
International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012�

DOI : 10.5121/ijcnc.2012.4511 165

�

���������	
������
����
����
����
������������
�
��������������������

RajniMohana1, Deepak Dahiya2

Dept. of Computer Science and Engineering, JUIT Waknaghat, Solan, H.P, India

1rajni.mohana@juit.ac.in, 2deepak.dahiya@juit.ac.in

Abstract:

Service Oriented Architecture (SOA) helps toprovide value added services to the user with agility by
following a publish-find-compose technique. Business Service Directory is one of the key components of
Enterprise Service Bus and its implementation involves many challenges. One of the essential challenges
is how to provide a suitable set of service candidates faster. This paper proposes a business service
directory which employs ranking based, quality driven publishing and searching. The proposed business
service directory is a fuzzy expert system which requires no human intervention. The implementation of
optimized business service directory is composed of two steps, first the rule base is designed which
contains auto generated rules to rank the web service. Fuzzy clustering and PSO is used to not only
generate rules automatically using training dataset but also removing redundant and less effective rules.
The next step is to design inference engine which triggers the rules in the rule base. The proposed
Business service directory minimizes administrative overhead and increases usability by locating the best
web service among the large number of functionally equivalent web services and it’s also adaptive in
nature.

Keyword: SOA, Web services, Business Service Directory, Enterprise Service Bus Platform,
Fuzzy expert system, PSO, Fuzzy c means clustering, Quality of web services

1. Introduction
In the world of enterprise information, Service Oriented Architecture (SOA) [1] plays an
important role in developing Business to Business (B2B)/ Business to Consumer (B2C)
applications with agility. SOA is defined as a deployment infrastructure on which new
applications can be built quickly and easily [2]. It helps to provide business agility by
configuring entities (services, registries, contracts, and proxies) to maximize loose coupling and
reuse. Application built on SOA requires interoperating software applications, running on
heterogeneous platforms and/or frameworks, which can be achieved by using Enterprise
Service Bus (ESB) Platform. ESB is a middleware which provides a means for business to
communicate with each other and with clients. It is an infrastructure for SOA service
connection and message connection without intimate knowledge of each other's IT systems [3].

To establish a connection between the service provider and service consumer of a business
application, Service search and selection is to be performed in Business Service Directory
(BSD). BSD is a directory maintained by the ESB to store all the details of the services which
are published in a Zone as shown in fig 1. Selecting the best web service among the various
functionally equivalent web services, published in BSD is a complex problem.

The goal of this paper is to present an end to end solution for service discovery by focusing on
BSD. It proposes an Optimized business service directory whose architecture consists of a rule
base and inference engine. The rule base consists of the rules to rank a web service based on
Quality of Service (QoS) [4]. These rules are generated automatically by fuzzy clustering and

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

166

particle swarm optimization (PSO). The inference engine locates the best web service
according to the requirements of the service requester, by matching the rank of the service
request with that of the services published in the business service directory. The motivation is
to minimize the administrative overhead and increase usability by locating the best web service
among the large number of functionally equivalent web services, published in business service
directory.

The remainder of this paper is organized as follows: Section 2 discusses about the literature
survey and some background knowledge about Fuzzy Logic, PSO and Fuzzy Expert Systems.
Section 3 shows the proposed Business Service Directory for the ESB platform, Section 4
presents the design of Business Service Directory, algorithm used to generate the rules and how
to use these rule to design an inference engine. Section 5 presents the detailed architecture of
the optimized service registry component. Section 6 presents the results and observations of the
designed component and its evaluation over other techniques. Lastly Section 7 summarizes the
conclusion and future work. References are listed in Section 8.

2. Related Study
Enterprise service bus is a middleware which provides dependable and scalable infrastructure
that connects heterogeneous applications and mediates their interactions, and makes them
broadly available as services for additional uses. Fig 1 shows SOA in ESB platform. It consists
of service requesters, service providers, ESB gateway, ESB name space Directory, Business
service directory.

Fig 1: Enterprise Service Bus Platform in SOA [3]

Business Service Directory is design-time directories or customized service directories which
give the details of the various services published by the service providers in the Zone [2]. When
a service requester looks for a service in BSD a service discovery protocol is used to find out
the best web service among various functionally equivalent services.

