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ABSTRACT

Adaptability is a property related to engineering \&ell as to the execution of networked serviceesys
This publication considers issues of adaptabilibthowithin a general and a scoped view. The general
view considers issues of adaptation at two levBlsSystem of entities, functions and adaptabilipes,

and 2) Architectures supporting adaptability. Adsptity types defined are capability-related,
functionality-related and context-related adaptatiolhe scoped view of the publication is focusing o
capability-related adaptation. A dynamic goal-baspdlicy ontology is presented. The adaptation
functionality is realized by the combination of éxded Finite State Machines, Reasoning Machines and
Learning Mechanisms. An example case demonstrdtinguse of a dynamic goal-based policy is
presented.

KEYWORDS

Adaptable service systems, Adaptability types, fsdéity architecture, Capability-based adaptation,
Goal-based policy ontology, Policy-based adaptation

1.INTRODUCTION

Networked service systems are consideBstvicesare realized bgervice componentshich

by their inter-working constitutes aervice systemService components are executed as
software components in nodes, which are physicatgssing units such as servers, routers,
switches, PCs and mobile phonessérvice frameworks here defined as a system for the
specification managemeréndexecutionof service systems

Adaptability can generally be defined #ee ability of a system to fit to changed circumsts
Adaptability is generally realised by some closeddfback loop. Fitting behavior can be of
various types and can take place several leveis téhdency, however, to denote many aspects
of changes or “fitting behavior” as adaptation,heifit setting requirements to which changes
that “qualifies” withchanged circumstanceAn autonomic service systeisia specialization of

an adaptable service system. Autonomic systems hahbiity to manage themselves and to
adapt dynamically to changes in accordance witkrgiobjectives [1,2]. An autonomic system
is constituted by distributed components denoteglismnomic elements

The contribution of this publication is a generahcept framework for adaptable systems as
well as a scoped framework for capability-relateld@ation. Adaptable service systems are
accordingly considered withingeneral viewand within ascoped viewWithin thegeneral view
various adaptability issues of networked servicgesys are considered at two levédstities
functionsandadaptability typesre considered at Level Architecturessupporting adaptability
at Level 2. The adaptabilityypes defined arecapability-related functionality-relatedand
context-relatechdaptation. Within thecoped viewcapability-relatedadaptation is focused. A
goal-based policy ontology for capability-relatedaptation is presented. The experience
background for this publication is work with the PAS architecture and platform [3-5].
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Another important reference is the FOCALE architeetfor autonomic networking [6]. Even if
parts of this publication are inspired by TAPAS: thtention is to be rather generic.

The rest of the publication is organized as follo@sction 2 considers related works. In Section
3 important performance concepts related to caiabiland services are defined. Section 4-5
presents the Level 1 and 2 issues as defined aB@ation 4 presents entities and adaptability
functions, while Section 5 presents adaptabilipety, Section 6 presents adaptability supporting
architectures. In Section 7-8 capability-relatedmdtion is handled. Section 7 defines a goal-
based policy ontology, and Section 8 presents ample case demonstrating the use of this
ontology. Summary and conclusions are present&gdtion 9.

2.RELATED WORKS

In Section 1 and the Sections 3-7 some referemnceddted works [1-21] are presented. In this
Section additional references [22-28] are providexisting service system frameworks that
support run-time self-management and adaptation kEarclassified according to how the
management and adaptation functionalities are pecSome works propose to use templates
[22] or adaptation classes [23] for specificatiblowever, such approach lacks flexibility. All
possible adaptation cases must be known, and naptattbn cases require re-compilation. The
architecture presented in this publication spegifiee adaptability functionality based on
Extended Finite State Machines, Reasoning Machemes$ Learning Mechanisms, to be
dynamically modified during run-time. For ExtendEthite State Machine specifications, an
update of changes is done by deployment of the evhpécification. For Reasoning Machine
and Learning Mechanism, only incremental changepatities and goals are deployed. The
complete policy and goal based functionality, hogreweed to be validated before deployment
of the incremental changes.

There are several works that use policies to spéled adaptation, such as [3, 4], [24], [25-28].
In [24] a framework that defines autonomic applmas as dynamic composition of autonomic
elements is described. Our approach as well asppeoaches described in [3, 4, 25-28] go
beyond by adding mechanisms to adapt policies erwhy of using policies. Such policy
adaptation can be grouped into three categorieshdnging the policy parameters, considered
in [3, 4, 25, 26]; 2) enabling/disabling a poliégund in [3, 4, 25]; 3) using techniques to select
the most suitable policy and action; for instamegyarding policies and their actions, presented
in [27, 28]. Our approach is of category 1 and 8sduro et al. [27] presented a hybrid
reinforcement technique used for resource allopaiio multi-application data centers. This
technique is to select optimal policies that carximi&e rewards. Mesnier et al. [28] used
decision trees to select accurate policies in gisystems.

