

selection

CF classifier

SVM module

feature filtering

data transform

data filtering

parameters

feature

list

Figure 4: CFD classifier design for the IACD system.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012

44

In our CFD classifier design, we opted to use a parallel network of binary classifier modules

(CF-classifiers), each trained to diagnose a single fault. This arrangement (Figure 4) collectively

performs a multi-class classification. A network of binary classifiers were chosen over a single

multi-class classifier because of the (i) flexibility to continually add new diagnostic capabilities

to the IACD system, without having to change the basic algorithm or retrain the complete

system, (ii) freedom to choose classifier parameters optimized to detect a specific type of

artifact independently for each module instead of a common set of classifier parameters for all

the faults and, (iii) parallelism which can reduce the time of classification, especially when the

classes increase in number.

A client causing the connection problems is defined as a faulty client and a client that does not

is defined as a healthy client. The training samples are stored in a trace database Θcfd after the

signature extraction process.

0 1 2 1
{(,)| , { , , ,..., }}m n

cfd i i i i p i
y y cf cf cf cf =Θ = ℜx x ò ò (9)

where xi is the m-dimensional feature vector and yi is the class label. The class label yi=cf0 for a

healthy client and yi = cf1, cf2, …, cfp for p types of different client faults. Each module then

selects the training data subset Θcf,j with traces labeled as cfj for the faulty class and cf0 labeled

traces in the healthy class for training the jth binary CF-classifier as in eq 10c.

, 0 1{(,)| , { , }}m n

cf j i i i i j iy y cf cf =Θ = ℜx x ò ò , (10a)

0 1iy cf≡ ≡ − , (10b)

1for 1,..., .i jy cf j p≡ ≡ + = (10c)

Then, each module independently process data, improving the class coherency and selects the

unique feature subset (artifacts) that separates the two classes. This feature subset is then sent to

the pattern classifier module to model the classifier boundaries. Each CF-classifier module in

CFD classifier uses a L2 soft-margin SVMs for pattern classification (as given in equations (2))

similar to LPD classifier design).

4. CLASSIFIER TRAINING

4.1. Data collection

Training samples are collected either from a controlled test bed or from a service provider’s

network. Laboratory test beds are preferred, as different connection problems can be accurately

emulated in a well-regulated environment. However, the proposed trace collection technique

can be easily implemented in operator networks when the network elements and conditions are

not reproducible in the laboratory. The diagnostic accuracy of the classifier is highly dependent

on the consistency and accuracy of the artifacts collected. Using standard packet capture

libraries, our application captures two packet traces; (i) a client download from the server, at the

client, and (ii) a client upload to the server, at the server, upon an online request by the user.

Both traces are captured as bi-directional packet flows to ensure most connection details are

captured. An incompressible file of size 100MB is used for a longer connection time and a

lengthier packet stream. Constant file size and large file transfers generate more consistent and

accurate fault signatures compared to a short-lived connection.

4.2. Trace signature creation
Two collected packet traces are analysed individually, and then the extracted trace

characteristics are combined to form an m-dimensional feature vector xi which contains an

accurate representation of the connection. The feature vector xi, combined with the class label yi

is called the “signature“of the ith instance. We have developed a signature extraction technique

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012

45

based on “tcptrace” [12], an open source trace visualization tool. Our technique extracts 140

different statistical parameters for each trace, which forms a combined total of 280 parameters

for each signature. For example, a raw feature vector from a faulty link before any data pre-

processing looks like {1249256, 295, 0, 32, 39, 1, 1,..., FAULTY} (e.g. 2). The statistical trace

characterization technique transforms a packet stream into a data vector preserving the fault

artifacts. The connection characteristics of the TCP trace are accurately encapsulated in the data

vector as we collect an extensive set of statistical parameters.

To create the preliminary signature database (Θpsd), the collected traces are then combined and

grouped following the class labels.

The signatures are unique, even within the same class as later shown in Figure 5 and 6.

However, for each type of fault class, there exists a subset of features with common values,

which are specific for that class. This unique subset of features forms the artifact.

4.3 Data pre-processing

The raw feature vectors in Θpsd need further processing before being used for classifier training.

This step, called data pre-processing, improves the overall classification accuracy by enhancing

data coherency and consistency within the classes.

First, categorical attributes such as the class labels FAULTY and HEALTHY are converted to

numeric data, i.e. +1 for the faulty class and -1 for the healthy class. The contribution of each

feature for the classification process depends on its variability relative to other features. If one

input has a range of 0 to 1, while another input has a range of 0 to 1,000,000, then the greater

numeric range can dominate the smaller [60]. To avoid such inaccuracies, the training data set is

shifted and re-scaled along each feature as the second part of pre-processing. Data re-scaling

also avoids numerical difficulties during the calculation, especially when working with large

values. Each feature is linearly scaled to fit in the range 0-1. This process transforms a raw trace

signature (e.g 2) into the form {0.20, 0.82, 0, 0.35, 0.90, 1, 1, ..., +1} (e.g. 3). The resultant

database is called the scaled signature database (Θssd).