In literature survey we have analyzed various service discovery protocol presented by various
researchers, they are listed and analyzed below:

External service
requesters

Internal Service
requester 1

Internal Service
requester 2

External Service
Providers

Internal service
provider
requester 1

Internal service
provider

ESB Gateway
Enterprise Service Bus

Service interaction, integration ESB Name space
Directory

Business Service
Directory

Business Service
Choreography

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

167

Zhang etal[5] has designed a broker-based architecture called QBroker, to provide end-to-end
QoS management for distributed services. Functionalities of QBroker include service
discovery, planning, selection, and adaptation. The efficiency of QBroker is dominated by the
running time of the service selection algorithm. They also designed efficient algorithms for
quality-driven Web service compositions. Their model defines multiple QoS criteria and takes
global constraints into account. It ensures that the selected services always meet the QoS
requirements. They have also proposed heuristic algorithms to find near-optimal solutions in
polynomial time which is more suitable for making runtime decisions. They have mapped the
service selection to a 0-1 multidimensional multi choice knapsack problem (MMKP) [5].

VuongXuan Tran etal [6] have suggested an approach where the web services are selected
based on QoS. The web services are ranked based on their quality attributes, but the issue raised
by the researchers was that it’s difficult to provide a precise value to the quality attributes of the
web service. Thus they suggested using fuzzy logic to support using imprecise QoS constraints.
The benefit of this approach is that a user does not need to mention crisp values of QoS
properties. Instead the user can use fuzzy linguistic concepts to express their expectation of
service quality.

However a user has to define at most as many rules as there are degrees of acceptance that s/he
wants to differentiate. When a number of QoS properties are involved, the number of rules can
be large and it becomes a tedious task for the user. It does not consider that some QoS criteria
can be defined by using only crisp form such as criteria having Boolean or string value type [6].

Maolin Tang etal[7] quoted service discovery as so-called optimal web service selection
problem. This paper proposes a new hybrid genetic algorithm for the optimal web service
between some web service implementations like dependency and conflict constraints. When an
implementation is selected for one web service, a particular implementation for another web
service must be selected. This is so called dependencyconstraint. Sometimes when an
implementation for one web service is selected, a set of implementations for another web
service must be excluded in the web service composition. This is so called conflict constraint.
Thus, the optimal web service selection is a typical constrained combinatorial optimization
problem from the computational point of view. The hybrid genetic algorithm has been
implemented and evaluated. They compared various techniques used for service discovery like
penalty-based genetic algorithm, the repairing-based genetic algorithm and the hybrid genetic
algorithm. It’s shown that hybrid genetic algorithm is better than above mentioned techniques.
The hybrid genetic algorithm is more suitable for those web service problems with a large
number of abstract web services and a large number of constraints [7].

Al-Masri etal[8] has used Artificial Neural Networks (ANN) to classify the best web service
according to the user requirements. The ANN classifies the web service based on QoS. They
have designed a Web Service Crawler Engine (WSCE) that provides an active monitoring tool
that continuously collects the most recent and up-to-date QoS values. They have also provided
a QWS data set generated using WSCE for the purpose of research. They obtained most Web
services from public sources on the Web, including UDDI registries, search engines, and
service portals. The dataset consists of 5,000 Web services, each with a set of nine QoS
attributes that we measured using commercial benchmark tools [8].

While analyzing the above protocols, it was observed that they involve soft computing
techniques like Fuzzy Logic, Genetic Algorithm (GA), and Artificial NeuralNetwork (ANN) to
discover the best web service based on QoS. Their advantages and disadvantages are discussed
in Table 1.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

168

Table 1: List of advantages and disadvantages of various soft computing techniques

Our research work involves PSO, because of its advantages over other soft computing
techniques.

The advantages of PSO are:

· Easy to represent the interaction between attributes
· Consider several attributes once
· PSO is easy to implement and there are few parameters to adjust.
· All the particles tend to converge to the best solution quickly even in the local

version in most cases.

Subsequent research work [6] using fuzzy approach states that the problem while using only
fuzzy a user has to define at most as many rules as there are degrees of acceptance that s/he
wants to differentiate. When a number of QoS properties are involved, the number of rules can
be large and it becomes a tedious task for the user. Additionally, for each QoS property, there
are number of membership functions being modeled but they may not satisfy some users.

We have proposed a different technique for service discovery in BSD which involves ranking
the web services based on QoS using fuzzy clustering and particle swarm optimization (PSO)
[9]. The significance of our approach is that it solves the above mentioned issues by generating
rules automatically by using a training dataset QWS [10], thus designing the business service
directory as a fuzzy expert system; The number of rules are also reduced by removing the rules
having zero weight age according to the dataset. It uses fuzzy logic as it’s applied in the
problem domain where we have relaxing parameters and the results have to be computed
exactly. It’s used to compute overall QoS from the value of various QoS parameters. Fuzzy
clustering is used to group the data according to the various linguistic values of the
variables.PSO is used to optimize the rules according to the training data; it also reduces the
redundant rules having zero effect in the system, thus reducing the time to trigger the rules.