3. CAPABILITY AND SERVICE PERFORMANCE CONCEPTS

A capabilityis here defined as anherent propertyof a node used as a basis to implement
services. A service component may need capabilitielbe allocated before deployment and
instantiation. Capability types are classified @sources functions and data Resource
examples are CPU, memory, transmission links, sensmd batteries. Within network
management the concept managed objects is use@gembjects such as MIB (Management
Information Base) objects in SNMP [7] and CIM (Coobmninformation Model) objects in
WBEM (Web-based Enterprise Management) [8] areidensd as capabilities.

Capability parametedescribes the characteristics of a capability type can be classified as
functionality, performance and inference parametf@®js Functionality parameters define
functionality featuresperformanceparameters define performance measures iafedence
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parameters define logical relations to other cdjpplbypes. Capabilityperformance parameters
can further be classified asapacity parametersstate parameters and)oS parameters.
Capability capacity parameters examples are trassom channel capacity, the number of
streaming connections and CPU processing speedbdip state parameters examples are
number of connections, and the number that is mgitiCapability QoS parameter examples are
transfer time, throughput, utilization, availalyliand recovery time after errors. The services
provided to the service user can in the same waapabilities be described lhynctionaland
performanceparametersService performance parametease further classified as state and
QoS parameter3he capability and service performance providedrabbserved time instance
or during an observation time interval are denotlinherent capability and service
performance.

Service level agreemen{SLA) are agreements between the service usersttendervice
provider. The agreement can contain elements sschiequired service functionalities and
performance, payment for the service when the agpegformance is offered and penalty in
case of reduced performanc&he service can be differentiated in varid@sS classesThis
QoS class will be reflected in the SLA. A serviaenponent can generally handle user services
related to several QoS classes.

4_ENTITIES AND FUNCTIONS

4.1. Entities

Entities related to the life-cycle of an adaptaddevice system are illustrated in Figure 1. The
service frameworks constituted by thé&rimary Service Systeritself, the Service Creation
System the Service Repositoryand theNetwork and Service Management Systfine
environmentis constituted by the administrati&ervice Providerand theService UserThe
Primary Service System provides services to theiSetJsers, while the Network and Service
Management System provides management servicé® tBrimary Service System. Both the
Primary Service System and the Network and SeiMaragement System are service systems
according to the definitions in Section 1. The kdany between these systems highly depends
on the nature of the primary service, the natur¢hefservice management functionality, and
how the various functions are realized in softwaremponents. Some management
functionalities can be integrated in the softwacenponents executing the primary service
functionality. In the figure this is denoted delegated management
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Figure 1. Service life-cycle Entities
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4.2. Functions

The functionalities of the service framework emp8tiare here grouped in tHienctionality
groups Service Creation, Node Configuration, Service f@umation, Service Provisioning,
and Monitoring and Diagnosis as illustrated in FegR. This system of functionality groups and
functions are parallel and continuous. The fundian the functionality groups are not
necessarily single functions and can in some cbeesonsidered as functionality sub-groups.
With reference to Figure 1, Service Creation is eldoy the Service Creation Node
Configuration, Service Configuration, Service Psimning, and Monitoring and Diagnosis are
donein cooperationbetween the Network and Service Management Systehtte Primary
Service System.
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Figure 2. Service Life-cycle Functionalities

Concerning the sub-functionalities biode Configurationinstallation is the provision of the
physical existence of the component, while redi®nais the logical registration of nodes and
capability instances. The physical installatiomdme by humans, while the logical registration
can be done by a service system. But this funditgnaill normally require cooperation with a
monitoring functionthat can detect the physical presence of the coewgo Platform re-
installation can generally be the installation dafier a failure of a node, but can also be the
installation of a new version of the platform saite.

Concerning the sub-functionalities 8krvice ConfigurationService selectionis primarily a
function used in cases where change of contextsnaetew serviceCapability configuration
comprisesCapability parameter configuratioas well adNode selectionCapability parameter
configurationis the validation and settings of node capabpifyameter values according to a
capability parameter configuration specificaticdode selectioris the selection of node with
respect to the required capability functionalitydaperformance defined for the service.
Capability usage allocatiomletermines the usage of allocated capabiliesvice installation

is the deployment of the service components cantisiff a service systengervice updatés
here indicated as a different function. This ischese an update does not need to comprise a
new complete installation of all service componeusstituting a service system. Instantiation
starts the execution of the installed or updatedice componentsService component (de-)
registrationis the (de-)registration of the service componastance in a system that provides
an overview of the instantiated service componestincesCapability re-configuratiorcan in
general initiate the movement of service compon&gsvice component movementifferent
from installation in general as it includes the miaent of an instance of a service component
with present states and local variable values
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Service ProvisioningcomprisesNormal service provisioningas well asDegraded service
provisioningas realised by the Primary Service System adritites] in Figure 1. Degraded here
refers to degraded service and capability perfoomathat require adaptation actions. With
respect to Figure 2, adaptation actions caiCaeability usage re-allocatioonly, but in more
serious cases it can compri€apability re-configuration Capability usage re-allocatign
Service component movemeservice component instantiatioas well asService component
de-registrationand Serviceomponent registratian

Concerning the sub-functionalities lgonitoring and DiagnosisNode monitoringmonitors the
existence and liveness of nod€gpability monitoringmonitors the existence of capability
types and the parameter values, @elvice monitoringmonitors the existence, liveness,
functionality and performance of service componedfgdate monitorings the monitoring for
the existence of service system software updatethenservice repositoryrault diagnosis
detects failures related to nodes, capabilities aatvice components, anderformance
diagnosisdetects mismatch between required and inherevitseaind capability performance.

