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ABSTRACT 

Traditional network diagnosis methods of Client-Terminal Device (CTD) problems tend to be labor-

intensive, time consuming, and contribute to increased customer dissatisfaction. In this paper, we 

propose an automated solution for rapidly diagnose the root causes of network performance issues in 

CTD. Based on a new intelligent inference technique, we create the Intelligent Automated Client 

Diagnostic (IACD) system, which only relies on collection of Transmission Control Protocol (TCP) 

packet traces. Using soft-margin Support Vector Machine (SVM) classifiers, the system (i) distinguishes 

link problems from client problems and (ii) identifies characteristics unique to the specific fault to report 

the root cause. The modular design of the system enables support for new access link and fault types. 

Experimental evaluation demonstrated the capability of the IACD system to distinguish between faulty 

and healthy links and to diagnose the client faults with 98% accuracy. The system can perform fault 

diagnosis independent of the user’s specific TCP implementation, enabling diagnosis of diverse range of 

client devices. 
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1. INTRODUCTION 

For the past decade, the most computer network-related developments have focused on 

improving connection speeds and developing new applications. However, with the demand for 

improved network speeds, the tolerance for connectivity and performance issues has decreased. 

With complex communications networks that support many types of Client-Terminal Devices 

(CTD), traditional methods of performance and fault diagnosis are increasingly inefficient. 

Diagnosis of network performance problems requires a methodical approach. First, the faulty 

segment of the network has to be isolated and second, the exact root cause of the problem 

should be identified. Analysis of packet traces, especially from the Transmission Control 

Protocol (TCP), is a sophisticated inference based technique used to diagnose complicated 

network problems in specialized cases [1]. These traces contain artifacts related to behavioral 

characteristics of network elements that a skilled investigator can use to infer the location and 

root cause of a network fault. The expertise and resources required for this technique, however, 

hinders its usability in the conventional fault resolution process of Internet Service Providers 

(ISPs). 

The most common complaint from broadband users is that their “connection speed is too slow” 

[2]. ISPs typically employ experienced technical staff that continuously monitor and resolve 
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performance issues in servers, backbone, and access links. Consequently, in often cases, the true 

bottleneck of a user’s connection speed is actually the client device [3]. Commonly, this is the 

result of overly conservative default networking parameters supplied with almost all out-of-the-

box operating systems (OS). Correct configuration of these parameters with respect to the 

access network technology can improve connection speeds and alleviate user dissatisfaction. In 

practice however, these settings are difficult for novice users to manipulate. Recent studies have 

found that network data rates reached by novice users are only one-third of those achieved by 

expert users, a phenomenon commonly referred to as the ”Wizard Gap” [4]. Many common 

performance issues are simple to correct, but difficult to diagnose. As a result, most customer 

connection issues persist unresolved [2] and many users experience severely degraded network 

performance even when the networks are underutilized [5, 6]. The Internet2 performance 

initiative has found that the median bandwidth in their 10 Gb/s backbone in April 2010 was 

approximately 3.05 Mb/s [7]. Though solutions have been proposed for improving network 

traffic conditions [8, 9], little attention has been given to solving the bottlenecks or diagnosing 

faults at the end-user. 

Next-generation OSs (e.g. Google Chrome OS) increasingly use cloud computing to deliver all 

applications to the user device through the web [10]. A recent report on cloud computing by 

Armbrust et al. [11] identify performance unpredictability and network bottlenecks among the 

top obstacles for the adoption and growth of cloud computing. 

In this paper, we address the aforementioned issues by introducing a new intelligent inference 

method for diagnosing network problems using TCP packet traces which we call the Intelligent 

Automated Client Diagnostic (IACD) system. The system (i) relies only on collection of packet 

traces upon reporting of a problem, and (ii) focuses on identifying CTD faults and 

misconfigurations. The authors Widanapathirana et al. previously presented a brief overview of 

the IACD system in IB2COM 2011. 
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Figure 1: Overview of the operation of the IACD system 
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1.1. Operational Overview of the Intelligent Automated Client Diagnostics (IACD) 

system 

The proposed IACD system is outlined in Figure 1. The system starts by collecting a TCP 

packet trace of a known stream of data between the client device and the ISP’s router. This is 

initiated by the user through a specially-created web page that activates the trace collection 

application. This trace is then analysed by the IACD system, which contains two machine 

learning trained classifiers. 

Assuming that the access server is optimized for the connection, performance problems 

experienced by the end user can be attributed to either the access link or client device. Since the 

system is designed to diagnose client device problems, a test is first performed to identify 

whether the performance problem is due to faulty access links. 