The following section presents a brief introduction of fuzzy logic, fuzzy expert system, fuzzy
clustering and optimization technique PSO. These concepts are used later in the paper to
implement optimized service discovery protocol in service registry.

Soft computing technique
used in non-semantic
approach

Advantages Non - advantages

Neural networks
· High accuracy for float

values

· Easy to over fit

· Rules hard to extract and
hard to understand

GA

· It updates the population and
search for the optimum with
random techniques.

· It is difficult to
implement because of
crossover and
mutation.

· System doesn’t
guarantee success

Fuzzy · User does not need to
specify concrete values of
properties.

· a user has to define at
most as many rules as
there are degrees of
acceptance that s/he wants
to differentiate

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

169

2.1 Fuzzy Logic

Applying fuzzy logic is beneficial for defining QoS description and measuring quality
parameters in order to compute the overall QoS. Inference methods are used when the input-
output relation can be expressed in the form of if-then rules. In this paper, we take advantage of
the fuzzy logic for measuring overall QoS.

Aristotle [11] gave the theory of Boolean logic, which is two valued logic: true and false. Lofti
Zadeh extended it to handle the concept of partial truth by presenting Fuzzy Logic, where the
truth value may range between completely true and completely false [12]. It states that the
variable values can be represented by degrees representing its closeness to truth. These types of
variables are called as linguistic variables for example temperature, humidity etc. The values
of the linguistic variables called as linguistic values are represented in the form of degrees for
example temperature can be high, low or medium. These degrees may be managed by specific
functions called as membership functions. The membership function is a graphical
representation of the magnitude of participation of each input. It associates a weighting with
each of the inputs that are processed, define functional overlap between inputs, and ultimately
determines an output response. There are many types of membership function [12] but we will
be using Z, S and Triangular in our paper as shown in fig 2.

Fig 2: S membership function, Z membership function and Triangular membership function respectively

The rules in the fuzzy rule base use the input membership values as weighting factors to
determine their influence on the fuzzy output sets of the final output conclusion. Once the
functions are inferred, scaled, and combined, they are defuzzified by the defuzzification
interface into a crisp output which drives the system as shown in fig 6. This system is called as
fuzzy expert system [13].

Fig 3: Fuzzy expert system

A fuzzy expert system [13] is application software that performs a task that would be performed
by a human expert. It simply uses a collection of fuzzy membership functions and rules, instead
of Boolean logic, to reason about data.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

170

2.2Fuzzy C- means Clustering

Clustering is a mathematical tool that attempts to discover structures or certain patterns in a
data set, where the objects inside each cluster show a certain degree of similarity. In fuzzy
clustering, data elements can belong to more than one cluster, and associated with each element
is a set of membership levels. These indicate the strength of the association between that data
element and a particular cluster. Fuzzy c-means (FCM) [14] clustering is a process of assigning
these membership levels, and then using them to assign data elements to one or more clusters.
This technique was originally introduced by Jim Bezdek in 1981.FCM is a data clustering
technique wherein each data point belongs to a cluster to some degree that is specified by a
membership grade as an improvement on earlier clustering methods. It provides a method that
shows how to group data points that populate some multidimensional space into a specific
number of different clusters.

Areas of application of fuzzy cluster analysis include for example data analysis, pattern
recognition, and image segmentation. The detection of special geometrical shapes like circles
and ellipses can be achieved by so-called shell clustering algorithms. Fuzzy clustering belongs
to the group of soft computing techniques (which include neural nets, fuzzy systems, and
genetic algorithms) [14].

2.3 Particle Swarm Optimization

QoS parameters are often changing due to dynamic and volatile service environment. In such
environment, Web Services need to be able to adapt dynamically trying to respect the service
interaction. Changes are required to be captured; evaluated and proper actions need to be taken
accordingly. PSO is used to optimize the rules according to the training data as explained in the
algorithm 1.

PSO came into origin from the research of food hunting behaviors of birds. Researchers found
that in the course of flight flocks of birds would always suddenly change direction, scatter and
gather [9]. It is used to solve a wide array of different optimization problems. Their behaviors
are Unpredictable but always consistent as a whole, with individuals keeping the most suitable
distance. Through the research of the behaviors of similar biological communities, it is found
that there exists a social information sharing mechanism in biological communities.

Each swarm of PSO can be considered as a point in the solution space. If the scale of swarm is
N, then the position of the i-th (i=0,1, 2. ..N) Particle is expressed as Xi. The "best" position
passed by the particle is expressed as pBest [i]. The speed is expressed with Vi. The index of
the position of the "best" particle of the swarm is expressed with g. Therefore, swarm i will
update its own speed and position according to the following equations [9].