Sample Features

20 40 60 80 100 120 140 160 180

F
au

lt
y
 L

in
k
 S

am
p
le

s
(y

i
=

+
1
)

D
ef

au
lt

 L
in

k
 S

am
p
le

s
(y

i
=

-1
)

Feature Vector X
i

i

Figure 5: LPD classifier signature database Θlpd_ssd, for comparison of faulty and healthy link

trace characteristics.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012

46

D
e
fa

u
lt

:
cf

0

Trace Signature Features
20 40 60 80 100 120 140

cf
1

c
f 2

c
f 3

cf
4

cf
5

Feature Vector X
i

i

Figure 6: CFD classifier signature database Θcfd_ssd, for comparison of client fault classes cfi

4.4 Hidden trace artifacts

Figures 5 and 6 show the standardized trace databases Θlpd_ssd and Θcfd_ssd used in training the

IACD system. The i
th

 row represent the feature vector xi of the i
th
 trace sample, colour mapped

to RGB space for easy visualization of signature characteristics. Null features have been

removed for clarity. Figure 5 shows samples from two classes, faulty path (yi = -1) and healthy

path (yi = +1) (see equation (1)). Figure 6 contains samples from multiple client fault classes (yi

= cf1, ..., cf5) and the healthy client (yi = cf0) (see equation (9)). Figures 5 and 6 show that the

signature extraction process creates unique signatures for every TCP packet trace, even within

the same class, preserving the connection characteristics.

In Figure 5, some feature values (columns) behave sporadically (such as features 40-45, 60-65,

160-165 in Figure 5), and provide no usable information to the classifier. However, we can

identify a feature subset (features 1-5, 19-22, 115-120, 175-180 in Figure 5) that clearly

separates the faulty class from the healthy class. Using these artifacts as a visual guide, the

faulty and healthy access links in Figure 5 can be distinguished.

Similarly, Figure 6 shows multiple client fault classes, cfi. The signatures of different fault

classes exhibit clear differences compared with the healthy client and are more subtle compared

to Θlpd. When trained, the IACD system automatically identifies and classifies a trace and

produces the visually comprehensible classes shown in Figures 5 and 6.

4.5 Feature selection

Although the signature format is identical in every sample, only a particular subset of features

contributes to the artifact. Unnecessary features increase the computational complexity [61],

create overfitting of classifier boundaries [62], and reduce classification accuracy [63].

Therefore, insignificant features should be removed from the training data. In this work, we use

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012

47

Feature vector

database

Select feature

values

Student

t-test

Feature

significance

Sorted feature list
in the order of

significance

Select
'm'

features

Cross validate
with

test data

Accuracy
Select the 'm' with

best accuracy

Select another feature

m→m+1

Figure 7: Hybrid feature selection technique for isolating the best feature subset of the artifact.

an automated feature selection method to select the best suitable feature subset for a particular

classifier.

There are two main categories of feature selection algorithms: (i) filters, which use statistical

characteristics of features, and (ii) wrappers, which cross-validate all variations of feature

subsets to select the best set. Wrappers are considered to perform better than filters, but are

computationally expensive. Our proposed method, as shown in Figure 7, similar to work

discussed by Xing et al. [64] and Das et al. [65], follows a hybrid approach (between filter and

wrapper) for isolating the best feature subsets. We first use a filter technique, Student’s t-test

(two-sample t-test) (implemented similar to [66]), to assess the significance of every feature for

separating the two classes. Next, the features sorted in the order of significance are cross-

validated by incrementing the number of features selected for each class (wrap per technique)

against test data to identify the best number of features required for each classifier. Student’s t-

test is a common statistical data analysis procedure for hypothesis testing, and determines

whether two independent populations have different mean values for a specified extent. The

feature selection process reduces the m-dimensional feature vector in (1) to q-dimensions,

where the combination of q features creates the artifact. This process creates a new database, the

optimum signature database (Θosd).

5. IACD SYSTEM PERFORMANCE

5.1 Network emulation

Since we do not have access to operator networks, we used data collected in a network test bed,

shown in Figure 8, which emulated an access link, client computer and the access server. The

client and server ran on Linux 2.6.32 systems (with Ubuntu distribution), capable of running

multiple TCP variants. The access link was emulated using a network emulator, dummynet [67]

on FreeBSD 7.3. Each box was connected using full-duplex, 1000 Mb/s cat5e ethernet.

Different client and link conditions were emulated using the Linux and dummynet parameter

configurations. Then the traces were captured using the technique discussed previously.

TCP-CUBIC

Access

Server

Link

Emulator
Client

PC

Cat5e Ethernet Cat5e Ethernet

Linux kernel

2.6.32

Linux kernel

2.6.32

Dummynet

FreeBSD 7.3

TCP-CUBIC

TCP-BIC
TCP-NewReno

Figure 8: Network testbed for training and testing data collection

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012

48

5.2 Experiment Criteria

Experiments included analyzing the performance of the IACD system with one LPD classifier

(for a single type of access link), and CFD classifier with a network of four CF-classifier

modules. The experimental setup emulated a full duplex wired access link with a 80 Mb/s

bandwidth, 10ms delay with no packet losses and no packet reordering as the healthy link.