The TCP packet trace is passed to the first stage of the system, the Link Problem Detection 

(LPD) classifier that reports whether an access link is operating as expected. If the LPD 

classifier determines that the access link is faulty, then the link issues should be resolved before 

attempting to diagnose any client faults. We have left the automatic diagnosis of the access link 

problems for future work. If the link is identified to be healthy, the packet trace is passed to the 

Client Fault Diagnostic (CFD) classifier to identify the exact root causes of any problems in the 

client device. 

2. BACKGROUND AND RELATED WORK 

The use of TCP packet traces for analysis and inference of connection behavior dates back 

several decades to the introduction of the TCP. The tools and techniques developed since then 

can be categorized into two main groups: (i) TCP trace visualization tools [12, 13, 14], used to 

analyze packet streams for organizing and summarizing large amounts of trace data into an 

easily comprehensible format for expert use, and (ii) TCP-based behavior inference methods 

using techniques such as packet sequence analysis [15, 16], heuristic analysis [17] and machine 

learning algorithms [18, 19, 20] to infer connection behavior. These methods have been 

developed for many applications, including network security [18, 21], system fingerprinting [20, 

22], The Internet traffic classification [19, 23], network tomography [24, 15, 16, 25], protocol 

diagnosis [26, 27, 28], and network diagnosis. 

In this paper, we focus our discussion to two categories of diagnostic solutions: (i) rule based 

behavior inference using TCP traces, and (ii) machine learning based behavior inference using 

TCP or other event traces. 

2.1. Rule based behavior inference using TCP traces 

The ability to indirectly infer the behavior of protocol layers through the observation of TCP has 

motivated researchers to create diagnostic systems. The tools “tcpanaly” by Paxton et al. [26] 

and “TCP Behavior Inference Tool” (TBIT) [29] were early attempts at automated diagnosis of 

TCP implementations and non-compliance issues, using rule based analysis of TCP packet 

sequences. Work by Jaiswal et al. [25, 30] on inferring connection characteristics through 

passive analysis of packet traces used heuristic processes and was later extended to include a 

more extensive set of rules by Mellia et al. [17, 31, 27]. 

The project “Web100” [32, 5] focuses on collecting per-connection TCP statistics through 

kernel instrumentation (KIS) and has received much attention in the research community. It has 

been used extensively for diagnosing high-speed connectivity issues in projects such as the 

CERN-Large Hadron Collider and “Visible Human” project [1]. The capability of web100 to 

capture major protocol events using parameters otherwise hidden from users has been 

instrumental in developing some more recent tools. NPAD diagnostic servers with “Pathdiag” 
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[33] and “Network Diagnostic Tool” (NDT) [28] use the information extracted using Web100 

instrumentation to diagnose connectivity problems of the client systems. These solutions, 

however, depend on expert-rules for a diagnosis and are unable to detect new faults. With 

considerable differences among various TCP implementations, rule based systems cannot 

guarantee an accurate diagnosis unless every exception for a specific rule is considered. Further, 

the Web100-based tools require dedicated servers or substantial modifications to existing 

servers. These limitations in the existing rule based solutions have prevented them from being 

used in commercial networks. 

2.2. Machine learning based behavior inference 

When trained with packet traces representing a specific behavior, supervised machine learning 

algorithms can identify a similar behavior in test traces. Machine learning based inference of 

TCP traces have been used in several applications. In recent studies, Dondo et al. [18] used 

Artificial Neural Networks (ANN), Shon et al. [34] used SVMs, and Kuang et al. [35] used K-

Nearest Neighbor (KNN) algorithms to infer network intrusion events using TCP packet traces. 

With the emergence of a diverse range of internet applications, Internet traffic classification has 

gained substantial momentum. Hong et al. [36] used Bayesian classifiers for inferring traffic 

categories from packet traces, and similarly, SVMs have been used by Yuan et al. [19]. Machine 

learning algorithms have also been used for network tomography applications such as TCP 

throughput prediction using SVMs [37] and packet loss estimation [38] using Bayesian 

networks. TCP inference using Bayesian classifiers has been used for remote system 

fingerprinting by Beverly [20], and in a similar study, Burroni et al. [39] introduced a remote 

OS identification tool using ANN. 

A number of studies have used machine learning for root cause diagnosis of enterprise networks 

[40, 41, 42, 43, 44], access links [45, 46], home networks [47], and computer systems [48, 42]. 

These diagnostic tools lack the functionality and generalization required for a broader solution. 