Vi=w* V i +c1 *rand () *(pBest[i] *Xi)+c2*Rand)*(pBest[g] -Xi) (1)

Xi =Xi+ V i (2)

Where c1 and c2 are two positive constants, rand () and Rand () are two random numbers
within the range [0, 1], and w is the inertia weight, i refers to the swarm.

In other words, proposed BSD will lead to the design of a fuzzy expert system which will
automatically perform service lookup. Fuzzy expert system consists of four components as
shown in fig 3. The four components are fuzzification interface, inference engine,
defuzzification interface and rule base. So optimized service registry component should also
have all these four components to behave as a fuzzy expert system.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

171

3. Proposed Business Service Directory for the ESB Platform.
Architecture of proposed Business Service Directory for the ESB platform is shown in fig 4.
The proposed Business Service Directory is a fuzzy expert system. The fuzzification interface
converts crisp input into fuzzy input, which is passed through inference engine. The inference
engine ranks the published web service based on the rules in the Rule base. The rule base
consists of automatically generated rules (using training data) by fuzzy clustering and particle
swarm optimization (PSO) [7]. The defuzzification interface defuzzifies the fuzzy output into
crisp output. The rules make the system automatic. These rules can be chosen by the human
expert but our approach generates them automatically from the training dataset, thus it requires
no human intervention in writing the rules for the system.

Fig 4: Architecture of optimized service registry

The service environment is dynamic and volatile, which leads to changes in their respective
QoS parameters. In such an environment, web services needs to be able to adapt dynamically
trying to respect the service interaction. Changes are required to be captured; evaluated and
proper actions needs to be taken accordingly. Thus the rules can be updated by using the
database as a feedback in place of training data, which makes it adaptive and dynamic in nature

The Proposed Business Service Directory is presented by means of UML class diagram in fig 5.

������
����	 �

������	��	� �

�����
�����
����	 �

��������	��
��������������������������������
���
���������������������
������������
�
����� ��
�����	�
���
�����
���������	
��
��������

���������	���
��	�������

�� ���������������� �

�������	��	 �

����������	�
����	�������

�����������	��
�����������	�� �

�����������

��������� �

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

172

The working of the proposed Business service directory can be very well explained using the information
flow.

3.1 Information Flow for the Proposed Business Service Directory

The information flow for the proposed business service directory is described below:

1. If the user is a service provider who wants to publish his service in the BSD will

require to do following steps:

a. The service publisher will fill the form of input parameters which are quality
attributes of the web services and submit it to business service directory

b. In the business service directory, the input are accepted and ranked according to
the rules by following a process of inference and defuzzification.

c. The input details of service publishing form and service rank is then stored in
the database i.e., business service directory in a WSDL format

2. If the user is a service requester

������� !"�������#����������$�����������%������� ��	���

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

173

a. The service requester will fill the form of input parameters which are quality

attributes of the web services and submit it to business service directory
b. In the business service directory, the input are accepted and ranked according to

the rules by following a process of inference and defuzzification in decision
making engine.

c. The business service directory is then searched for the web services with equal rank
and provides the same service

d. The details of all the matching web service which were stored in the database by
the service publisher is provided in the database

Fig 6: Information flow for optimized service registry component

4. Detailed Design for the Business Service Directory

The Designing of Business Service Directory presented in fig 6, encompasses two steps.
a. Generating optimized rules using the training dataset for performing service discovery in

the Proposed Business Service Directory.
b. Designing the inference engine using a java EE platform, which triggers the rules to rank

and match the request with the rank of the service published by the service provider.

4.1 Automatic generation of rules from dataset

To rank the web services, the rules can be provided by the expert in the domain or alternatively
it can be generated using the algorithm given below. The rules are generated using a dataset.
The dataset used is called as training set. The technique given below also generates lesser
number of rules i.e., it removes all the rules which are having zero impact on the system.

The algorithm is described below:

The above problem domain which involves calculating the rank of a web service based on the
values of QoS parameters can be considered as TSK model. The shape of membership
functions for the input variables are Z, S and Triangular respectively. The output is constant
with parameters ranging from 0 ->1. The notations used in the algorithm are described as under
 Population is the no of swarms

���%����
��%�����
��#�&'��(�

���%����
��)���	���
��#&*��(�

��������� �

�������
$��������
���%����
�����	���

&'��(&*�(�

����	�
������#�	����
���������+����

�����������	����

����������
�����+���

����	�
������#�	����
��������+����

�+����	�������	+��
���%�����,�	+���#��
���� �

-�����+�

"

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

174

Pbest is the best value obtained in each iteration
Gbest is the best value obtained among all the pbest

Fig 7. Membership functions for input QoS Parameters.

Fig 8.Membership functions for output QoS Parameters.

