
International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.3, October 2009

A FLEXIBLE P2P PUBLISH/SUBSCRIBE FRAMEWORK

Yung-Wei Kao1, Shih-Chiang Chien1, Ching-Tsorng Tsai2, Shyan-Ming Yuan1

1Department of Computer Science and Engineering
National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu 300, Taiwan

2Department of Computer Science
Tunghai University, 181 Taichung Harbor Road, Section 3, Taichung 40704, Taiwan
ywkao@cs.nctu.edu.tw, polo.hellfire@gmail.com, cttsai@thu.edu.tw,

smyuan@cis.nctu.edu.tw

ABSTRACT

Nowadays, many structured P2P algorithms have been proposed frequently. Consequently, the P2P
application developers need to learn different P2P API semantics. Developers will take additional efforts
if they want to replace the underlying P2P networks of their P2P applications with other ones. Moreover,
it is difficult for the developers to evaluate the performance of an application based on a particular
underneath P2P APIs. In this research, a novel P2P framework is proposed to assist in developing P2P
applications with replaceable structured P2P protocol and P2P pub/sub algorithm. We construct
structured P2P functional modules, including network communication components, P2P topology
maintenance and routing, network bootstrapping, as well as pluggable pub/sub services in our system. In
contrast to other P2P libraries and platforms, our framework provides a more flexible and extensible
development platform for establishing P2P systems.

KEYWORDS

P2P, Pub/Sub

1. INTRODUCTION

Nowadays, with the computing power of PC and network bandwidth increasing, people are
willing to dispense their computing power and share information with each others. In pure P2P
network, each participant shares their resources in order to gain benefits from other peers. By
the natural of sharing in P2P networks, the more users joining the network, the more capacity
this P2P network obtained. The scalability is based on the performance of P2P protocols, not
determined by the server capacity in traditional centralized architecture. The P2P networks are
proved to be an alternative technique in distributed information processing [8]. In addition, the
ownership of shared resources and the right of distribution are possessed by the user in the P2P
network. On the other hand, the user grants the service provider the rights of using and
distributing resources in the typical central server system.

In order to construct an efficient and scalable P2P network, many structured P2P networks have
been proposed in recent years and have been verified as efficient and fault-tolerated in large
distributed environment. Most of them, e.g. Chord [19], Pastry [17], Viceroy [9], etc., are able
to route message between two peers in O(log N) hops where there are N peers within the
network. With the feature of self-organize and failover, structured P2P networks have been
widely used in file sharing [7,16], network data storage [4], and distributed indexing [18]. There
are several researches work on deploying distributed personal information portal [12] and online
auction systems [6] onto the P2P networks.

Publish/Subscribe paradigm is effective in disseminating information to peers who are
interested in such information. In order to apply this mechanism on the P2P network, P2P

56

mailto:smyuan@cis.nctu.edu.tw
mailto:cttsai@thu.edu.tw
mailto:polo.hellfire@gmail.com
mailto:ywkao@cs.nctu.edu.tw

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.3, October 2009

pub/sub algorithms are designed with the consideration of both time efficiency and transmission
overhead. Efficient pub/sub algorithms are able to alleviate the communication burden when
dealing with the burst of information on a large scale P2P network.

However, each P2P network was implemented under different approaches, providing various
application interfaces. A standardized development and deployment framework is needed to
reduce the overheads of implementing P2P protocols and applications. By this framework,
developers can focus on the applications’ unique functionalities, not the basic network
communications.

In the following sections, the issues in P2P pub/sub application development are listed in
section two. Section three shows the previous researches of defining common API for P2P
programming and pub/sub application. In section four, a layered architecture and primary
interfaces are described briefly. In order to demonstrate how to utilize the proposed framework,
scenario demonstration is shown in section five. Section six shows the pros and cons by
comparing with existing solutions. Finally, the conclusion and future work are given in section
seven and eight.

2. FORMAT GUIDE

In the application domain of content management system, e.g., personal blog system, large
amount of information is created and requested over the entire user community. With the search
capability, users can retrieve information which has particular contents according to the given
query. As the P2P community keeps advancing, the number of updating events will soon
surpass the size of events that human can handle. By introducing pub/sub mechanism,
applications can automatically disseminate information to the interested peers in P2P network.
Similar to the RSS supported on many website, the pub/sub paradigm provides the functionality
for users to focus on only the interested events. Therefore, pub/sub mechanism is a necessary
feature while designing a platform for developing P2P applications.