Faulty links were emulated by inducing packet losses (from 1% up to 10%) and increased

delays (from 15ms up to 100ms). Both the server and the healthy client (Linux 2.6.32) had a

protocol stack optimized for the healthy link.

For client faults, we emulated the disabled Selective Acknowledgement (SACK) option and the

disabled Duplicate Selective Acknowledgement (D-SACK) option, which have been found to

cause performance issues in the high-bandwidth connections [68, 69, 70, 71]. Socket buffer

limitations, another common and hard to diagnose performance bottleneck [1, 72], were

emulated by creating insufficient read buffers and write buffers at the client as two separate

cases. Multiple, simultaneous client faults were emulated by creating both read and write socket

buffer limitations at the same time. All buffer limitations were emulated using three buffer

levels to collect traces from a range of possible scenarios.

Figure 9 shows the data sets used for LPD and CFD classifier training and testing. For training

data, both the server and client were limited to run TCP-CUBIC [73], with only 11 traces per

each fault class being collected to re-create the worst case practical limitations. To analyze the

system performance, we collected four testing data sets as follows: (i) the same data set used in

training and, separately collected sets similar to Figure 9 with (ii) TCP-CUBIC client, (iii) TCP-

BIC [74] client, (iv) TCP-NewReno [75] client. From other TCP variants, the data sets (iii) and

(iv) were collected to evaluate the TCP agnostic properties of the system. An additional data set

over a healthy link was collected with clients suffering from multiple simultaneous buffer

limitations.

5.3 Diagnostic performance of LPD classifier

The training database for LPD classifier Θlpd, contained two classes, faulty and healthy links

(see Figure 5), both of which included different client behaviors. We used 100 traces per class

(200 total data sets), each with 280 features, for training the LPD classifier.

The proposed feature selection technique in Section 4.5 requires cross-validation before

selecting the best feature subset. Although we cross-validated a number of feature subsets, our

analysis is limited to two subsets of 75 and 25 sorted features. Figure 10 shows the two Θlpd_osd

databases, where Figure (a) has 75 features, and Figure (b) has 25.

SACK

DSACK

R-Buff*3

W-Buff*3

healthy

faulty

healthy

TCP-CUBIC

client
link

L
P

D
 t

ra
in

in
g

C
F

D
 t

ra
in

in
g

SACK

DSACK

R-Buff*3

W-Buff*3

healthy

faulty

Healthy

TCP-CUBIC

TCP-BIC
TCP-NewReno

clients
link

L
P

D
 t

e
st

in
g

C
F

D
 t

es
ti

n
g

RW-Buff*3

Figure 9: Training and testing data sets for LPD and CFD classifiers. Combinations of client

and link conditions are emulated to collect the traces of a variety of possible scenarios.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012

49

Selected Features

10 20 30 40 50 60 70

fa
u
lt
y
 p

a
th

 s
a
m

p
le

s
h
e
a

lt
h
y
 p

a
th

 s
a
m

p
le

s

 Selected Fetures

5 10 15 20 25

fa
u

lt
y

 p
a
th

 s
am

p
le

s
h

ea
lt

h
y
 p

at
h

 s
am

p
le

s

(a) 75 sorted features using Student’s t-test (b) 25 sorted features using Student’s t-test

 Feature selection feature selection

Figure 10: Comparison of trace databases after feature selection.

When compared to Figure 5, both feature limited databases show a clearer separation between

the two classes. The feature selection technique has reduced the dimensionality of the problem

by 73% and 91% with 75 and 25 feature subsets, respectively.

From the kernels in (8), the quadratic kernel was chosen for this particular classifier by cross-

validation. Quadratic programming (QP) optimization with 1000 maximum iterations was used

to solve (5).

Each of the four testing data sets consisted of 264 traces (132 faulty, 132 healthy link), collected

with healthy and faulty clients. The 75 features used for training the classifier create a more

complicated class boundary compared to 25 features. This phenomenon is called boundary over-

fitting. With over-fitted boundaries, even a small deviation of the data (vector) at the boundary

can cause a misclassification. For the first and second test cases (TCP-CUBIC traces), the

behavior and artifacts of traces were extremely similar, if not identical to the training traces. The

Table 1 shows the diagnostic performance of the LPD classifier for both the 75 and 25 feature

subsets. For the first test using the training instances, the classification accuracies were 100%.

The accuracy remained at 100% during the second test when the previously unseen TCP-

CUBIC data set was used. In these two cases, the lack of outlier samples resulted in high

classification accuracy, even with 75 features and an over-fitted boundary. However, the over-

fitted boundaries resulted in classification errors of 0.175% for TCP-BIC, and 2.622% for TCP-

NewReno data when the artifacts subtly deviated from those of TCP-CUBIC. When the

dimensionality was reduced to 25 features, the LPD classifier created a more generalized

boundary capable of compensating for artifact variations. As a result, the classifier was highly

successful in separating the two classes with 100% accuracy for both the TCP-BIC and TCP-

NewReno cases.