Contextis here related to thadaptability terrain i.e. the environment in which the adaptable
system operates. The terrain can be classifigthgsicalor logical. Physicalterrain contextis
defined by physical positions as well as the stidtehe terrain. Physical positions can be
absolute position of the node executing the ad#ptabrvice system as well as positions
relatively to other nodes and objects. State measwan be terrain type, temperature,
concentration of gases, friction, fluidity, etc.ldgical terrain is defined bylogical positions
and application layeassociationdetween service components. Physical terrain ebesngan

be streets, buildings on fire, collapsed buildingster and nature. One adaptable system
scenario is a robot snake [10] operating in a howusefire changing the movement type
according to the terrain type as well as to blockeys. Service examples are measurements,
searching humans, video recording and the spragfingater. As nodes operating in a physical
terrain also can have wire-less communication, thilyboth operate in a physical and logical
terrain. One example service system is a robotesqaday where the various players in the team
has roles and interact logically in addition to trehaviour defined from the monitoring made
by physical sensors [11]. Context can also be ddfio include capabilities, such as memory,
CPU, battery, bandwidth as well as user preferelaces profile [12]. User preferences and
profile are here considered as data and are nibtevis the functionality models presented.

5. ADAPTABILITY TYPES

Adaptability typesare here classified as Capability-related, Funefipnrelated and Context-
related adaptatiorCapability-relatedadaptation is here defined as the ability to adeotuse
of shortage of capabilities with appropriate logidanctionality or overload or failure.
Functionality-relatedadaptation is the ability to adapt to new funddiity requirements, and
Context-relatechdaptation is the ability to adapt to context demnas defined in Section 3.

As capabilities are the basic fundament for thelémgntation of service systems, a needed
property for any adaptability type t® be aware of node and capabilitiesnd the ability to
configure service systerascording to the present availability of nodes eagabilities. This is
denoted adasic capability awarenes3he needed functionality is illustrated in Figeln

this case there is assumingly no failures and owmérl Installation of new versions of the
platform software is not part of the functionalitgnsidered in the architecture models presented
in this publication. The functionalities needed fbe various adaptability types are defined as
follows:

45



International Journal of Computer Networks & Comications (IJCNC) Vol.4, No.4, July 2012

i WMonitori
Service bortlz S ETV"?E\ Service algnf";‘lng \
Creation Configuration Conﬁg@ @siu ning Diag W

Service (re-) | Node {de-) Service Normal Node
| specification | installation [ selection service [ monitoring
Service (re-) | Node (de-) | _Capability provisioning | Capability
“integration [ registration {re-) Degraded monitoring
Service (re-) Capability configuration servi_cs_s ! 7Serv_ice )
—validation |-(de-) Capability provisioning monitoring
Service installation usage (re-) 7Cont_ext_
i il allocation monitoring
— repository Capability
update [ (de-) L Service _Upda_te )
registration installation monitoring
Platform | service | Fault
[ installation update diagnosis
L_Platformre- | Service L Performance
installation instantiation diagnosis

| Service component
{de-) registration

~— Service component
movement

Figure 3. Basic Capability Awareness

1) Capability-related adaptationeeds functionality as illustrated in Figure 4. Tlectionality

needed for basic capability awareness is illustrategrey. The added needed functionality
needed is illustrated in blue. In addition to thasB Capability Awareness Platform (re-)
installation, Service component (de-) registrati®grvice component movement, Degraded
service provisioning, Service monitoring, Faultghiasis and Performance diagnosis is needed.
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Figure 4. Capability-Related Adaptation

2) Functionality-related adaptationin addition to the functionalities of Capabilitgtated

adaptation, the following functionality is needeService (re-) specification, Service (re-)
integration, Service (re-) validaton, Service réfpog update, Update monotoring and Service
updating. Fault and failure diagnosis are included covering the cases where faults or
performance leads to redesign of the service systeftware. Degraded service provisioning
covers cases where new software needs capabilioniguration because of reduced
performance. Service creation functionalities mistve involvement by humans. The
functionalities that can be automated are Serépesitory update and Service update [13].

3) Context-related adaptationin addition to Basic capability awareness thelofging
functionality is needed:Service Monitoring, Context monitoring and Servi€election.
Context-related adaptation is related to terraindeined in Section 4. Context defined by
physical position is used in a wide variety of coenoial user services related to ticket sales,
visiting touristic places, restaurant services §t@]. Context-related adaptation is to some
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extension pre-programmed. Physical terrain adaptasi programmed mathematically. Logical
adaptation is realized by client applications, ¢lent service components that flexibly are able
to interwork with new server service components.sjouser interaction is also needed to
select among the available applications.