For example, the decision tree-based “NEVERMIND” [45] is a tool developed only for the 

diagnosis of ADSL link problems, while the “Netprints” [47] is only used for diagnosing 

WiFi home network issues. Furthermore, these methods require information such as user 

requests, event logs, system calls or private network traffic, which demands privileged 

access.  

 

Figure 2: Comparison of machine learning algorithms. Performance of SVM is superior to the 

others except for speed of learning. 
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These limitations can be avoided by using an inference based method with an end-to-end TCP 

connection, independent of the link layer. Our literature survey did not find any comprehensive, 

scalable, intelligent inference techniques using TCP packet traces for an automatic diagnosis of 

network performance problems.  

The learning algorithm is a critical choice for the intelligent diagnostic system. For this purpose, 

we first identified candidate algorithms (Decision Trees [49], Artificial Neural Networks [50], 

Naive Bayes (NB)[51], k-Nearest Neighbor [52], and Support Vector Machines (SVM) [53]), 

conducted a comparative analysis, and tested their performance with respect to generalization, 

classification accuracy, number of training samples required, and training speed. Thus, we have 

chosen the SVM approach because of its superiority in yielding the most accurate results. It also 

exhibits higher tolerance and requires fewer training samples. The comparative performance of 

the methods is shown in Figure 2. 

3. IACD SYSTEM CLASSIFIERS 

3.1. Link Problem Detection (LPD) classifier 

The LPD classifier detects the artifact patterns which exist only when a link’s performance 

degrades from the expected baseline. We define an access link performing at the expected 

baseline as a healthy access link and a link with degraded performance as a faulty access link. 

The performance expectation of a healthy link is network-specific. The operator has the freedom 

to train several LPD classifier modules, each trained for a specific link type and baseline 

performance (e.g. 24Mb/s or 12Mb/s DSL link, 14Mb/s HSDPA link, 54 Mb/s 802.11g link 

with 1% packet loss or 5% packet loss). 

The problem presented to the LPD classifier conforms to a binary classification problem with 

two outcomes, either a faulty or a healthy link. The design, as shown in Figure 3 has two 

phases: first, the training phase creates an appropriate classifier model using two sets of trace 

samples from faulty and healthy links. The training phase includes signature extraction, data 

pre-processing and feature selection before pattern classifier training. Second, the diagnostic 

phase uses the trained classifier model to determine the artifacts hidden in an undiagnosed trace. 

After pre-processing and feature selection, the training data set lpdΘ of n instances is in the form  

1{( , ) | , { 1, 1}}m n

lpd i i i i iy y =Θ = ℜ + −x x ò ò                                        (1) 

with xi being an m-dimensional feature vector and class label yi, either +1 for the faulty link or 

−1 for the healthy link, to which each xi belongs. For example, a sample trace (i=1) from a 

faulty link, with four features (m=4) is denoted by 1{0.5,0.03,0,0.99, 1}i=+  (e.g. 1).  

We have chosen the L2 soft-margin SVMs [54, 55] with kernel mapping to model the best non-

linear separating hypersurface between the faulty class and the healthy class. For an m-

dimensional input feature vector, the resultant class boundary is an m-dimensional hypersurface 

that separates the two classes with the maximum margin. 

For the data set given in (eq. 1), a linear decision function 

( ) for 1,..., ,T

iD X X b i n= + =w                                               (2) 

where, w is the m-dimensional weight vector. The optimum hyperplane is found by minimizing 
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Figure 3: LPD classifier design 

 

 

( ) 1 for 1,..., and 0T

i i i iy b i nξ ξ+ ≥ − = ≥w x                                          (4) 

where, nonnegative ξ is called the slack variable and allows a degree of inseparability between 

the two classes and p = 2 for L2 soft-margin SVM. 

This conforms into a convex quadratic programming problem (QP) [56] and solved after 

converting the constrained problem given by (3) and (4) into an unconstrained problem 

2

1 1

1
( , , , ) ( ( ) 1) )

2 2

nn
T T

i i i i

i i

C
L b y x bα ξ ξ α ξ

= =

= + − + − +∑ ∑w w w w                       (5) 

where αi (≥0)  are the Lagrange multipliers introduced to enforce the positivity of the ξ. The 

optimal saddle point (w0, b0, α0, ξ0) is found where L is minimized with respect to w, b, and ξi 

and maximized with respect to αi (≥0) following Karush-Kuhn-Tucker (KKT) [57] conditions. 

This is called the training of SVM. 

However, to enhance the separability of the linearly inseparable data, using the non-linear 

vector function 1( ) ( ),..., ( )lg g g=x x x , the original m-dimensional input vector x is mapped 

into the l-dimensional feature space. The linear decision function for the obtained l-dimensional 

feature space is given by (2). 