Table 1. Classification accuracy of LPD classifier for detecting faulty links. The classifier was

successful in identifying the faulty links, even in the cases of faulty clients and TCP variants.

Link Problem Detection Accuracies

Trace Samples 75features 25 features

TCP-CUBIC training set 100% 100%

TCP-CUBIC testing set 100% 100%

TCP-BIC testing set 99.825% 100%

TCP-NewReno testing set 97.378% 100%

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012

50

5.4 Diagnostic performance of CFD classifier

For testing the performance of our CFD classifier design, we created a parallel network of

four CF-classifiers, each tasked with diagnosing a commonly found client issue: disabled

SACK option (CF-Classifier 1), disabled D-SACK option (CF-Classifier 2), insufficient read

buffer (CF-Classifier 3) and insufficient write buffer (CF-Classifier 4). Each training data set

had two classes; a healthy client class, and the specific faulty client class, all collected over a

healthy access link.

The choice of classifier module parameters has a significant impact on the performance. Table 2

shows the parameters chosen for each of the four CF-classifiers. The cross-validation technique

for selecting the parameters and feature subset considered not only the individual classifier

accuracy, but also the possible false positives. QP optimization used a maximum of 2000

iterations instead of the 1000 used for LPD classifier training, since the optimization problems

were more complex in CF-classifiers with fewer detectable artifacts.

The Table 3 shows the diagnostic accuracy of the CFD classifier, which considers the collective

output of the CF-classifier network. When tested with the CUBIC training and testing data sets,

the system was capable of diagnosing the client’s disabled SACK option, disabled D-SACK

option, read buffer limitation and write buffer limitations with high accuracy. Similarly, when

tested with TCP-BIC and TCP-NewReno, variants not used during the training phase, the four

client faults were diagnosed with 100% accuracy. These results demonstrated the TCP-

independent nature of the proposed CFD classifier design.

The healthy clients were identified with 94.81% and 93.5% accuracy during the first two tests of

TCP-CUBIC train and test data sets. When samples from healthy clients with TCP-BIC and

TCP-NewReno were tested, the detection accuracies were at 92.10% and 91.71%, marginally

lower than the other cases. This is due to the slightly higher tendency of obtaining a false

positive in at least one of the CF-classifiers by healthy clients’ traces compared to other

samples. When presented with traces taken from clients with simultaneous read and write buffer

deficiencies, CF-classifier 3 and CF-classifier 4 were capable of independently identifying the

faults from the trace. This capability led to a collective diagnostic accuracy of 96.97%, 96.90%

and 100% for CUBIC, BIC and NewReno data sets, respectively.

5.5 IACD system characteristics

For the root cause diagnosis of client performance problems, the proposed IACD system offers

many advantages over the other available trace inference methods.

• The system offers a fully-automated, comprehensive framework which is extendible to

diagnose a diverse range of faults, contrary to the limited capabilities of other tools.

Table 2. SVM parameters used in each CF-classifier module of the CFD classifier.

Non-linear SVM Parameters

 CF-Classifier 1

SACK

problem

CF-Classifier 2

DSACK

problem

CF-Classifier 3

Insufficient

Read Buffer

CF-Classifier 4

Insufficient

Write Buffer

Kernel Linear RBF cubic polynomial RBF

Features 12 32 24 16

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012

51

Table 3. Diagnostic accuracy of the CFD classifier, derived from the collective output of the

CF-classifier network.

 Client Fault Diagnostic Accuracies

Trace Samples SACK problem DSACK problem Insufficient

Write Buffer

CUBIC training set 100% 100% 100%

CUBIC testing set 100% 100% 93.94%

BIC testing set 100% 100% 100%

New-Reno testing set 100% 100% 100%

 Insufficient Read

Buffer

Insufficient

Read-Write Buffer

Default Client

CUBIC training set 100% 94.81%

CUBIC testing set 96.36% 96.97% 93.50%

BIC testing set 100% 96.90% 92.10%

New-Reno testing set 100% 100% 91.71%

• Diagnostic capability of the system evolves with the diversity of the fault signature

databases, instead of the inference algorithm. Users can collaborate to create common

signature repositories, encompassing a wide range of faults, networks, and client

platforms. Most rule based systems lack the generality to operate effectively in a

dynamic environment.

• The system relies solely on packet traces collected at end-points and can be

implemented as an application. This provides flexibility for the operator to deploy the

IACD system at any desired network location.

• End-user systems can be diagnosed without remotely accessing or physically logging on

to the systems; a capability unavailable in many network diagnostic tools.

• The proposed technique avoids both the idiosyncrasies of individual TCP

implementation and the usage of TCP flags as an information source. Instead, the

connections are characterized using per-connection statistics of a signature independent

of the TCP variant and the negotiated flags.

• Although the system is designed to diagnose client computers from the edge of the

operator’s network, the same system can be used for diagnosing intermediate nodes in

the network by deploying a trace collection module in a neighboring node and training

with suitable data.