There are three roles of developing a P2P Pub/Sub-related program: application developers, P2P
protocol developers, and P2P pub/sub protocol developers. From the aspect of developing
pub/sub applications, programmers usually need to learn new APIs when changing the
underlying overlay network. The difference between different P2P networks will reside in peer
initialization, network construction, and even communication mechanism. In other words, it is
likely to cause code rewriting by implementing the same functionality on different P2P APIs.
The same problem exists in changing pub/sub APIs. Traditionally, the applications are strongly
coupled with P2P and pub/sub implementations. Application developers have no chance to
compare the performance of their systems on different overlays.

 Issue 1a: Application developer needs to learn different semantics from numerous P2P
APIs.

 Issue 1b: The cost of rewriting code is huge for testing performance of particular
application on different P2P network.

While developing a P2P algorithm, developers have to write programs to communicate with
other peer. Each P2P API introduces redundant coding style for network programming.
Developers have to take additional time on debugging network-related codes. Without network-
related code reusing, the effort for adapting to different deployment environment is huge.

 Issue 2a: P2P network developers have to write redundant codes for network
communication to accommodate different P2P networks.

 Issue 2b: A common process is needed for overlay network initialization.

57

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.3, October 2009

Our goal is to solve these issues mentioned above. Thus, a standardized API and
communication mechanism for P2P application development needs to be defined

3. RELATED WORKS

3.1. P2P Common API

To facilitate independent innovations in P2P protocols, services, and applications, Debak et al.
[5] propose a common API for structured overlay networks. There is also related research
revises this API with the request-response communication pattern [3]. Moreover, a conceptual
model for structured P2P network is proposed by Aberer et al. [1] to provide interoperability
between decentralized overlay networks. These researches focus on providing a standardizing
P2P network API to application developers.

JXTA [20] is a platform for peer-to-peer computing, proposed by open source community. The
JXTA protocols include six protocols which standardize the behaviors between peers. In order
to provide interoperability in different language and network environment, JXTA protocol uses
XML messages and the super-peer architecture. The index information is also stored within the
super-peers, providing reliability and supporting heterogeneous nodes with different set of
services installed. JXTA achieves a great success as a P2P application platform, but offers no
high level support for structured P2P topology.

3.2. Pub/Sub Common API

Java Message Service (JMS) [21] is a part of standard service which is included in Java EE
platform. JMS defines the common set of interfaces and associated semantics. With the standard
API implemented by JMS provider, developers can easily deploy programs with different
messaging server. JMS provides two messaging domain:

 Point-to-Point Domain: This messaging domain is built on the concept of message queue.
Each message has only one consumer. The point-to-point messaging is used when each
message will be processed successfully by one consumer.

 Publish/Subscribe Domain: This domain is defined with topic-based model. In addition,
JMS API defines an SQL-like selection language and provides a built-in facility for
supporting application-defined property values.

However, the JMS API is a proprietary specification for Java to intercommunication with
messaging server. In order to provide a lightweight API, Pietzuch et al. [15] defined a simplified
abstraction for pub/sub system. This common API uses XML-RPC to describe the interaction,
and preserve the interoperability with other languages and platforms. With little efforts, this API
shows that many pub/sub systems can be brought to compliance. These pub/sub APIs assumed
that both publisher and subscriber are clients to a messaging service. Therefore, an auxiliary
server is required for delivering messages.

3.3. P2P Pub/Sub Library

Developing the P2P routing protocols and pub/sub systems is a cumbersome task requiring
sophisticated experiments for scalability and reliability. P2P application developers tend to
implement their system using a P2P library. FreePastry [14] is an open source P2P library which
provides pub/sub functionality. The FreePastry implements the Pastry network routing protocol
intended for the deployment on Internet. Based on the Pastry network, additional functionalities
are built, such as pub/sub system and distributed storage. The topic-based pub/sub system
supported in FreePastry is Scribe system [2]. Moreover, with the design of peer factory,

58

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.3, October 2009

application can be simulated/tested on local peer without modifying program (other than the
initiation codes).