( ) ( )T
D g b= +x w x                                                            (6) 

where w is the l-dimensional weight vector, b is the bias term. According to the Hilbert Schmidt 

theory, the mapping function g(x) that maps x into the dot-product feature space satisfies 

( , ) ( ) ( )T

i iK g g=x x x x                                                         (7) 
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where K(x,xi) is called the kernel function. The kernel function avoids the actual mapping g(x) 

and directly calculates the scalar products g(x)
T
g(xi) in the input space. We cross validated and 

analysed the performance of the classifier for multiple kernel functions (eq. 8) to select the best 

suitable kernel for the classification problem. 

( , ) ( · )T

i iK =x x x x                                                       Linear kernel,                     (8a) 

         
2( , ) ( · 1)T

i iK = +x x x x                                           Quadratic kernel,                     (8b) 

3( , ) ( · 1)T

i iK = +x x x x                         3rd degree polynomial kernel,                     (8c) 

              
2 2( , ) exp( ) / 2i iK σ= − −x x x x‖ ‖                 Gaussian RBF kernel,                    (8d)  

The LPD classifier is capable of detecting faulty links, even if both link and client faults 

simultaneously cause connection problems. However, this task is challenging because artifacts 

created by the client faults either (i) mask those artifacts from faulty links, or (ii) create false 

positives as link problems. To create a robust LPD classifier model, the training data should 

contain traces collected with faulty as well as healthy clients. Also, a robust feature selection 

method to identify the unique features that enable the detection of a faulty path regardless of a 

client behavior should be used (Section 4.5). 

The use of a mechanism to detect faulty links before diagnosing a client ensures that, traces sent 

through the CFD classifier do not contain any faulty link artifacts. This simplifies the design of 

the CFD classifier and improves classification accuracy. 

3.2. Client Fault Diagnostic (CFD) classifier 

The first stage of the IACD system ensures that the access link is not causing the connection 

problem. The second stage, Client Fault Diagnostic (CFD) classifier identifies the specific types 

of client faults, if any, that cause the performance problem.  

Choosing between binary classification and multi-class classification is an important design 

choice for the CFD classifier. There are many studies [58, 59] that compare these two types of 

classification methods for different applications, each with their own merits.  
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Figure 4: CFD classifier design for the IACD system. 
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In our CFD classifier design, we opted to use a parallel network of binary classifier modules 

(CF-classifiers), each trained to diagnose a single fault. This arrangement (Figure 4) collectively 

performs a multi-class classification. A network of binary classifiers were chosen over a single 

multi-class classifier because of the (i) flexibility to continually add new diagnostic capabilities 

to the IACD system, without having to change the basic algorithm or retrain the complete 

system, (ii) freedom to choose classifier parameters optimized to detect a specific type of 

artifact independently for each module instead of a common set of classifier parameters for all 

the faults and, (iii) parallelism which can reduce the time of classification, especially when the 

classes increase in number. 

A client causing the connection problems is defined as a faulty client and a client that does not 

is defined as a healthy client. The training samples are stored in a trace database Θcfd after the 

signature extraction process. 

0 1 2 1
{( , )| , { , , ,..., }}m n

cfd i i i i p i
y y cf cf cf cf =Θ = ℜx x ò ò                                 (9) 

where xi is the m-dimensional feature vector and yi is the class label. The class label yi=cf0 for a 

healthy client and yi = cf1, cf2, …, cfp  for p types of different client faults.  Each module then 

selects the training data subset Θcf,j with traces labeled as cfj for the faulty class and cf0 labeled 

traces in the healthy class for training the jth binary CF-classifier as in eq 10c. 

, 0 1{( , )| , { , }}m n

cf j i i i i j iy y cf cf =Θ = ℜx x ò ò ,                                            (10a) 

0 1iy cf≡ ≡ − ,                                                                                  (10b) 

1for 1,..., .i jy cf j p≡ ≡ + =                                                             (10c) 

Then, each module independently process data, improving the class coherency and selects the 

unique feature subset (artifacts) that separates the two classes. This feature subset is then sent to 

the pattern classifier module to model the classifier boundaries. Each CF-classifier module in 

CFD classifier uses a L2 soft-margin SVMs for pattern classification (as given in equations (2)) 

similar to LPD classifier design). 