 The algorithm for fuzzy rule based model is

1. Assign membership function to all the input variables .If there are two linguistic values of the
variables then assign S to the lower on and Z to the higher one. If the no of values are more than two
assign triangular membership functions to all the vales lying between higher and lower. The
parameters for S= [0.2, 0.8]

 Z= [0.2, 0.8]

 Triangular = [0, 0.5, 1]

 As shown in fig 7

2. Assign membership values to the output variables If values <=2 assign parameters 0 to low and 1
to high respectively. If values > 2 assign parameters 0.5 to all the intermediate values as shown in fig
8.

3. Calculate the max and min of each input parameter and output parameter from the data set used to
train the particles.

4. Using FCM technique of fuzzy clustering assign the center points to the to membership function of
input and output variables

5. Create a fuzzy inference engine containing all the possible combination of rules formed from input
variables

 Initialize the variables used in equation 1 and 2

 i.e., Population size= 10

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

175

 Maximum iteration = 100

 wmax = 0.9

wmin = 0.3

 c1 =2

 c2 = 2

6. Assign randomly an output to the rule set and optimize the result and calculate the deviation from
the result called error.

7. Pbest=result

8. Pbestfitness= error

 9. Gbest= Minerror

 10. velocity V is also assigned a random value

 11. Vmax = 1

12. Repeat steps from 12 – 18 till iteration <maxiteration& flag == 0(flag checks whether the output
is in acceptable limit.

VI=w*VI+cl *randO*(pBest[i]-Xi) +c2*RandO *(pBest[g] –Xi

Xi =Xi + Vi

X is considered as the result of the rule set which is optimized by the particles.

13. Calculate the output according to the input in the training set.

 14. Match the output; calculate the deviation from the result

 15. pbest=X

Pbestfitness= error

Gbest=pbest

GbestFitness= min of gbest

16. if the deviations is in acceptable limit mark flag=1

17. Assign the value of gbest as the consequent of the rules.

18. Weight /degree of each rule is equal to the maximum value of membership value of the input
variables

In order to train the particles publicly available Quality of Web service (QWS) dataset [15][16]
is used. The main goal of this dataset is to offer a basis for Web service researchers. This

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

176

dataset is collected considering a subset of 365 real web service implementations that exist on
the Web today. The services were collected using our Web service Crawler Engine (WSCE)
[15]. The majority of Web services were obtained from public sources on the Web including
Universal Description, Discovery, and Integration (UDDI) registries, search engines, and
service portals. The public dataset consists of 365 Web services each with a set of nine
Qualities of Web service (QWS) attributes that we have been measured using commercial
benchmark tools. Each service was tested over a ten-minute period for three consecutive days
by the researchers [12].

The various quality attributes considered are shown in table 2:

Parameter Name Description units

Response Time Time taken to send a request and receive a response ms

Availability Number of successful invocations/total invocations %

Throughput Total Number of invocations for a given period of time invokes/second

Successability Number of response / number of request messages %

Reliability Ratio of the number of error messages to total messages %

Compliance The extent to which a WSDL document follows WSDL
specification

%

Best Practices The extent to which a Web service follows WS-I Basic
Profile

%

Latency Time taken for the server to process a given request ms

Documentation Measure of documentation (i.e. description tags) in
WSDL

%

Table 2: Web service quality attributes [10]

Out of the above mentioned quality attributes a data set of five quality attributes based on the
availability in QWS dataset was considered as input variables. In the research work described
in this paper, the dataset for web service phone was considered

I. Response Time (ms) ={high , average, low}
II. Throughput (hits/sec) ={ high , average, low}
III. Reliability (%) ={ high , average, low}
IV. Best Practices (%) ={ high , average, low}
V. Documentation ={ high , average, low}

One parameter is considered as output variable

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

177

I. Rank ={ Platinum (High quality) ,Gold ,Silver ,Bronze (Low quality)}

The range for linguistic values (high, average and low) of QoS is calculated by performing
fuzzy clustering on the training data. A data set which was generated using the demo [10] and
searching for a web service phone is shown in table 3.

Name

Respon
se
Time
(ms)

Throughput
(hits/sec)

Reliability (%) Best
Practices
(%)

Docume
ntation
(%)

Rank

DOTSGeoPh
one

126.2 12.3 78.7 80 86 Platinum

Phone 150.45 7.4 82.1 82 37 Gold

DOTSPhone
Append

118.5 0.7 70.2 80 90 Gold

PhoneVerify 131 1.6 65.9 72 41 Gold

PhoneNotify 437.62 1 68.4 69 93 Silver

PhoneService 133 1.4 64.7 82 10 Bronze

Phonebook 464 3.1 43.2 80 2 Bronze

Table 3. Data set on searching the web service phone [10]

4.2 Designing the Inference Engine

The inference engine uses the above generated rules to rank the web services published by the
service provider. It will then save the details of the web service in a database. If a request
arrives from a service requester, it will be also ranked by the inference engine and based on the
criteria of the service name and rank, the request will be searched. If a match found the details
as well as the web address of the web service is provided to the service requester. The service
requester can then directly communicate with the web service and establish the connection.