4. FRAMEWORK DESIGN

Previous researches of common P2P API show the common functionality of structured P2P
networks. Inspired by FreePastry and PeerSim [11], we further extend the P2P API by
abstracting the network communication from P2P protocols and introduce additional
bootstrapping facility. A standard pub/sub API is designed to provide the functionalities of
heterogeneous pub/sub model in pure P2P networks.

P2P Applications retrieve a live peer in the P2P network through Bootstrap Service. This live
peer is used to initiate the join operation. Application can directly access the P2P Protocol Layer
for message routing and performing lookup operation. By registering Pub/Sub Service to local
peer, applications use Pub/Sub API to do event publication and subscription. P2P Protocol
Layer delegates the physical network transmission to Transport Layer. Environment module
loads external parameters from configuration file, and provides global variables to other
modules.

Figure 1. Framework Architecture Overview

4.1. P2P Protocol Layer

This is the core layer of performing structured P2P functionalities. In P2P Protocol Layer, we
propose an object model to describe the relationships within structured P2P network
components. This object model consists of the interfaces of common P2P functionalities, peer
initialization, and constraints of generating topology. By implementing these interfaces, P2P
network library developers are able to create a particular routing protocol.

Peer utilizes the common API for general purpose P2P network accessing. Each Peer associates
with a PeerId mapping to identifier space and a CommunicationManager for network accessing.
The identifier space contains Id for the general key to any Resource and subclass for identifying
peers. NodeHandle is a peer reference to be used for remote peer communication and topology
maintenance.

59

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.3, October 2009

We use Abstract Factory pattern to standardize the process of id creation and peer initialization.
PeerFactory and PeerIdFactory define the interface for creating peer instance and assigning a
unique peer identifier. IdFactory consists of the methods generating the key for resources.

The Service interface is defined for creating user-defined application which can monitor the
activities of P2P network. In order to achieve the goal of defining pluggable pub/sub service, we
introduce the Service interface which can receive several events while a message arrives and
topology changes. With the service registration mechanism, developers are free to implement
additional functionalities without polluting the code of P2P protocol.

4.2. Pub/Sub Service and API

This module provides a light-weight API for executing pub/sub related tasks. Publisher and
Subscriber define the common pub/sub API which can connect with arbitrary pub/sub service.
Each Publisher and Subscriber is associated with one topic.

The PubSubService is a subclass of Service which defines the SPI (Service Provider Interface)
needed for implementing P2P pub/sub algorithms. PubSubService handles the actions of
pub/sub applications via Publisher and Subscriber. In order to accommodate to both topic-based
model and content-based mode, the pub/sub API is designed with topic-based model and
additional selector language similar to the one used in JMS for attribute filtering. The content-
based model is also supported by introducing a wildcard topic. Pub/sub client program receives
interested events by registering EventHandler.

4.3. Transport Layer

The transport layer encapsulates the detail of resolving physical address and establishing
connections. The CommunicationManager is the representative of physical network
infrastructure. Through the abstraction of network communication, P2P protocol can easily be
deployed on different network environments. In our design, peers can register to one instance of
CommunicationManager, so that the overhead of activating multiple P2P networks can be
reduced. CommunicationManager uses Address to establish network connections in order to
perform message transmissions. Peers communicate with each other by sending messages.
Message interface defines the essential attributes for indicating the source peer and the message
handler.

4.3. Bootstrap Service

In order to join an existing overlay network, peers have to aware of at least one live peer which
belongs to this network. The bootstrap service provides a general interface which can be
adapted to different service implementations.

5. SCENARIO DEMONSTRATION

5.1. Implementing P2P Protocol

The fundamental elements of a structured P2P protocol consist in defining overall network
structure, basic P2P operations, and fail-over mechanisms. The following table lists the tasks for
implementing P2P protocol using our framework.

Table 1. Task Descriptions of Developing P2P Protocols.