6. ADAPTABILITY SUPPORTING ARCHITECTURES

6.1. General

The service framework is constituted by a computinchitecture and a service functionality
architecture. This is the same architecture stracas applied in TINA [14]. The computing
architecture has concepts for the specificatiosenfice system behaviour. The architecture that
describes the structure of services functionalisedenoted as service functionality architecture.
An execution platform must support the concepthefcomputing architecture and also provide
management support for the service systems adrdlted in Figure 5. The management
functionality which is a part of the service fumetality architecture comprises both network
and service management functionality.

Is defined
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; x AN
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. . by *\ . .
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Figure 5. Functionality, Architecture and Platform

6.2. Computing Architecture
6.2.1. Service Layer and Physical Layer

A computing architecture based on two abstractiyers is illustrated in Figure 6. These two
layers are denoted as service layer and physiget.lahis is a generalization of the three-layer
TAPAS model [3]. Several architecture models witlvagiable number of layers have been
proposed. In [15], a five-layer model is presented.

The service layer defines the service constitutgd sbrvice components. Leaf service

components are realized by Actors. Actors are deeclas operating system software
components. The service system is specified byM&E-&Extended Finite State Machines),

goals and policies. Actors are EFSM interpretingcha@isms. The service components are
implemented by a combination of Actors, ReasoniragMne (RM) and Learning Mechanisms

(LM). EFSMs can activate RM and LM, and the EFSM cze the RM to select appropriate

actions in situation when strategic decisions &eded. RM and LM models will be described
in Section 7.

6.2.2. Service Component Features

The service components have features in additionhéo service behavior execution. The
following features must be supported: i) RenewalSafrvice Component EFSM behavior
specification i) Renewal of Policy and Goal spweafions, ii) Movement of Service
component while preserving state, variables andsages, and iv) Management of Service
component EFSM states.
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These features need support of management funtitjoriauring runtime new versions EFSM
functionality, policy and goal specifications cae blownloaded and instantiated. Service
components can be moved by instantiating a newrAat@ new node. Some of the EFSM
states are classified as stable states. A stadile ista state where the functionality of a service
component can move safely and be re-instantiatedn®antiation includes the restoration of
EFSM state, EFSM local variables, and queued messag

Actors can manage its EFSM states and local vasaised on received EFSM input messages
as well as responses from the Reasoning Machine. gemeric Actor states are: {Initial,
Normal, Degraded, Moving, Idle, Terminated}. A deescomponent is instantiated in Initial
state in a node where the required capability fonefities and performances are met. In
Normal state services are provided with satisfgctperformance. In Degraded state the
performance is considered too low. Adaptation canriitiated to return to Normal state. In
Moving state an Actor is moved and re-instantiated new node. In Idle state the execution of
current EFSM specification is ended and allocaiguhbilities are released. From this state an
Actor can be initiated as new service componeititral State.
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Figure 6. Computing Architecture

6.2.3. Computing Architecture and Adaptability Features

As previously stated, the adaptability functionalg realized by a combination of concepts and
mechanisms of the computing architecture and stipgomanagement functionality. The
computing architecture has a service layer and ysiphl layer and has functionality and
performance concepts both related to capability serdice. This provides a basis for basic
capability-related awareness, which is the basialf@adaptation types defined. The architecture
further opens for service systems defined by flexdmmbination of EFSM-, goal-, and policy
specifications combined with Learning Mechanismise Two-layer architecture combined with
the flexible Actor execution behaviour also makesmation during runtime possible. The
model as defined, however, is open with respec¢héogoal and policy ontology applied and
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also to the realization of Reasoning Machine amathieg Mechanism. This basic model should
make it possible to define and implement all adapiaypes as defined in Section 5.

Concerning functionality-related adaptation, it é&nphasized that is only the service
configuration features of functionality-related ptigion that is feasible. Concerning context-
related adaptation the model is open to any usems$or capabilities. This model is however a
generic model. In specific application cases, mfiant and elaboration is needed.