4. CLASSIFIER TRAINING  

4.1. Data collection 

Training samples are collected either from a controlled test bed or from a service provider’s 

network. Laboratory test beds are preferred, as different connection problems can be accurately 

emulated in a well-regulated environment. However, the proposed trace collection technique 

can be easily implemented in operator networks when the network elements and conditions are 

not reproducible in the laboratory. The diagnostic accuracy of the classifier is highly dependent 

on the consistency and accuracy of the artifacts collected. Using standard packet capture 

libraries, our application captures two packet traces; (i) a client download from the server, at the 

client, and (ii) a client upload to the server, at the server, upon an online request by the user. 

Both traces are captured as bi-directional packet flows to ensure most connection details are 

captured. An incompressible file of size 100MB is used for a longer connection time and a 

lengthier packet stream. Constant file size and large file transfers generate more consistent and 

accurate fault signatures compared to a short-lived connection. 

4.2. Trace signature creation 
Two collected packet traces are analysed individually, and then the extracted trace 

characteristics are combined to form an m-dimensional feature vector xi which contains an 

accurate representation of the connection. The feature vector xi, combined with the class label yi 

is called the “signature“of the ith instance. We have developed a signature extraction technique 
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based on “tcptrace” [12], an open source trace visualization tool. Our technique extracts 140 

different statistical parameters for each trace, which forms a combined total of 280 parameters 

for each signature. For example, a raw feature vector from a faulty link before any data pre-

processing looks like {1249256, 295, 0, 32, 39, 1, 1,..., FAULTY} (e.g. 2). The statistical trace 

characterization technique transforms a packet stream into a data vector preserving the fault 

artifacts. The connection characteristics of the TCP trace are accurately encapsulated in the data 

vector as we collect an extensive set of statistical parameters. 

To create the preliminary signature database (Θpsd), the collected traces are then combined and 

grouped following the class labels. 

The signatures are unique, even within the same class as later shown in Figure 5 and 6. 

However, for each type of fault class, there exists a subset of features with common values, 

which are specific for that class. This unique subset of features forms the artifact. 

4.3 Data pre-processing 

The raw feature vectors in Θpsd need further processing before being used for classifier training. 

This step, called data pre-processing, improves the overall classification accuracy by enhancing 

data coherency and consistency within the classes. 

First, categorical attributes such as the class labels FAULTY and HEALTHY are converted to 

numeric data, i.e. +1 for the faulty class and -1 for the healthy class. The contribution of each 

feature for the classification process depends on its variability relative to other features. If one 

input has a range of 0 to 1, while another input has a range of 0 to 1,000,000, then the greater 

numeric range can dominate the smaller [60]. To avoid such inaccuracies, the training data set is 

shifted and re-scaled along each feature as the second part of pre-processing. Data re-scaling 

also avoids numerical difficulties during the calculation, especially when working with large 

values. Each feature is linearly scaled to fit in the range 0-1. This process transforms a raw trace 

signature (e.g 2) into the form {0.20, 0.82, 0, 0.35, 0.90, 1, 1, ..., +1} (e.g. 3). The resultant 

database is called the scaled signature database (Θssd). 
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Figure 5: LPD classifier signature database Θlpd_ssd, for comparison of faulty and healthy link 

trace characteristics. 
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Figure 6: CFD classifier signature database Θcfd_ssd, for comparison of client fault classes cfi 

4.4 Hidden trace artifacts 

Figures 5 and 6 show the standardized trace databases Θlpd_ssd and Θcfd_ssd used in training the 

IACD system. The i
th

 row represent the feature vector xi of the i
th
 trace sample, colour mapped 

to RGB space for easy visualization of signature characteristics. Null features have been 

removed for clarity. Figure 5 shows samples from two classes, faulty path (yi = -1) and healthy 

path (yi = +1) (see equation (1)). Figure 6 contains samples from multiple client fault classes (yi 

= cf1, ..., cf5) and the healthy client (yi = cf0) (see equation (9)). Figures 5 and 6 show that the 

signature extraction process creates unique signatures for every TCP packet trace, even within 

the same class, preserving the connection characteristics.  

In Figure 5, some feature values (columns) behave sporadically (such as features 40-45, 60-65, 

160-165 in Figure 5), and provide no usable information to the classifier. However, we can 

identify a feature subset (features 1-5, 19-22, 115-120, 175-180 in Figure 5) that clearly 

separates the faulty class from the healthy class. Using these artifacts as a visual guide, the 

faulty and healthy access links in Figure 5 can be distinguished. 

Similarly, Figure 6 shows multiple client fault classes, cfi. The signatures of different fault 

classes exhibit clear differences compared with the healthy client and are more subtle compared 

to Θlpd. When trained, the IACD system automatically identifies and classifies a trace and 

produces the visually comprehensible classes shown in Figures 5 and 6. 