Architecture of Inference Engine

The registry is implemented using tools and technologies comprising of NetBeans IDE, JSP,
Java EE, MySQL, Apache Tomcat, and XML. Servlet is used to process user request and JSPs
is used to create the view which are the core component of the project. This project follows
Model View Controller (MVC) architecture which keeps the code clean and manageable.
Through MVC the processing, view and database code are kept separate.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

178

�

Fig 9: Architecture of the business service directory

The User view will constitute of a fuzzy rule parser. All the rules are stored in an XML file.
Fuzzy rule parser triggers the rules when a request or a publishing takes place. XML is chosen
for database accessing code because it requires less time than database hit and it’s easy to
manipulate. XML has an advantage that a large number of data can be stored and can be
manipulated easily. Defuzzification is done using weighted average technique.

The registry provides a publishing API. The web service publishers can publish their web
services on the basis of some parameter. Initially all the given parameters are stored in a
database so that there should not be any delay in processing. Later all the data are converted
into XML, as searching in the database consumes more time than searching in the tree structure
of XML. Database chosen is MySQL.

The enhanced entity relationship (EER) diagram in fig 10 describes the relationship and
attributes in the various tables of database.

Fig 10: EER diagram of used database

5. Implementation of the Optimized Business Service Directory

The fuzzy expert business service directory is implemented in two phases:

a. Generating the rules by implementing the algorithm described in section 4.1
b. Implementing the inference engine described in section 4.2

 ���%��, �
-�������� �

���#��	�

� ��	����� �
�

�+���	�����.����

����
�� &�+�!�

�� (�

/�0	�%��, �

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

179

First the rules are generated using the QWS dataset and then an inference engine is developed
for the optimized business service directory which has a service requester and provider form.
The data when fed on the form will process according to the rules using the designed fuzzy rule
parser. The output of the rule is then defuzzified to give a crisp output. The crisp output is the
rank of the web service. If the rank is calculated for the service provider, the application will
store all the details of the web service along with the rank. When the service requester is
looking for a web service in the database, his requirement is also ranked by the above
mentioned technique, and then the web service with the specified rank is located in the
database. If the search is successful, then the details of the web service stored in the database
are provided to the service requester.

5.1 Automatic Generation of Rules

Rules generated after implementing the algorithm explained in section 4.1 using Matlab 7.0 is
shown in table 4. The number of rules generated is 26.

1. if Response Time is low and throughput is low and reliability is average and best practices is low and
documentation if low then output is bronze 0.121455

2. if Response Time is low and throughput is low and reliability is average and best practices is low and
documentation if average then output is silver 0.467807

3. if Response Time is low and throughput is low and reliability is average and best practices is average
and documentation if low then output is silver 0.034978

4. if Response Time is low and throughput is low and reliability is average and best practices is average
and documentation if average then output is silver 0.134724

5. if Response Time is low and throughput is low and reliability is average and best practices is average
and documentation if high then output is platinum 0.000811

6. if Response Time is low and throughput is low and reliability is average and best practices is high and
documentation if low then output is platinum 0.847967

7. if Response Time is low and throughput is low and reliability is average and best practices is high and
documentation if high then output is gold 0.439231

8. …………………………

9. …………………………..

10. ………………………….

23. if Response Time is high and throughput is low and reliability is average and best practices is low and
documentation if high then output is platinum 0.573544
24. if Response Time is high and throughput is low and reliability is high and best practices is low and

documentation if high then output is silver 0.426456
25. if Response Time is high and throughput is average and reliability is low and best practices is average
and documentation if low then output is platinum 0.000285

26. if Response Time is high and throughput is average and reliability is low and best practices is high and
documentation if low then output is platinum 0.154625

Table 4: Rule generated from the data set and there corresponding weight

The number of rules generated (26) using the rule based model described in section 4.1 are less
in comparison to generated by using Fuzzy Logic i.e., 243. Lesser the number of rules to trigger
lesser is the seek time required to locate the best web service.The rules given above are stored
in the rule base. Whenever a service request comes from a service requester, it places his
requirements, for example if a phone service which is highly reliable and has average response
time is requested. The inference engine will rank the request according to the rules given in the
rule base and match it with the rank of services registered by their service providers. Once a

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

180

match is found the service requester will be given the network address of the selected service
provider.