6.3. Service Functionality Architecture

The service functionality architecture consists psfmary service functionalities and the
management functionality components as illustraideigure 7. The following five repositories
are defined: Service specification repository (SgeR Capability type repository (CapRep),
Inherent capability and service repository (InhR&f)ntext repository (ConRep) and Platform
repository (PltRep). SpcRep stores the servicegweh specifications, SLAs and required
capability functionality and performance specifioas. CapRep stores the capability type
concepts. Several languages are used for capatytliydefinition. Examples are SNMP MIB-
objects defined by ASN.1 [7], WBEM CIM objects defd by XML [8] and NETCONF [16]
objects based on YANG [17]. In TAPAS platform [Spability ontology is represented by
OWL [18] and OWL/XDD [19]. InhRep stores data abawutilable nodes, capability instances
and instantiated service components. This comptisesaddress of the Actor realizing the
service component, service type reference, statthefActor, and Capability and Service
performance parameter values. ConRep stores pnedefiontext states while PltRep stores
programs needed to execute service functionalitith Wespect to the physical view of the
computing architecture, PItRep comprises Actor,9eaag Machine and Learning Mechanism
software.
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Figure 7. Service Functionality Architecture

The functionality components as illustrated in Feg implement functions for capability-
related, functionality-related and context-relatedaptation as defined in Section 5. The
functions Capability Configuration (CC), Capabilitisage Allocation (CU), Service
Component Movement (SM), Platform Installation (FHault Diagnosis (FD) and Performance
Diagnosis (PD) correspond directly to functionsimed in Section 4.

Capability and Service Administratid@SA) performs Node (de-) registration, Capabifidg-)
registration and Service component (de-)registnatid view of InhRep is also provided.
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Capability and Service MonitorinfCSM) performs Node, Capability and Service maniritp
The result of the monitoring is reported to CS2apability Configuration(CC) generates
configuration plans for service components. A ogunfation plan defines the node for
deployment and instantiation.Capability Usage Allocation(CU) allocates capabilities in
accordance with the present performance, SLAs khadoptimization criteria chosen by the
service providerService Installation and instantiatiofSIl) comprises deployment of EFSM,
goal and policy specifications, as well as the akien of the configuration planService
Component MovemerfSM) manages the ongoing sessions on behalf ofoeng service
component during movement. In TAPAS it forwardsefeed messages after a service
component is re-instantiated in a new location. 8iM by broadcasting inform other service
components of the “Moving” and “Normal” states lbétmoving component.

Context AdministratiofCA) monitors context and initiates configuratiohcontext-dependent
application software. Platform Installation (PIl) leotstrap functionality installing needed
platform software when nodes are (re-) startédaptation Administration(AA) plans and
administers re-configuration initiated by non-wah&yents or states during the normal service
system execution. This can be initiated by FD, BB, or by a human administrator. The re-
configuration can result in CU only, or the combtiioa of CC and CU, including SM and SlI.

Primary service componentsasically implement the service provisioning dsasirated in
Figure 2. There is, however, not always a cleanbdawy between primary service functionality
and management functionality. Most primary sergggtems need capabilities and functionality
components such &D, CU andCC. Such functionalities can often be designed as gfaitie
primary service system.

7. A GOAL-BASED PoLicy ONTOLOGY FOR CAPABILITY -RELATED
ADAPTATION

An ontology is a formal and explicit specificatioha sharedconceptualization [20], containing
both object types and functions operating on ircstanof object types. We can define
independent concepts and relational concepts. cLagicepts can be defined by mathematical
logics, e.g., Hthenelse or by rules [9].

7.1. A Static Model based on Reasoning Machine

Figure 8 presents a goal-based policy ontologyth&t top level we havgoal, policy and
inherent state This model is denoted asatic because there is no feed-back from a Learning
Mechanism that rewards actions that have the whdibring the system to states that complies
with the defined goals.

As a basis for the optimal adaptation, requiredfguerance as well as prices and penalty
agreements defined in the SLAs must be taken imtsideration. Service income includes the
estimated income paid by the users for using sesviic normal QoS conditions and the penalty
cost paid back to the users when the service gggbind functionalities are lower than defined
by SLA. In general, goal, policy and inherent stzdacepts have the SLA class as a parameter.
The inherent states of the service components caprise measures related to functionality,
performance and income. The goal is defined by @ gapression and a weight. The goal
expression defines a required system performansereice income measure. A goal example
is: “Service response time of premium service Slasg < 2 secs”. The goal weight identifies a
goal's importance. A goal can be associated wigetaof policies. A policy is defined by
conditions constraintsandactions Theconditiondefines the activation of the policy execution.
The constraintrestricts the usage of the policy, and is desdritng an expression of required
and inherent functionality and performance of sgrsiand capabilities, required and inherent
service incomes, available nodes and their capiabilias well as system time. A policy
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example related to the goal example given abovéfi€PU utilization > 95%and the time is
between 18:00-24:00, ignore new service requestsefs of ordinary SLA classes that request
service time > 2 miris It is expressed with Conditions: CPU utilization95%, Constraints:
system time between 18:00-24:00 and service timeest > 2 minutes, and Actions: ignore
new service requests of users of ordinary SLA elaiss
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Figure 8. A Static Goal-based Policy Ontology
Table 1 lists notations used for capability, ses\and income concepts. Trexuired capability

functionality and performance are service comportiined requirementdRequired service
functionality and performance are SLA defined reguients.