Task Remarks

60

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.3, October 2009

define id space Create corresponding Id and PeerId class, which define the
distance function. Implement IdFactory and PeerIdFactory
for creating identifier.

define topology Implement Peer interface with routing table information.
Determine the neighbour set and replication set.

peer initialization Define externalized parameter name and type for
environment configuration. Implement PeerFactory for
creating peers.

join operation Define message format of join request and response.
Implement associated action in joinImpl method and provide
corresponding message handling procedures in
handleMessage method. Change peer status after join
operation finished.

lookup operation Define message format of lookup request and response.
Implement route and localLookup method for determine
routing path. Implement associated action in handleMessage
method. Define request time out mechanism to prevent thread
locking.

leave operation Define leave request format, carrying the information of
topology correction.

stabilization Managing periodical probing task using scheduleMessage
method, scheduleTask method and CancellableTask class.
Should be tolerated on every possible exception.

Here we present two reference implementations that show how to implement a P2P protocol.
First, we implement Ring Protocol, which is a simplified version of Chord. Like Chord, Ring
Protocol maps both peers and resources in to an m-bits, ordered identifier circle. Each peer in
Ring Protocol maintains the link to its predecessor, successor, and K random peers on the
network.

RingIdFactory and RingPeerIdFactory are created using MD5/SHA-1 hash algorithm to produce
corresponding RingId and RingPeerId. Because both type of identifier mapping to the same id
space, RingPeerId is simply a subclass of the RingId class. A NeighborTable is introduced to
manage the information of random neighbor table, which provides corresponding methods to
refresh/retrieve the neighbors’ status.

In order to implement the join operation, we directly send out a join request to boot peer that
search for the successor. When the lookup response is arrived, the joining peer can setup
successor and predecessor. The random neighbor table can also be filled up according to the
response message. While peer leaving, the predecessor is notified with successor correction
information. The predecessor of leaving peer can then inform its new successor for further
topology repairing.

The lookup operation is implemented in recursive way. The lookup request is forward to the
closest neighbor until the successor of current peer is the possible handler for the certain id. The
entire message flow involves lookup, route, localLookup, and handleMessage method. The
localLookup method determines the closest neighbor with the information about current
neighborhoods. The route method compacts lookup request and routing information into a
RouteMessage, delegate the message transmission to communication manager. In
handleMessage method, the lookup request is examined if the request is reach the correct

61

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.3, October 2009

destination. A lookup response will be sent to the requester, or a fail occurs while the request is
time out.

The stabilization process is established by using scheduleTask methods. A periodical message
sending task is registered that send notification to its successor (if existing), and the successor
reports its predecessor as response. Any inconsistency of ring topology will be correct during
the request-response cycle. The neighbor table updating task also utilizes message scheduling to
ping each peer, the table entry is removed if exception occurred in message transmission.

The second protocol we used is the Viceroy DHT with topology stabilization enhanced. In the
design of Viceroy DHT, both peers and resources are mapping to the interval of real numbers
between the interval of [0, 1). The ViceroyId class represents a valid identifier and defines the
distance function. A ViceroyPeer maintains additional peer status, such as level, seven out-
bound links and all remote links. By defining the ViceroyIdFactory and ViceroyPeerFactory,
developers can adapt their application to Viceroy DHT.

Within the handleMessage method, each arriving message is delegated to individual processing
functions. The join operation sends a JoinMessage out to find the correct joining position on the
P2P network through the boot peer. Once the join operation fails to complete within the timeout,
peer will start a new network and join as the first peer in this network. Peers send a
LeaveMessage to its successor to notify the change of topology.

The route method implements the greedy routing algorithm via the localLookup method
determing the next hop. The lookup operation involves two messages, LookupMessage and
LookupAckMessage, to discover the handle peer and notify the result. By using the lookup
operation, each Viceroy peer can then forward the LevelLookupMessage to complete the level
lookup operation. If these two lookup operation do not finish before timeout, the lookup method
will be interrupted and will throw an exception.

By using sheduleTask method, the periodical stabilization and probing tasks are implemented. If
the peer status is incorrect, a series of actions for topology reconstruction will be triggered. For
determing the correctness of inbound connections, a random remote peer will be chosen and a
InboundValidateMessage will be sent to see if the remote peer still holds the link.

5.2. Implementing Pub/Sub Service

The P2P pub/sub service providers need to implement the PubSubService interface to deploy
their pub/sub algorithm in P2P network using our framework. Two desgin patterns of
developing a P2P pub/sub system are identified. The detail of implementing P2P pub/sub
services is lists the following table.

Table 2. Task Descriptions of Developing Pub/Sub Services.