5.2 Implementation of Inference Engine

The designed Business Service Directory consists of the inference engine using a Java EE
platform. The controller shown in fig. 9 consists of a fuzzy rule Parser. As we know Directory
provides web service on the basis of rank. The rank is calculated on the basis of some
parameters e.g. response time, throughput etc., supplied by the web service publishers.

The rules are as under in an XML format:

To parse the XML a DOM parser is used. DOM parser provides accessing of XML element in a
hierarchical way. This makes accessing easier and faster. All XML elements are loaded
simultaneously in memory and can be accessed in any order.

5.3 Working of the Proposed Business Service Directory

The tools used for implementing the component comprised of NetBeans IDE, JSP, Java EE,
MySQL, Apache Tomcat and XML. This section presents the snapshots of the implemented
components:

Fig 11: Snap shot of the home page

<!ELEMENT response-time EMPTY>
<!ELEMENT throughput EMPTY>
<!ELEMENT reliability EMPTY>
<!ELEMENTbestpractice EMPTY>
<!ELEMENT documentation EMPTY>
<!ELEMENT rank EMPTY>
<!ATTLIST response-time value (high | low | average) #REQUIRED>
<!ATTLIST throughput value (high | low | average) #REQUIRED>
<!ATTLIST reliability value (high | low | average) #REQUIRED>
<!ATTLISTbestpractice value (high | low | average) #REQUIRED>
<!ATTLIST documentation value (high | low | average) #REQUIRED>
<!ATTLIST rank value (platinum | gold | silver | bronze) #REQUIRED>
<!ELEMENTrule(responsetime,throughput,reliability,bestpractice,documentation,rank)>
<!ELEMENT rules (rule+)>

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

181

When clicked on publishing icon by the service provider the following form appears. The
provider will have to fill the details of the publishable web service. After entering the details in
the form the details are entered in the database as shown in fig 14.

Fig 12: snapshot of the service publishing panel

A message appears that the web service and its details are added in the database as shown in fig 13.

Fig 13: snapshot of the submission of a web service in the service publishing panel

If a service requester searches the web service, he will click on the search icon on the home
page. After entering the details of the web service the user is looking for, the list of relevant
web service is provided as shown in fig 14 and 15 respectively.

Fig 14: snapshot of the submission of a web service in the service searching panel

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

182

Fig 15: snapshot of the submission of a web service in the service publishing panel

The website also provides an API which can be included in the web services of service provider and
requester so that they can access the form directly, without opening.

6. Results and Observations

After implementing the optimized business service directory, a check was done on the amount
of heap memory consumed by the component and the time required to publish and search a
service. The below fig shows the heap memory consumption of the component:

Fig 15: snapshot of the heap memory consumption of the component

It can be seen that there is fluctuation in the heap memory consumed when the process in
NetBeans IDE starts execution and later it depicts a constant consumption of memory i.e. in
this case it consumes 10MB of memory.

The next fig shows the time required to perform web publishing. The time required to process
the request to publish the service is 122*10-3 sec.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

183

Fig 16: snapshot of the time consumed to perform web publishing

The next snapshot shows the time required to process the request of web search is171*10-3sec, and to
parse the xml rules time required is 39.9*10-3 sec.

Fig 17: snapshot of the time consumed to perform web searching

On carrying out the qualitative analysis of the techniquedescribed aboveto generate the rules, as
a part of the research work in comparison to the technique which uses fuzzy logic the following
observations are made:

1. The time required to search the web service in the database also called as seek time will be
significantly less as it will be dependent on the number of rules required to trigger and the
number of rules is less in the proposed technique as compared to implementing the BSD using
fuzzy logic. The time complexity to parse the rules is O (N) where N is the no of rules. Lesser
the number of rules to trigger less will be the seek time. The seek time is also affected by the
database size and the number of quality attributes considered qualifying the web service.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

184

In the scenario considered and the related work described in the paper, efforts were directed
towards search for seven web services and it was found that the time required by the rule
generation technique using PSO and fuzzy clustering is faster than the alternative technique
which uses fuzzy logic [4]. The time was calculated by considering the time required to execute
ParseXmlRule(String xmlPath, ArrayList parameters) function in the project.

Table 5: Comparison of time consumed to parse 26 rules vs. 243 rules

�

����'12�3���+���������	�	�����	�#����)�������	�� ����*45�%���*6�������

2. The rules are successfully generated automatically using dataset thus making the system
intelligent, in comparison to the technique using fuzzy logic [6] where the rules are to be
entered by a human expert. Human intervention makes the system error prone and manual.

3. The rules are adaptive i.e., any change in the dataset or the ranking criteria will automatically
be reflected in the rules and thus a new set of rules will be generated. The web services can be
ranked according to the new rules.