4.5 Feature selection 

Although the signature format is identical in every sample, only a particular subset of features 

contributes to the artifact. Unnecessary features increase the computational complexity [61], 

create overfitting of classifier boundaries [62], and reduce classification accuracy [63]. 

Therefore, insignificant features should be removed from the training data. In this work, we use  
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Figure 7: Hybrid feature selection technique for isolating the best feature subset of the artifact. 

an automated feature selection method to select the best suitable feature subset for a particular 

classifier. 

There are two main categories of feature selection algorithms: (i) filters, which use statistical 

characteristics of features, and (ii) wrappers, which cross-validate all variations of feature 

subsets to select the best set. Wrappers are considered to perform better than filters, but are 

computationally expensive. Our proposed method, as shown in Figure 7, similar to work 

discussed by Xing et al. [64] and Das et al. [65], follows a hybrid approach (between filter and 

wrapper) for isolating the best feature subsets. We first use a filter technique, Student’s t-test 

(two-sample t-test) (implemented similar to [66]), to assess the significance of every feature for 

separating the two classes. Next, the features sorted in the order of significance are cross-

validated by incrementing the number of features selected for each class (wrap per technique) 

against test data to identify the best number of features required for each classifier. Student’s t-

test is a common statistical data analysis procedure for hypothesis testing, and determines 

whether two independent populations have different mean values for a specified extent. The 

feature selection process reduces the m-dimensional feature vector in (1) to q-dimensions, 

where the combination of q features creates the artifact. This process creates a new database, the 

optimum signature database (Θosd). 

5. IACD SYSTEM PERFORMANCE 

5.1 Network emulation 

Since we do not have access to operator networks, we used data collected in a network test bed, 

shown in Figure 8, which emulated an access link, client computer and the access server. The 

client and server ran on Linux 2.6.32 systems (with Ubuntu distribution), capable of running 

multiple TCP variants. The access link was emulated using a network emulator, dummynet [67] 

on FreeBSD 7.3. Each box was connected using full-duplex, 1000 Mb/s cat5e ethernet. 

Different client and link conditions were emulated using the Linux and dummynet parameter 

configurations. Then the traces were captured using the technique discussed previously. 
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Figure 8: Network testbed for training and testing data collection 
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5.2 Experiment Criteria 

Experiments included analyzing the performance of the IACD system with one LPD classifier 

(for a single type of access link), and CFD classifier with a network of four CF-classifier 

modules. The experimental setup emulated a full duplex wired access link with a 80 Mb/s 

bandwidth, 10ms delay with no packet losses and no packet reordering as the healthy link. 

Faulty links were emulated by inducing packet losses (from 1% up to 10%) and increased 

delays (from 15ms up to 100ms). Both the server and the healthy client (Linux 2.6.32) had a 

protocol stack optimized for the healthy link. 

For client faults, we emulated the disabled Selective Acknowledgement (SACK) option and the 

disabled Duplicate Selective Acknowledgement (D-SACK) option, which have been found to 

cause performance issues in the high-bandwidth connections [68, 69, 70, 71]. Socket buffer 

limitations, another common and hard to diagnose performance bottleneck [1, 72], were 

emulated by creating insufficient read buffers and write buffers at the client as two separate 

cases. Multiple, simultaneous client faults were emulated by creating both read and write socket 

buffer limitations at the same time. All buffer limitations were emulated using three buffer 

levels to collect traces from a range of possible scenarios. 

Figure 9 shows the data sets used for LPD and CFD classifier training and testing. For training 

data, both the server and client were limited to run TCP-CUBIC [73], with only 11 traces per 

each fault class being collected to re-create the worst case practical limitations. To analyze the 

system performance, we collected four testing data sets as follows: (i) the same data set used in 

training and, separately collected sets similar to Figure 9 with (ii) TCP-CUBIC client, (iii) TCP-

BIC [74] client, (iv) TCP-NewReno [75] client. From other TCP variants, the data sets (iii) and 

(iv) were collected to evaluate the TCP agnostic properties of the system. An additional data set 

over a healthy link was collected with clients suffering from multiple simultaneous buffer 

limitations. 

5.3 Diagnostic performance of LPD classifier 

The training database for LPD classifier Θlpd, contained two classes, faulty and healthy links 

(see Figure 5), both of which included different client behaviors. We used 100 traces per class 

(200 total data sets), each with 280 features, for training the LPD classifier. 