Store-Sub Store-Pub
addPublisher N/A Maintain Publisher Structure
removePublisher N/A Maintain Publisher Structure
requestPublish Event Dissemination Event Dissemination
addSubscriber Maintain Subscriber Structure N/A
removeSubscriber Maintain Subscriber Structure N/A

A simple topic-based pub/sub algorithm is used to demonstrate the flexible design of the
pluggable pub/sub service. The simple pub/sub protocol maps each topic to a hash key. The

62

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.3, October 2009

topic handler is dynamically assigned to the peer that is responsible for the hash key. Topic
handler receives the event from publisher and notifies every subscriber currently interested in.
Appendix C shows the protocol in details.

We create a class named SimplePubSubService that implement this simple pub/sub protocol.
Since only subscribers are need to stored, SimplePubSubService simply ignores the action of
publisher joining/leave by leaving both addPublisher and removePublisher method empty.
Subscribers are stored in local service instance and a subscription message is sent to topic
handler while a new subscriber initiated. The handling peer stores the subscriptions with
corresponding subscribing peer and interested topic for later notification process.

When publishers send out events, the SimplePubSubService send out an event-publishing
message to the topic handler. Once the topic handler received the publish request, it lookups all
subscribers that interested in the same topic and send out the event-notification message to each
one of them. Each event notification will be delivered to subscribers and corresponding event
handler will then be triggered.

Our framework not only supports topic-based model, but also accommodates content-based
model. There are two approaches to implementing content-based pub/sub algorithms. First, by
introducing a wildcard topic, publishers and subscribers discard the topic information. The
subscription is described only using selector string, which represents the user’s interests.
Second, the topic can be treated as a special attribute. Events which published by the publisher
associated with specific topic are all associate with the same attribute value. By using these two
approaches, applications can access content-based pub/sub system via our Pub/Sub API.

5.3. Develop P2P Pub/Sub Application

We introduce how to create an application as a client accessing P2P pub/sub service via our
framework. There are five steps to initialize the P2P network environment: (1) load
configurations, (2) setup network environment, (3) setup P2P protocol, (4) setup services, (5)
join to P2P network. Tasks in each step are described in Figure 2.

In order to participate in an existed network, we need to prepare the execution environment and
peer initializer first. The following code snippet demonstrates how to setup Ring Protocol on
TCP/IP network environment:

The Environment object can create or load external parameters from properties file. Here we use
TCP connection and Ring Protocol as our underlying network transmission and P2P network
topology. By using RingIdFactory and RingPeerFactory, we are able to create a new peer. The
pub/sub service plug-in is also register to the new created peer at this step. After peer
successfully initialized, we use BootstrapService to connect to arbitrary boot server and retrieve
a valid boot peer:

63

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.3, October 2009

Figure 2. Setup P2P and network environment.

//determine underlying transportation mechanism
Environment env = new Environment(new File(“example.cfg”));
CommunicationManager layer = new TCPCommunicationManager(env);
//determine p2p network type and id type
IdFactory idFactory = new RingIdFactory(env);
PeerFactory factory = new RingPeerFactory(idFactory, layer);
//peer initailization
Peer peer = factory.createPeer();
PubSubService service = new SimplePubSubService();
peer.register(service);

Figure 3. Example code of developing P2P protocol.

//connect to http boot server
BootstrapService bootService = new HttpBootstrapService(env);
try { //perform join operation
NodeHandle localhandle = peer.getLocalHandle();
NodeHandle booter = bootService.getBootstrapper(localhandle);
peer.join(booter);
} catch (PeerJoinException ex) { //if join failed on exception
ex.printStackTrace();
}
if (peer.isJoined()) {
//following p2p operating goes here
}

Figure 4. Example code of connecting to boot server.