5. CONCLUSION

In this work, we have proposed and evaluated the IACD system, an automated CTD diagnostic

system that uses an intelligent inference based approach of TCP packet traces to identify

artifacts created by various faults. The system consists of two cascading levels of classifiers: (i)

the LPD classifier, tasked with first filtering out whether the connection performance problem is

caused by link faults or otherwise, and (ii) the CFD classifier, tasked with diagnosing the

specific client faults that cause the connection problem. The LPD classifier uses a single module

that incorporates signature extraction, data-preprocessing, feature selection and a soft-margin

binary SVM for pattern classification. The CFD classifier performs a complex multi class

classification of client faults using a parallel network of CF-classifiers. The modular design of

the CFD classifier offers extendibility to diagnose new faults by training CF-classifier modules

independently.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012

52

We evaluated the system by diagnosing four types of common client problems with various

TCP implementations. Furthermore, we analyzed system performance when in the absence of

any client faults as compared to multiple simultaneous faults. Our results show that the LPD

classifier can effectively identify and separate out the link problems, without being affected by

the client behavior and TCP type. The CFD classifier results show that, with a small number of

training samples, CF-classifier modules collectively produce high diagnostic accuracy in all

tested scenarios, including clients with different faults, TCP variants, default clients and

multiple faults.
Our proposed IACD system provides a framework for an accurate diagnostic system that is

effective for a large array of client platforms, easy to deploy, and extendible in diagnostic

capability. To our knowledge, the IACD system is the first to use automated inference of TCP

packet traces using SVMs for diagnosing the root causes of the network performance issues.

REFERENCES

[1] T. J. Hacker, B. D. Athey, and J. Sommerfield, “Experiences using Web100 for end-to-end network

performance tuning,” in Proceedings of the 4th Visible Human Project Conference, Nov. 2002.

[2] N. Anders, P. Priyesh, and P. Amanda, “GFK:Quality of service report,” GfK Group, Nordwestring,

UK, Tech. Rep, 2010. [Online]. Available:

http://stakeholders.ofcom.org.uk/binaries/consultations/topcomm/annexes/qos-report.pdf

[3] Cisco, “Wireless RF interference customer survey results,” Cisco Systems, Inc, San Jose, CA, Survey.

Rep 02-03, 2010. [Online]. Available: http://www.cisco.com/en/US/prod/collateral/wireless/ps5678/

ps10981/whitec11-609300.pdf

[4] M. Mathis, Pushing up performance for everyone, 1999.

[5] Web100.org. (1999) Web100 concept paper. [Online]. Available:

http://web100.org/docs/concept_paper.php

[6] M. Barbara, H. Russ, and B. George, “Bridging the gap workshop,” Internet2, Tech. Rep, Aug. 2005.
[Online]. Available: http://e2epi.internet2.edu/btg/report.html

[7] K. Anatoly and S. Stanislav, “Netflow weekly reports,” Internet2 NetFlow, Ann Arbor, Michigan,

USA, Weekly. Rep, 2010. [Online]. Available: http://netflow.internet2.edu/weekly/

[8] E. Rosen, A. Viswanathan, R. Callon et al., “Multiprotocol label switching architecture,” RFC 3031,

Jan. 2001.

[9] R. Braden et al., “Resource reSerVation Protocol (RSVP),” RFC 2205, Sep. 1997.

[10] Google. (2009) Chromium OS. [Online]. Available: http://www.chromium.org/chromium-os

[11] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A.

Rabkin, I. Stoica et al., “A view of cloud computing,” Communications of the ACM, vol. 53, no. 4,

pp. 50–58, 2010.

[12] S. Ostermann. (2000) Tcptrace official homepage. [Online]. Available: http://www.tcptrace.org

[13] T. Shepard. Xplot official homepage. [Online]. Available: http://http://www.xplot.org/

[14] G. Combs et al. Wireshark official homepage. [Online]. Available: http://www.wireshark.org

[15] S. Katti, D. Katabi, C. Blake, E. Kohler, and J. Strauss, “M&M: A passive toolkit for measuring,

tracking and correlating path characteristics,” MIT Computer Science and Artificial Intelligence

Laboratary, Tech. Rep, Apr. 2004.

[16] P. Benko and A. Veres, “A passive method for estimating end-to-end TCP packet loss,” in

Proceedings of the IEEE Global Telecommunications Conference GLOBECOM’02. Taipei, Taiwan:

IEEE Communications Society, Nov. 2002, pp. 2609 – 2613 vol.3.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012

53

[17] M. Mellia, M. Meo, L. Muscariello, and D. Rossi, “Passive identification and analysis of TCP

anomalies,” in Proceedings of the 2006 IEEE International Conference on Communications

(ICC’06), vol. 2. Istanbul, Turkey: IEEE Communications Society, Jun. 2006, pp. 723 –728.

[18] M. Dondo and J. Treurniet, “Investigation of a neural network implementation of a TCP packet

anomaly detection system,” Defence R&D Canada-Ottawa, Tech. Memo, May 2004.