Table 1. Capability, service and income conceptation

Notation Description

Required capability performance :

Inherent capability performance ¢

Required capability functionality s

Inherent capability functionality s

Set of available capabilities in nhode n; n=[1

Inherent service performance ¢

Required service functionality set

R
|
Cr
C
An
R Required service performance
—L
=
S

Inherent service functionality ¢

IR Required service incor

I, Inherent service incor

An RM model R extended from [3, 4] is now definexd a
R {Q,F,P,x} 1)

HereQ is a set of query expressions with variabless a genericeasoning procedure? is a
set of policies and is the data including the inherent states valligs. expression (1) can be
further elaborated as follows:

X0 (E. I Ev bl am N=[1, N )
PO {pi} 3)
peCuXuA) (4)
i© ExpressionS , 1, G, 1) — ©)
X;° Expression&r, r Cr, rRlr S, 1, G, I, ann=[1,N],G (6)
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A policy p has conditions;, constraints Xand actions A The condition is an expression of the
inherent states of relevant service components. ddmestraint is an expression of required
functionality and performance of services and cdpials, required service incomes, relevant
service components, available nodes and their dédjge) as well as the system clock tiGe

A reasoning procedure is applied to select appatgractions with maximum accumulated
rewards. It is based diquivalent transformation (ET[21], which solves a given problem by
finding values for the variables of the queriese Tonditions, constraints and actions can have
variables. The result of the reasoning procedure gaaddition to actions, give instantiated
variables.

7.2. A Dynamic Model based on a Learning Mechanism

The static model presented in the previous sulmsectin be made dynamic by introducing a
Learning Mechanism (LM) and by adding the paransedecumulated Rewardnd Operation
Costin the model as illustrated in Figure 9.

Ing{artent Goa| associatedWithy POllcy triggeredBy*
{ ate describedBy |hasWeight hasAction  |restrictedBy*

‘Condition‘

Goal . i i
’ Expression HWelght ’ Action H Constraint

| L get Lcost
’Accumulated‘ ’Opcelratlon‘
Reward oSt

Figure 9. Making a Dynamic Goal-based Policy Ongglo

The proposed LM model gives rewards to actionsetgddected by RM. The reward is measure
for the ability to move towards a state with goal performance ammbme measureshe
rewards will be accumulated over a period of tifffee LM model L is defined as:

Lo{WL,Y,z} (7)
whereW is a set ofjoals L is a genericewarding procedurgY is areward databasetoring

the accumulated rewards of actions, anslthe LM data including the inherent states frems
service component as well as other service compgsn#éfe further have:

z° (E, I:E1 w ) (8)
We { g} (9)
Ok © (Ch, Wi) (10)

A goal g has goal expression dnd weightw,. The sum of the goal weights is equal to 1. At
time t, the rewarding procedure will calculate teeard of an action;awhich was applied at
time t-1 as:

reward(@ixt1,0k) = Dk ik 1)/ DAk ,-1)) * Wi - cOSt(d) (11)

where .1 and i, are an inherent state measure before and aftdyirghe action for an
monitoring interval [t-1, t],dl z and dis an associated goal required measuD8gy,ix+1) is the
difference betweencjand fi. D(dk,ix+1) is the difference between dnd 1. W is the goal
weight and cost{pis the operation cost of. a&he measure accumulated_rewatil(a,d), is
then the sum of the rewards of an actipfoman inherent state measuge,Bnd a goal measure
dk. Equation (2) is accordingly modified as follovesiticlude the reward databage

x° (E, I E, LY, an n=[1, N) (2)
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8. CASE STuDY

An example music video streaming system is predewith the intention to demonstrate the
Reasoning MachinandLearning Mechanisnbehaviour models as presented in Section 7. The
streaming system is illustrated in Figure 10. Ttreasning case is the same as applied in a
previous work [4]. The goal-based policy and theadoéng Mechanism, however, were not
applied in [4].

The system is constituted by the following servim@mponents implementing the service
functionalities as defined in Section 6:Capability and Service AdministratioGCSA)
Capability and Service Monitoring (CSMFrault Diagnosis (FD), Capability Configuration
(CC), Service Installation and Instantiatiofil), Service Component Movement (Skhd
Primary Service Component8SC)

«— Streaming requests i M,?ﬁiia Servell_' (ll(\AS)
—— Physical connections ‘w;»., g’a‘pa%ﬁ(;efgolrl\lllbps

Figure 10. An Example Streaming System

In accordance with the previous discussion of bamdbetween primary service functionality
and service management functionali@apability Usage Allocatioras well asPerformance
Diagnosisas defined in Section 4, is now realized by PS& PSCs aret@aming Client
(STC) Streaming Manager (STMjnd Streaming Server (STSAn STS, executing on media
streaming server (MSktreams the music video files to STCs. STM wiltept the streaming
requests on behalf of STSs. STM will decide whidiShat can serve the requests, or STM
may put them in waiting queues. STM can also irigiEm a new STS in an available MS
without executing STS.