6. COMPARISON

The framework we proposed is based upon object-oriented architecture and event-driven
methodology. According to the structured P2P specification defined in [3] and [5], we enhance
the functionalities into object models. These models fully describe the relationships between the

64

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.3, October 2009

identifier space and the routing protocol. Moreover, based on the framework proposed by
Aberer et al. [1], the additional service modules, e.g., P2P Storage Interface, and the P2P Basic
Interface, i.e., P2P protocol, are objects directly inherited from the same parent class. However,
in our architecture, we introduce pluggable modules, e.g., the Pub/Sub Service, which is
independent to the P2P protocol implementation. The features are achieved by invoking services
as events arrived. The events include communication messages as well as topology
modifications. The event of state transition of handling peers (e.g., peer joins to a network and
peer is ready to receive message) is not propagated to the services. Developers can only perform
stabilization and replication in proactive style while generating persistence services. Moreover,
this pluggable approach makes a lightweight peer implementation. Therefore, the P2P Protocol
Layer only needs to handle routing protocols. The additional pluggable services are independent
modules not included in the P2P Protocol Layer.

Our design has been focused on pure P2P networks. In other words, each peer in the
architecture shares information and collaborates with other peers without a centralized server. In
previous researches [15][21], publishers and subscribers are both clients of a message server. In
our platform, each peer involves message dispersion and propagation via the pub/sub
mechanism without an additional message server. Instead, each peer is involved in the
information dispersal of the pub/sub mechanism in our framework, without establishing
additional message server. The benefit of pure P2P is that applications do not depend on a pre-
constructed server infrastructure. The index information is connoted in the P2P network
topology and routing protocol, compared to the super-peer indexing mechanism used in JXTA.
However, this statement assumes the computation power of each peer is about equal. According
to the assumption, this framework does not grant developer the advantage of deploying P2P
applications on the environment of heterogeneous devices. Moreover, this framework does not
accommodate to an overlay network containing more than one role of peers, e.g., the super-
peers architecture used in JXTA.

In previous researches of P2P protocol, network bootstrapping is usually omitted. By
considering the practicality of creating P2P applications, we define the bootstrap service
interface and provide two boot server implementations. By externalizing the network
communication, the framework allows different protocols transmitting messages through one
single network port.

The FreePastry library is an open source implementation of Pastry. With the Scribe system
implemented as an additional service, developers can create group communication system with
efficient pub/sub capability. In the design of FreePastry, the factory methods are used for
testing/simulating applications without modification to the source code. However, the
FreePastry library is only can be used for Pastry network and Scribe system. It is functionally
limited to develop applications by using FreePastry. Our framework provides a flexible
architecture. In this architecture, applications can easily be deployed to any P2P network and
any underlying network environment. With the lightweight pub/sub APIs, application
developers can adopt any P2P pub/sub service to meet their system requirements.

JXTA is a general P2P platform which allows heterogeneous applications to be deployed on the
top of a virtual JXTA network. JXTA can provide additional structured P2P network
functionalities based on Peer Resolver Protocol. An open source project named Meteor [10]
implements Chord and CAN on the top of the JXTA platform. This approach deploys the DHT
overlays upon the virtual JXTA network, which causes the performance downgrades because of
the communication overheads among peers introduced by JXTA. The JXTA platform provides a
propagating pipe which can simulate pub/sub mechanism via the one-to-many message
transmission. The message might be lost during the process of propagation. The performance
degrading and reliability issues make this propagation mechanism not scalable to a large group

65

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.3, October 2009

communication system. In our framework, the message transmission among peers is directly
delegated to underlying network transportation, which does not incur the overheads of
additional node discovery. Without message propagating, our pub/sub service can maintain a
distributed multicast structure and support many-to-many message transmission. Therefore,
disseminating information among peers will not cause unnecessary bandwidth dissipation.

7. CONCLUSION

In this paper, we identify several major issues of developing P2P pub/sub applications. These
issues result from the lack of standardize P2P API, common P2P pub/sub API, and network
abstraction. Therefore, we synthesize standardized P2P API and common pub/sub API into a
generic P2P pub/sub framework. Our framework provides a standard P2P API for application
developers to interact with various structured P2P networks. Furthermore, a P2P pub/sub API
and SPI are introduced for using/creating P2P pub/sub algorithms in pure P2P networks. In our
design, a layered architecture is created with common P2P API, common pub/sub API/SPI,
network transportation, and bootstrapping service. This framework allows P2P application
developers to switch the underlying overlay with a little bit code to modify. We standardize the
control flow between each module. The following benefits are brought out by this framework:

 Easy to develop/deploy applications on different P2P networks and different pub/sub
systems.

 Supporting both topic-based and content-based pub/sub models.
 Deploying the P2P applications on various network environments.