[19] R. Yuan, Z. Li, X. Guan, and L. Xu, “An SVM-based machine learning method for accurate internet

traffic classification,” Information Systems Frontiers, vol. 12, no. 2, pp. 149–156, 2010.

[20] R. Beverly, “A robust classifier for passive TCP/IP fingerprinting,” in Proceedings of the 5th

International Conference on Passive and Active Network Measurement (PAM’04). Antibes, Juan les

Pins, France: Springer, Apr. 2004, pp. 158–167.

[21] J. Treurniet, “Detecting low-profile scans in TCP anomaly event data,” in Proceedings of the 2006

International Conference on Privacy, Security and Trust (PST’ 06). New York, NY, USA: ACM,

Oct. 2006, pp. 1–8.

[22] M. Wolfgang, “Host discovery with nmap,” nmap.org, Tech. Rep., Nov. 2002. [Online]. Available:
http://nmap.org/docs/discovery.pdf

[23] T. Nguyen and G. Armitage, “A survey of techniques for internet traffic classification using machine

learning,” Communications Surveys Tutorials, IEEE, vol. 10, no. 4, pp. 56 –76, 2008.

[24] B. Veal, K. Li, and D. Lowenthal, “New methods for passive estimation of TCP round-trip times,” in

Proceedings of the 6th International Conference on Passive and Active Network Measurement

(PAM’05). Boston, MA, USA: Springer, Mar. 2005, pp. 121–134.

[25] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley, “Inferring TCP connection

characteristics through passive measurements,” in Proceedings of the IEEE INFOCOM’04

Conference, vol. 3, Hong Kong, Mar. 2004, pp. 1582 –1592 vol.3.

[26] V. Paxson, “Automated packet trace analysis of TCP implementations,” in Proceedings of the ACM

SIGCOMM’97 Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communication. Cannes, France: ACM, Sep. 1997, pp. 167–179.

[27] M. Mellia, M. Meo, L. Muscariello, and D. Rossi, “Passive Analysis of TCP Anomalies,” Computer

Networks, vol. 52, no. 14, pp. 2663–2676, 2008.

[28] R. Carlson, “Developing the Web100 based network diagnostic tool (NDT),” in Proceedings of the

4th International Conference on Passive and Active Network Measurement (PAM’04), Apr. 2004.

[29] J. Pahdye and S. Floyd, “On inferring TCP behavior,” in Proceedings of the ACM Conference on

Applications, technologies, architectures, and protocols for computer communications. New York,

NY, USA: ACM, Aug. 2001, pp. 287–298.

[30] S. Jaiswal, G. Iannaccone, J. Kurose, and D. Towsley, “Formal analysis of passive measurement

inference techniques,” in Proceedings of the IEEE INFOCOM’06 Conference. Barcelona, Spain,

Apr. 2006, pp. 1 –12.

[31] M. Mellia, M. Meo, and L. Muscariello, “TCP anomalies: Identification and analysis,” in Distributed

Cooperative Laboratories: Networking, Instrumentation, and Measurements, Springer US, 2006, pp.

113–126.

[32] M. Mathis, J. Heffner, and R. Reddy, “Web100: extended TCP instrumentation for research,

education and diagnosis,” ACM SIGCOMM Computer Communication Review, vol. 33, no. 3, pp.

69–79, 2003.

[33] M. Mathis, J. Heffner, P. O’Neil, and P. Siemsen, “Pathdiag: automated TCP diagnosis,” in

Proceedings of the 9th International Conference on Passive and Active Network Measurement

(PAM’08), Apr. 2008, pp. 152–161.

[34] T. Shon and J. Moon, “A hybrid machine learning approach to network anomaly detection,”

Information Sciences, vol. 177, no. 18, pp. 3799–3821, 2007.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012

54

[35] L. Kuang and M. Zulkernine, “An anomaly intrusion detection method using the csi-knn algorithm,”

in Proceedings of the 2008 ACM symposium on Applied computing, 2008, pp. 921–926.

[36] M. Hong, R. Gu, H. Wang, Y. Sun, and Y. Ji, “Identifying online traffic based on property of TCP

flow,” Journal of China Universities of Posts and Telecommunications, vol. 16, no. 3, pp. 84–88,

2009.

[37] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A Machine Learning Approach to TCP Throughput

Prediction,” IEEE/ACM Transactions on Networking, vol. 18, no. 4, pp. 1026 –1039, Aug. 2010.

[38] N. Fonseca and M. Crovella, “Bayesian packet loss detection for TCP,” in Proceedings of the IEEE

INFOCOM’05 Conference, vol. 3. Miami, FL, USA, Mar. 2005, pp. 1826 –1837.

[39] J. Burroni and C. Sarraute, “Using neural networks for remote OS identification,” in Proceedings of

the Pacific Security Conference (PacSec 05), Tokyo, Japan, 2005.

[40] M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer, “Failure diagnosis using decision trees,” in

Proceedings. International Conference on Autonomic Computing, 2004., May 2004, pp. 36 – 43.