An STC is associated with an SLA class, which defiequired streaming throughpuprice

for the serviceand service provider penaltie§ the agreed QoS cannot be met. Two SLA
classes are appliegremium (P)andordinary (O) An STC is denoted by its SLA class%BEG

or STG. Each SLA class has different required throughpii the STG required throughput
(Xp) can be 1Mbps or 600Kbps for high-resolution ardrdded fair-resolution videos, while
the STG required throughput (@ is 500Kbps for low-resolution videos. The MS'sjuged
access link capacity €,) is set to 100 Mbps. The number of STCs that cantlie service at a
time is limited by the MS access link capacity. \Whiee required streaming throughput cannot
be provided, a STC needs to wait until some stregrodbnnections have finished. An SJ€an

be disconnected, while an ST@ay have to degrade the video resolutidine service
provider will pay penalties in case of waiting atidconnection of the STC.

The penalty and price functions are given in Tabl& cost unit is the price paid by an
ordinary client for one second streaming of the B®0Kpbs. The price function for
using the service is M(SLA_Class,X) (cost unitséset). The penalty function for
waiting is Ryar(SLA_Class) (cost units/second), and the penaltgction for
disconnection is filsc(SLA_Class) (cost units/connection).
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Table 2. Prices and penalty functions

STG STG STG
(Xo=500Kbps (Xp=600Kbps (Xp=1Mbps
M(SLA_ClaSS,X)/S 1 1.875 2
Ryvarr(SLA_Class)/s 5 10 10
Poisc(SLA_Class)/Connection 10 . -

The complete set of actions A =fass, a\, a, &, ar, au} and a subset A:A—ﬁa}.The action g
disconnects the ordinary clients,decreases the throughput of the premium clients. adtion

ay instantiates a MS, mstantiates a new STS; disconnects a MSderminates an STS and
ay moves connected client sessions from an STS tthan8TS. These actions are selected by
the Reasoning Machine of STM. STM executgsaa a& and g, while STM suggests,aa and

ay to STSs.

The considered capability is the MS access linke Tequired and inherent capability
performance sets are denoted as® {Cra} and | ° {C,a}, where Ga. is the required
access link capacity, and, & is the available access link capacity. The inhemwvice
performance set, consists of the number of connected and waitirgmosm and ordinary
clients (Neonp Ncono Nwaite, Nwaito), the number of disconnected ordinary clighisisc o), the
number of MS (Noqe, the service time and waiting time of premium ardinary clients
(Tservp Tservo Twaite, Twaito)- These values as well as the inherent serviceniec(l) are
observed per a monitoring interval The service income is defined as:

I = M(STCo,X0)*T serv,0+ M(STGe, Xp)*T serv,p—
Ruar (STCo)*T waito — Ruam (STG)* T waite — Foisc(STCo)*Npisc,o = PeerNinose™  (13)

where R is the cost function for adding a new MS which 0 Linits/second per node, while
M(SLA_Class,X), Rar(SLA_Class) and isc(SLA_Class) are as already defined in Table 2.

8.1. RM and LM Specification
In this case study, STM plays an important role RM specification is defined as follows:

Rstm® { Qstw, F, Pstw, Xstv } (14)

P stw consists of five policies (gps) as presented in Appendix. The LM applied by SiEM
defined as follows:

Lstm© { Werm, L, Ystm, Zstm } (15)

Wstm © { 91, 02} (16)
0:° (di: Ir > 0,wy: 0.8) (17)
029 (02 Twait< , Wy: 0.2) (18)

Here k is the required service income, angl{is the sum of the waiting time of premium and
ordinary clients. These goals are set in orderaia figh income and to avoid high waiting
time. The policies pps can be used when the required service income tisnet, while the
policies p-ps are used when the waiting time is higher than etque
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8.2. Experiments and Results

The measures considered aeumulated service inconand theaccumulated waiting time
The streaming request arrivals are modelled asisséo process with an arrival intensity
parameter s;a ciass The duration of streaming connectialiga ciassiS constant and is set to 10
minutes. The traffic per MS access links defined as:

= (( #*dp*Xp) + ( 0*d0*X0))/ (NNode"CiaL) (19)

The monitoring interval is 1 minute. The STCs will stop waiting, and ther@o penalty for
waiting after 10 minutes. The number of availabl8 M 3. Initially, only one STS in one MS is
instantiated. Three cases are considered:

I. The complete set of actions A is used,
Il. The action subset A is used.
lll. Action setis A as in Case |, but hearning Mechanisris used.

'qge accumulated service income (cost units)

—— The proposed model with
the complete action set A /

rrrrrr The propsed model with
the subset A’

~-The proposed model with
the complete action set
6 A, without the LM

Millions

=

COO00——
NR®O N

2 1 ,/mu/ﬁ/ ! HWHUH r

0 T T T T == T T
Time (seconds

0 200 400 600 800 1000 1200 400

Figure 11. Accumulated service income.

Figure 11 and 12 show the accumulated service ircand the accumulated waiting time of
three cases |, Il and lll. The traffics offered aréunction of time. The time with at a fixed
level, denoted as theperiod is set to 30 minutes. varies from 0.2 to 1.2+ is set to 50% of
the total arrival intensity.