This framework is designed for developing P2P pub/sub applications in pure P2P network. It
provides an adaptive architecture for developing applications on any overlays without incurring
performance degradation. By comparing to other P2P pub/sub library and P2P platform, this
framework provides generality of adapting to most P2P routing protocols and P2P pub/sub
algorithms and preserves the performance and reliability of P2P networks.

In conclusion, with the common API we proposed, this framework not only standardizes the
semantic of using structured P2P network, but also creates a general control flow of develop a
P2P pub/sub application. By adopting our framework, developers can generate multiple types of
pub/sub applications on the top of every kind of structured P2P networks.

8. FUTURE WORK

For further extension, we can provide additional common utilities which can help developing
applications and P2P protocols. The transport layer can provide predefined retransmission
policy for P2P network developer to implement routing protocol in a robust way. These
retransmission policies are used to handle low-level transmission exceptions. In addition,
providing response-waiting utilities helps P2P protocol developers implementing request-
response operations, e.g. lookup operation, without establishing their own lock-notify
mechanism. Moreover, this framework can provide connection security and data encryption for
developing secured P2P applications. For instance, implementing a
TLPCommunicationManager offers a secure connection or constructing a MessageEncryptor to
provide data integrity.

Although this framework is designed in the way of adapting P2P application to different
structured P2P network, to implementing these P2P network components completely requires
excessive works. A protocol adaptor can be introduced to reduce the overhead of implementing
P2P components using legacy libraries.

66

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.3, October 2009

This framework can be further extended into a P2P service middleware, integrated with OSGi
platform [13]. Our framework can be employed as the communication infrastructure for other
OSGi services. With runtime deployment and activation, applications can easily be deployed on
an existing P2P topology. Under this service-oriented architecture, P2P components are not only
reused in development process, but also in runtime. Moreover, the monitoring services can be
dynamically introduced based on the architecture of OSGi platform.

Currently, our framework supports only message-based communication. With application level
socket, application usually needs to manage the interaction between peers with stream-based
communication. The socket API should have ability for P2P application and service to establish
long-live connections between peers. This long-live connection reduces the effort on waiting
message acknowledgement in a frequent interaction scenario.

A P2P Blog system is planed to be built using this framework. With implementing real-world
P2P pub/sub applications, we can further examine the usability of our framework.

REFERENCES

[1] S. Widjojo, R. Hull, D. Wile, Distributed information sharing using WorldBase, IEEE Office
Knowledge Engineering, 1989.

[2] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H. Balakrishnan, Chord: A scalable peer-to-
peer lookup service for internet applications, SIGCOMM Comput. Commun. Rev., vol. 31,
2001, pp. 149-160.

[3] A. I. T. Rowstron and P. Druschel, Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems, in Middleware '01: Proc. of the IFIP/ACM International
Conference on Distributed Systems Platforms Heidelberg, 2001, pp. 329-350.

[4] D. Malkhi, M. Naor and D. Ratajczak, Viceroy: a scalable and dynamic emulation of the
butterfly, in Proc. of the Twenty-First Annual Symposium on Principles of Distributed
Computing, 2002, pp. 183-192.

[5] Y. Kulbak and D. Bickson, The emule protocol specification, 2005.

[6] J. Pouwelse, P. Garbacki, D. Epema and H. Sips, The Bittorrent P2P File-Sharing System:
Measurements and Analysis, Peer-to-Peer Systems IV, 2005, pp. 205-216.

[7] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris and I. Stoica, Wide-area cooperative storage
with CFS, SIGOPS Oper. Syst. Rev., vol. 35, 2001, pp. 202-215.

[8] I. Stoica, D. Adkins, S. Zhuang, S. Shenker and S. Surana, Internet indirection infrastructure, in
SIGCOMM '02: Proc. of the 2002 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, 2002, pp. 73-86.

[9] D. Haussheer, Decentralized auction-based pricing with PeerMart, Integrated Network
Management, IM 2005. 2005 9th IFIP/IEEE International Symposium on, 2005, pp. 381-394.

[10] B. A. Nardi, D.J. Schiano, M. Gumbrecht, L. Swartz, Why we blog, in Communications of the
ACM, Vol. 47, No. 12, 2004, pp. 41–46.