[41] M. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox, and E. Brewer, “Path-based failure

and evolution management,” in Proceedings of the 1st conference on Symposium on Networked

Systems Design and Implementation, 2004, pp. 23–23.

[42] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint: problem determination in large,

dynamic internet services,” in Proceedings of the International Conference on Dependable Systems

and Networks(DSN’02), Jun. 2002, pp. 595 – 604.

[43] A. Mirgorodskiy, N. Maruyama, and B. Miller, “Problem diagnosis in large-scale computing

environments,”in Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, 2006, pp.

88–es.

[44] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and P. Bahl, “Detailed diagnosis in

enterprise networks,” SIGCOMM Comput. Commun. Rev., vol. 39, pp. 243–254, August 2009.

[45] Y. Jin, N. Duffield, A. Gerber, P. Haffner, S. Sen, and Z. Zhang, “Nevermind, the problem is already

fixed: proactively detecting and troubleshooting customer dsl problems,” in Proceedings of the ACM

conference on Emerging network experiment and technology (CoNEXT’10), New York, NY, USA,

2010, pp. 1–12.

[46] A. A. Mahimkar, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang, and Q. Zhao, “Towards automated

performance diagnosis in a large iptv network,” SIGCOMM Comput. Commun. Rev., vol. 39, pp.

231–242, August 2009.

[47] B. Aggarwal, R. Bhagwan, T. Das, S. Eswaran, V. Padmanabhan, and G. Voelker, “Netprints:

diagnosing home network misconfigurations using shared knowledge,” in Proceedings of the 6th

USENIX Symposium on Networked Systems Design and Implementation, Berkeley, CA, USA, 2009,

pp. 349–364.

[48] C. Yuan, N. Lao, J. Wen, J. Li, Z. Zhang, Y. Wang, and W. Ma, “Automated known problem

diagnosis with event traces,” in Proceedings of the 1st ACM SIGOPS/EuroSys European Conference

on Computer Systems 2006, 2006, pp. 375–388.

[49] S. Murthy, “Automatic construction of decision trees from data: A multi-disciplinary survey,” Data

Mining
and Knowledge Discovery, vol. 2, no. 4, pp. 345–389, 1998.

[50] S. Haykin, Neural Networks: A Comprehensive Foundation, 1994.

[51] B. Cestnik, I. Kononenko, and I. Bratko, “Assistant 86: A knowledge elicitation tool for

sophisticated users,” Progress in machine learning, pp. 31–45, 1987.

[52] P. Hart, “Nearest neighbor pattern classification,” IEEE Transactions on Information Theory, vol. 13,

no. 1, pp.21–27, 1967.

[53] V. Vapnik, The nature of statistical learning theory, 1995.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012

55

[54] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, pp. 273–297,

1995.

[55] Y. Dai, J. Tanaka, and O. Watanabe, “On the influence of outliers in the support vector machine

framework.” IEIC Technical Report (Institute of Electronics, Information and Communication

Engineers), vol. 102, no. 258, pp. 15–19, 2002.

[56] S. Abe, Support Vector Machines for Pattern Classification, New York, USA, 2010.

[57] H. Kuhn and T. AW, “Nonlinear Programming,” in Proc. 2nd Berkeley Symp. on Math. Statis. and

Prob. University of California Press, 1951, pp. 481–492.

[58] K. Hempstalk and E. Frank, “Discriminating against new classes: One-class versus multi-class

classification,” in Proceedings of the 21st Australasian Joint Conference on Artificial Intelligence

(AI’08), Auckland, New Zealand, Dec. 2008, p. 325.

[59] A. C. Lorena and A. C. P. L. F. de Carvalho, “Comparing techniques for multiclass classification

using binary SVM predictors,” in Proceedings of the 3rd Mexican International Conference On

Artificial Intelligence (MICAI’04), pp. 272–281, 2004.

[60] C. Hsu, C. Chang, C. Lin et al., “A practical guide to support vector classification,” Department of

Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, Tech.

Rep, 2003. [Online]. Available: http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

[61] F. Korn, B. Pagel, and C. Faloutsos, “On the dimensionality curse and the self-similarity blessing,”

IEEE

Transactions on Knowledge and Data Engineering, vol. 13, no. 1, pp. 96–111, 2002.

[62] P. Sterlin, “Overfitting prevention with cross-validation,” Master’s thesis, University Pierre and

Marie

Curie (Paris VI), Paris, France, 2007.

[63] A. Janecek, W. Gansterer, M. Demel, and G. Ecker,“On the relationship between feature selection

and classification accuracy,” in Journal of Machine Learning and Research, vol. 4, 2008, pp. 90–

105.

[64] E. P. Xing, M. I. Jordan, and R. M. Karp, “Feature selection for high-dimensional genomic

microarray data,” in Proceedings of the Eighteenth International Conference on Machine Learning

(ICML ’01), Jun. 2001, pp. 601–608.

[65] S. Das, “Filters, wrappers and a boosting-based hybrid for feature selection,” in Proceedings of the

Eighteenth International Conference on Machine Learning (ICML ’01), Jun. 2001, pp. 74–81.