The proposed feature selection technique in Section 4.5 requires cross-validation before 

selecting the best feature subset. Although we cross-validated a number of feature subsets, our 

analysis is limited to two subsets of 75 and 25 sorted features. Figure 10 shows the two Θlpd_osd 

databases, where Figure (a) has 75 features, and Figure (b) has 25.  
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Figure 9: Training and testing data sets for LPD and CFD classifiers. Combinations of client 

and link conditions are emulated to collect the traces of a variety of possible scenarios. 
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(a) 75 sorted features using Student’s t-test         (b) 25 sorted features using Student’s t-test 

                 Feature selection                                                feature selection 

Figure 10: Comparison of trace databases after feature selection. 

When compared to Figure 5, both feature limited databases show a clearer separation between 

the two classes. The feature selection technique has reduced the dimensionality of the problem 

by 73% and 91% with 75 and 25 feature subsets, respectively.  

From the kernels in (8), the quadratic kernel was chosen for this particular classifier by cross-

validation. Quadratic programming (QP) optimization with 1000 maximum iterations was used 

to solve (5). 

Each of the four testing data sets consisted of 264 traces (132 faulty, 132 healthy link), collected 

with healthy and faulty clients. The 75 features used for training the classifier create a more 

complicated class boundary compared to 25 features. This phenomenon is called boundary over-

fitting. With over-fitted boundaries, even a small deviation of the data (vector) at the boundary 

can cause a misclassification. For the first and second test cases (TCP-CUBIC traces), the 

behavior and artifacts of traces were extremely similar, if not identical to the training traces. The 

Table 1 shows the diagnostic performance of the LPD classifier for both the 75 and 25 feature 

subsets. For the first test using the training instances, the classification accuracies were 100%. 

The accuracy remained at 100% during the second test when the previously unseen TCP-

CUBIC data set was used. In these two cases, the lack of outlier samples resulted in high 

classification accuracy, even with 75 features and an over-fitted boundary. However, the over-

fitted boundaries resulted in classification errors of 0.175% for TCP-BIC, and 2.622% for TCP-

NewReno data when the artifacts subtly deviated from those of TCP-CUBIC. When the 

dimensionality was reduced to 25 features, the LPD classifier created a more generalized 

boundary capable of compensating for artifact variations. As a result, the classifier was highly 

successful in separating the two classes with 100% accuracy for both the TCP-BIC and TCP-

NewReno cases. 

 

Table 1. Classification accuracy of LPD classifier for detecting faulty links. The classifier was 

successful in identifying the faulty links, even in the cases of faulty clients and TCP variants. 

Link Problem Detection Accuracies 

Trace Samples 75features 25 features 

TCP-CUBIC training set 100% 100% 

TCP-CUBIC testing set 100% 100% 

TCP-BIC testing set 99.825% 100% 

TCP-NewReno testing set 97.378% 100% 



International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.3, May 2012 

50 

 

 

 

5.4 Diagnostic performance of CFD classifier 

For testing the performance of our CFD classifier design, we created a parallel network of 

four CF-classifiers, each tasked with diagnosing a commonly found client issue: disabled 

SACK option (CF-Classifier 1), disabled D-SACK option (CF-Classifier 2), insufficient read 

buffer (CF-Classifier 3) and insufficient write buffer (CF-Classifier 4). Each training data set 

had two classes; a healthy client class, and the specific faulty client class, all collected over a 

healthy access link. 

The choice of classifier module parameters has a significant impact on the performance. Table 2 

shows the parameters chosen for each of the four CF-classifiers. The cross-validation technique 

for selecting the parameters and feature subset considered not only the individual classifier 

accuracy, but also the possible false positives. QP optimization used a maximum of 2000 

iterations instead of the 1000 used for LPD classifier training, since the optimization problems 

were more complex in CF-classifiers with fewer detectable artifacts. 

The Table 3 shows the diagnostic accuracy of the CFD classifier, which considers the collective 

output of the CF-classifier network. When tested with the CUBIC training and testing data sets, 

the system was capable of diagnosing the client’s disabled SACK option, disabled D-SACK 

option, read buffer limitation and write buffer limitations with high accuracy. Similarly, when 

tested with TCP-BIC and TCP-NewReno, variants not used during the training phase, the four 

client faults were diagnosed with 100% accuracy. These results demonstrated the TCP-

independent nature of the proposed CFD classifier design. 