4. The quality of rules is dependent on the training dataset; the data should be less overlapping
and should have all varieties of output. The rules can still be generated using less number of
entries in the dataset.

7

'77

*77

577

477

�77

677

877

177

��������
�������	�

����	�����

�������'

services Service
1

Service
2

Service 3 Service 4 Service 5 Service 6 Service
7

Time required to
parse the 26 rules
generated by
Fuzzy clustering
and PSO

187*10-3
sec

269*10-

3 sec
39.9*10-3
sec

222*10-3
sec

301*10-3 sec 322*10-3
sec

343*10-3
sec

Time required to
parse the 243
rules generated
by Fuzzy logic

693*10-3
sec

613*10-

3 sec
309*10-3
sec

371*10-3
sec

480*10-3 sec 530*10-3
sec

574*10-3
sec

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

185

7. Conclusion and Future Work

The proposed business service directory is automatic in nature as it a fuzzy expert system,
which will rank the web services according to the rules generated by dataset. The PSO and
fuzzy clustering reduces the rules.

Considering the available data set, the number of rules is reduced from 243 (product of
linguistic values of input and output variables) to 26. The lesser the number of rules, faster will
be the processing of ranking. The component is designed and can be used as a registry to
publish and search the web services. The architecture is adaptive in nature as any change in
QoS of a web service will change the rank of the web service. The proposed optimized service
registry will enable one to develop a better B2B or a B2C kind of e-commerce application with
agility. The service requester can compare among the list of web service and choose the
appropriate service provider based on its requirements.

The future work will involve optimizing and integrating the elements of the ESB platform
incrementally.

Finally to summarize, the proposed model is better as it automatically monitors the rank of the
web service using the generated rules.

8. References

[1] Liamo’Brien, Paulo Merson, Len Bass”Quality Attributes for Service-Oriented Architectures” in the
Proceedings of the International Workshop on Systems Development in SOA Environments SDSOA
'07,doi:10.1109/SDSOA.2007.10

[2] Understanding SOA with Web Services by Newcomer published by Pearson Education India

[3] Patterns: Implementing an SOA Using an Enterprise Service Bus IBM Red book published in july
2004

[4]Liamo’Brien, Paulo Merson, Len Bass”Quality Attributes for Service-Oriented Architectures” in the
Proceedings of the International Workshop on Systems Development in SOA Environments SDSOA
'07,doi:10.1109/SDSOA.2007.10

[5] Yu, T., Zhang, Y., and Lin, K.-J. 2007. Efficient algorithms for Web services selection with end-to-
end QoS constraints. ACM Trans. Web 1, 1, Article 6 (May 2007), 26 pages. DOI =
10.1145/1232722.1232728

[6] VuongXuan Tran; Tsuji, H.QoS based Ranking for Web Services: Fuzzy Approaches In proc. of the
4th International Conference on Next Generation Web Services Practices, Seoul, pp 77 – 82, 20-22 Oct.
2008

[7] MaolinTang ,Lifeng Ai ; A Hybrid Genetic Algorithm for the Optimal Constrained Web Service
Selection Problem in Web Service Composition In proc. Of IEEE Congress ontheEvolutionary
Computation (CEC), 2010 pp 1 – 8 18-23 July 2010

[8] Al-Masri, E.; Mahmoud, Q.H.; Discovering the Best Web Service: A Neural Network-based Solution
In proc. of the IEEE International Conference on Systems, Man and Cybernetics, 2009. San Antonio, TX,
USA, pp 4250 – 4255 11-14 Oct. 2009

[9] Kennedy, J.; Eberhart, R.; Particle swarm optimization. Proceedings. In proc. of the IEEE
International Conference on Neural Networks, 1995, Perth, WA , Australia vol.4

pp: 1942 - 1948

[10] http://www.uoguelph.ca/~qmahmoud/qws/index.html as on jan 2011

[11] http://en.wikipedia.org/wiki/Fuzzy_logic as on july 2011

[12] http://www.mathworks.com/help/toolbox/fuzzy/fp754.html as on july 2011

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

186

[13] http://www.austinlinks.com/Fuzzy/expert-systems.html as on july 2011

[14]http://en.wikipedia.org/wiki/Cluster_analysis on july 2011

[15] Al-Masri, E., and Mahmoud, Q. H., "Discovering the best webservice", (poster) 16th International
Conference on World Wide Web (WWW), 2007, pp. 1257-1258.

 [16] Al-Masri, E., and Mahmoud, Q. H., "QoS-based Discovery and Ranking of Webservices", IEEE
16th International Conference on Computer Communications and Networks (ICCCN), 2007, pp. 529-534