[66] W. Zhu, X. Wang, Y. Ma, M. Rao, J. Glimm, and J. Kovach, “Detection of cancer-specific markers

amid massive mass spectral data,” in Proceedings of the National Academy of Sciences of the United

States of America, vol. 100, no. 25, 2003.

[67] L. Rizzo, “Dummynet: a simple approach to the evaluation of network protocols,” ACM SIGCOMM

Computer Communication Review, vol. 27, no. 1, pp. 31–41, 1997.

[68] A. Medina, M. Allman, and S. Floyd, “Measuring the evolution of transport protocols in the

internet,” ACM SIGCOMM Computer Communication Review, vol. 35, pp. 37–52, Apr. 2005.

[69] W. John and S. Tafvelin, “Analysis of internet backbone traffic and header anomalies observed,” in

Proceedings of the ACM Internet Measurements Conference (IMC’07). San Diego, CA, USA:

ACM, Oct. 2007, pp. 111–116.

[70] P. Benko, G. Malicsko, and A. Veres, “A large-scale, passive analysis of end-to-end TCP

performance over GPRS,” in Proceedings of the IEEE INFOCOM’04 Conference, vol. 3, Hong

Kong, Mar. 2004, pp. 1882 –1892.

[71] M. Oo and M. Othman, “How good delayed acknowledgement effects rate-based pacing tcp over

multi-hop wireless network,” in 2009 International Conference on Signal Processing Systems, May

2009, pp. 464 –468.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012

56

[72] M. Siekkinen, G. Urvoy-Keller, E. W. Biersack, and T. En-Najjary, “Root cause analysis for long-

lived TCP connections,” in Proceedings of the ACM conference on Emerging network experiment

and technology (CoNEXT’05), Toulouse, France, 2005, pp. 200–210.

[73] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed TCP variant,” ACM SIGOPS

Operating Systems Review, vol. 42, no. 5, pp. 64–74, 2008.

[74] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control (bic) for fast long-distance

networks,” in Proceedings of the IEEE INFOCOM’04 Conference, vol. 4, Hong Kong, Mar. 2004,

pp. 2514 – 2524.

[75] S. Floyd, T. Henderson, and A. Gurtov, “ The NewReno Modification to TCP’s Fast Recovery

Algorithm,” RFC 3782, Sep. 2004.

Authors

Chathuranga H. Widanapathirana is a Ph.D candidate in the Department of

Electrical and Computer Systems Engineering at Monash University, Melbourne,

Australia. He received his B.Eng degree in Electronics with a major in

Telecommunication Engineering at Multimedia University (MMU), Malaysia in

2009. His research interests include distributed cooperative networks, cloud

computing networks, automated machine learning systems, and end-user self-

diagnostic services in multiuser networks.

Y. Ahmet Şekercioglu is a member of the academic staff at the Department of

Electrical and Computer Systems Engineering of Monash University, Melbourne,

Australia. He has completed his Ph.D. degree at Swinburne University of

Technology, and B.Sc., M.Sc. degrees at Middle East Technical University,

Ankara, Turkey. He has lectured at Swinburne University of Technology,

Melbourne, Australia for 8 years. His recent research interests are distributed

algorithms for self-organization in wireless networks, application of intelligent

techniques for multiservice networks as complex, distributed systems.

 Milosh V. Ivanovich fills the role of Senior Emerging Technology Specialist

within the Chief Technology Office of Telstra, and is an Honorary Research

Fellow at Melbourne and Monash Universities in Australia. A Senior Member of

IEEE, Milosh’s interests lie in queuing theory, teletraffic modeling, performance

analysis of wireless networks, and the study and enhancement of TCP/IP in hybrid

fixed/wireless environments. Milosh obtained a B.E. (1st class Hons.) in Electrical

and Computer Systems Engineering (1995), a Master of Computing (1996) and a

Ph.D. in Information Technology (1998), all at Monash University.

Paul G. Fitzpatrick completed his Bachelor Degree in Electrical Engineering at

Caulfield Institute of Technology, Melbourne in 1979 and his PhD in Electrical

Engineering at Swinburne University, Melbourne in 1997 in the teletraffic

performance of hierarchical wireless networks. Paul has over 30 years of

experience working in the telecommunications industry and academia, including

15 years at Telstra Research Laboratories working on 2G, 3G and 4G wireless

networks. His research interests focus on teletraffic modeling, quality of service,

TCP performance modeling and analysis of telecommunication networks.

Jonathan C. Li received the B.E.in electrical and Electronic Engineering in 2001,

B.Sc. degree in Computer Science and Information Technology Systems in 1999

from the University of Western Australia, and Ph.D. in Telecommunication from

the University of Melbourne in 2010. He is currently a member of the academic

staff at the Department of Electrical and Computer Systems Engineering of

Monash University, Melbourne, Australia. His research interests are optical

performance monitoring, routing in all-optical networks, network simulation and

modeling, and Wireless TCP/IP optimization.