The healthy clients were identified with 94.81% and 93.5% accuracy during the first two tests of 

TCP-CUBIC train and test data sets. When samples from healthy clients with TCP-BIC and 

TCP-NewReno were tested, the detection accuracies were at 92.10% and 91.71%, marginally 

lower than the other cases. This is due to the slightly higher tendency of obtaining a false 

positive in at least one of the CF-classifiers by healthy clients’ traces compared to other 

samples. When presented with traces taken from clients with simultaneous read and write buffer 

deficiencies, CF-classifier 3 and CF-classifier 4 were capable of independently identifying the 

faults from the trace. This capability led to a collective diagnostic accuracy of 96.97%, 96.90% 

and 100% for CUBIC, BIC and NewReno data sets, respectively. 

5.5 IACD system characteristics 

For the root cause diagnosis of client performance problems, the proposed IACD system offers 

many advantages over the other available trace inference methods. 

• The system offers a fully-automated, comprehensive framework which is extendible to 

diagnose a diverse range of faults, contrary to the limited capabilities of other tools.  

 

Table 2. SVM parameters used in each CF-classifier module of the CFD classifier. 

Non-linear SVM Parameters 

 CF-Classifier 1 

SACK  

problem 

CF-Classifier 2 

DSACK  

problem 

CF-Classifier 3 

Insufficient 

Read Buffer 

CF-Classifier 4 

Insufficient 

Write Buffer 

Kernel Linear RBF cubic polynomial RBF 

Features 12 32 24 16 
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Table 3. Diagnostic accuracy of the CFD classifier, derived from the collective output of the 

CF-classifier network. 

 Client Fault Diagnostic Accuracies 

Trace Samples SACK problem DSACK problem Insufficient  

Write Buffer 

CUBIC training set 100% 100% 100% 

CUBIC testing set 100% 100% 93.94% 

BIC testing set 100% 100% 100% 

New-Reno testing set 100% 100% 100% 

 Insufficient Read 

Buffer 

Insufficient  

Read-Write Buffer 

Default Client 

CUBIC training set 100%  94.81% 

CUBIC testing set 96.36% 96.97% 93.50% 

BIC testing set 100% 96.90% 92.10% 

New-Reno testing set 100% 100% 91.71% 

 

• Diagnostic capability of the system evolves with the diversity of the fault signature 

databases, instead of the inference algorithm. Users can collaborate to create common 

signature repositories, encompassing a wide range of faults, networks, and client 

platforms. Most rule based systems lack the generality to operate effectively in a 

dynamic environment. 

• The system relies solely on packet traces collected at end-points and can be 

implemented as an application. This provides flexibility for the operator to deploy the 

IACD system at any desired network location. 

• End-user systems can be diagnosed without remotely accessing or physically logging on 

to the systems; a capability unavailable in many network diagnostic tools. 

• The proposed technique avoids both the idiosyncrasies of individual TCP 

implementation and the usage of TCP flags as an information source. Instead, the 

connections are characterized using per-connection statistics of a signature independent 

of the TCP variant and the negotiated flags. 

• Although the system is designed to diagnose client computers from the edge of the 

operator’s network, the same system can be used for diagnosing intermediate nodes in 

the network by deploying a trace collection module in a neighboring node and training 

with suitable data. 

5. CONCLUSION 

In this work, we have proposed and evaluated the IACD system, an automated CTD diagnostic 

system that uses an intelligent inference based approach of TCP packet traces to identify 

artifacts created by various faults. The system consists of two cascading levels of classifiers: (i) 

the LPD classifier, tasked with first filtering out whether the connection performance problem is 

caused by link faults or otherwise, and (ii) the CFD classifier, tasked with diagnosing the 

specific client faults that cause the connection problem. The LPD classifier uses a single module 

that incorporates signature extraction, data-preprocessing, feature selection and a soft-margin 

binary SVM for pattern classification. The CFD classifier performs a complex multi class 

classification of client faults using a parallel network of CF-classifiers. The modular design of 

the CFD classifier offers extendibility to diagnose new faults by training CF-classifier modules 

independently. 
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We evaluated the system by diagnosing four types of common client problems with various 

TCP implementations. Furthermore, we analyzed system performance when in the absence of 

any client faults as compared to multiple simultaneous faults. Our results show that the LPD 

classifier can effectively identify and separate out the link problems, without being affected by 

the client behavior and TCP type. The CFD classifier results show that, with a small number of 

training samples, CF-classifier modules collectively produce high diagnostic accuracy in all 

tested scenarios, including clients with different faults, TCP variants, default clients and 

multiple faults. 
Our proposed IACD system provides a framework for an accurate diagnostic system that is 

effective for a large array of client platforms, easy to deploy, and extendible in diagnostic 

capability. To our knowledge, the IACD system is the first to use automated inference of TCP 

packet traces using SVMs for diagnosing the root causes of the network performance issues. 
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