The brown line in these figures shows the variatibn. In Case I, the system learned thaj.{a

ar and @}, which move connected STC sessions, terminateéSa8 and disconnect a MS
consecutively, is efficient to adapt the system nvhedrops and then the required service
income is not met. As a result, Case | could predihe highest accumulated service income
and the lowest accumulated waiting time. For tls¢ ¢ase, the actions were selected randomly
and they were not appropriate to the states of ntedaservice income and the waiting time.
So, the accumulated service income of Case Il tvadowest, while the accumulated waiting
time was the highest. So the Learning Mechanisniiexgppas positive influence on both service
income and waiting time.
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Figure 12. Accumulated waiting time.

9. SUMMARY AND CONCLUSIONS

Issues of adaptability of networked service systéoth within a general and a scoped view
have been presented. The general view considerssis¥ adaptation at two levels: 1) System
of entities and functionalities related to the sarsystem life-cycle, and adaptability types with
required adaptability functionality, and 2) Architeres supporting adaptability. The
adaptability types defined are capability-relatddnctionality-related and context-related
adaptation. The architecture supporting adaptghsitconstituted by a computing architecture
and service functionality architecture. The compgitrchitecture has two layers represented by
a service layer and a physical layer. The adajtgtfiinctionality is realized by Actors
interpreting EFSM specifications supported by a $Remg Machine and a Learning
Mechanism. The presented computing architecturedragionality and performance concepts
both related to capability and service. This presida basis for basic capability-related
awareness, which is the basis for all adaptatipedyas defined in Section 5. The architecture
further opens for service systems defined by flexdmmbination of EFSM-, goal-, and policy
specifications combined with Learning Mechanisnise Two-level architecture combined with
the flexible Actor execution behavior also makeagdtion during runtime possible. This basic
model should make it possible to define and implenadl adaptation functionalities as defined
in Section 5. In specific application cases, rafieat and elaboration is needed.

The scoped view considers capability-related adiamptaA goal-based policy ontology was

presented. It is realized by EFSMs, Reasoning Meclkind Learning Mechanism. Finally a
case study was presented to demonstrate the usesficiéncy of the goal-based policy

ontology as well as its realization by concreteiqgyed and learning algorithm. Performance
measures considered are service income and waditing. For the considered cases, the
Learning Mechanism has positive influence on théopmance measures considered.
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APPENDIX: POLICY SPECIFICATIONS

The five policies (pps) used in the case study are specified by OWL §t] OWL/XDD [19].
Variables are integrated with ordinary OWL elemeartd are prefixed with $.

Conditions: $I, <= 0 or $l.ii >= .

Constraints: P\NA|T(STCO) < RNAIT(STC:P)v

Actions: {ap}

p. | Operation Cost: g costs Bisc(STCo) units.

This policy can be read asp should be used to disconnect a list of gMhen Ryar(STC) <
Pwar(STG), and the number of SHbeing disconnected is calculated from Xops* $Nwaitp/
Xo.

Condmons $1, <= 0 or $hyait

Constraints: Pyarr(STCo) > M(STCP Xp 1mbpd-M(STCp, Xp s00kbp3:

Actions: {ag},

Operatlon Cost: &g Costs M(STG Xp 1Mbp9 M(STQ: Xp GOOKbp}

P2 | This policy can be read as; should be used to decrease the throughput of afliSTG when
Pwart(STCo) > .
M(STGs, Xp 1Mbpg M(STCP Xp gookbpd: @nd the number of SEQo decrease the throughput jis
calculated from o * $Nwaito / (X 1vbo: = Xp.600kbo)-

Conditions: $I, <= 0 or $lyait >=

Constraints: (Xp, 1mops* $Nwaitp + Xo $Nwaito) / Crac> 0.1,

Actions: {ay, a},

Ps Operation Cost: The actions {g, a} cost Rse *

This policy can be read as; and a should be used to instantiate a MS and to instena new|
STE< conseutively, when Op. 1mbe: * SNwaite + Xo * SNwaito) / Cra > 0.1,

Conditions: $I, <=0,

Constraints: (Xp, 1mpps* $Nwaitp + Xo * $Nwaito) / Crac < 0.1,

Actions: {ar, &},

Pa Operation Cost: The actions {@, ar} cost Rysc(STCo) + Ryar(STG) — Pser®

This policy can be read as; @d & should be used to terminate an STS and to discon®iS
consecutively, when (. 1mbp: ¥ $Nwaite + Xo * $Nwaitc) / Cra < 0.1.

Conditions: $I, <=0,

Constraints: (Xp, 1mpps* $Nwaitp + Xo * $Nwaio) / Crac < 0.1,

Actions: {aw, ar, &}

ps | Operation Cost: These actions {@ ar, ax} make profitPge, *

This policy can be read asy,aar and & should be used to move connected STC sessiorls, to
terminate an STS and to disconnect a MS consetytivehen (%, 1mops * $Nwaire + Xo *
SNwairc) / Cra < 0.1.
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