[11] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Storm, and D. Sturman, An Efficient
Multicast Protocol for Content-Based Publish-Subscribe Systems, in Proc. of 19th IEEE
International Conference on Distributed Computing Systems, 1999, pp. 262-272.

[12] K. P. Birman. The process group approach to reliable distributed computing, Communications of
the ACM, Vol. 36, No. 12, Dec. 1993, pp. 36-53

[13] B. Oki, M. Pfluegl, A. Siegel, D. Skeen, The Information Bus - An Architecture for Extensible
Distributed Systems, Operating Systems Review, Vol. 27, No. 5, Dec. 1993, pp. 58-68.

67

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.3, October 2009

[14] P. Triantafillou and I. Aekaterinidis, Content-based Publish-Subscribe Over Structured P2P
Networks, 1st International Workshop on Discrete Event-Based Systems, 2004

[15] A. Chirita, S. Idreos, M. Koubarakis, and W. Nejdl, Publish/Subscribe for RDF-based P2P
Networks, in Proceedings of the 1st European Semantic Web Symposium (ESWS), Lecture
Notes in Computer Science 3053 Springer 2004, Heraklion, Crete, Greece, May, pp.182-197.

[16] D. Recordon, D. Reed, OpenID 2.0: a platform for user-centric identity management, in IM '06:
Proc. of the second ACM workshop on Digital identity management, 2006, pp. 11-16.

[17] C. P. Lin, Y. W. Kao, S. M. Yuan, A P2P Blog System with OpenID Integration, in Proc. of 3rd
2008 International Conference on Convergence and hybrid Information Technology (ICCIT08),
Nov. 11~13, 2008, Busan, Korea, pp. 1064-1069

[18] S. C. Chien, Y. W. Kao, S. M. Yuan, A Generic Publish/Subscribe Framework for Peer-to-Peer
Environment, to be presented in NeCoM-2009, June 30-July 2, 2009, Beijing, China

[19] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz and I. Stoica, Towards a Common API for
Structured Peer-to-Peer Overlays, Peer-to-Peer Systems II, 2003, pp. 33-44.

[20] G. Ciaccio, A Pretty Flexible API for Generic Peer-to-Peer Programming, Parallel and
Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International, 26-30 March 2007,
pp. 1-8.

[21] K. Aberer, L. O. Alima, A. Ghodsi, S. Girdzijauskas, S. Haridi and M. Hauswirth, The Essence
of P2P: A Reference Architecture for Overlay Networks, in Proc. of the Fifth IEEE international
Conference on Peer-To-Peer Computing, 2005, pp. 11-20.

[22] L. Gong, JXTA: a network programming environment, IEEE Internet Computing, 2001

[23] R. Monson-Haefel, David A. Chappell, Java Message Service, O'Reilly & Associates, Inc.
Sebastopol, CA, USA, ISBN 10: 0-596-00068-5, December 2000.

[24] P. Pietzuch, D. Eyers, S. Kounev and B. Shand, Towards a common API for Publish/Subscribe,
in DEBS '07: Proc. of the 2007 Inaugural International Conference on Distributed Event-Based
Systems, 2007, pp. 152-157.

[25] D. Peter, E. Eric, G. Romer, H. Andreas, H. Jeff, C. Y. Hu, I. Sitaram, L. Andrew, M. Alan, N.
Animesh, P. Ansley, R. Charlie, S. Dan, S. Jim, S. Atul and Z. RongMei, FreePastry v2.1, March
13, 2009, Available: http://freepastry.rice.edu/FreePastry/

[26] M. Castro, P. Druschel, A. -M. Kermarrec and A. I. T. Rowstron, Scribe: a large-scale and
decentralized application-level multicast infrastructure, Selected Areas in Communications,
IEEE Journal on, vol. 20, 2002, pp. 1489-1499.

[27] J. Márk, M. Alberto, P. Gian Jesi and V. Spyros, PeerSim: A peer-to-peer simulator, v1.0.4, Nov
09 2008, Available: http://peersim.sourceforge.net/

[28] P. Manish, J. Nanyan, S. Cristina and M. Vincent, Meteor. 2.4.1, 2007, Feb. 21, Available:
https://jxta-meteor.dev.java.net/

Yung-Wei Kao was born on March 12, 1982 in Taipei, Taiwan, Republic of
China. He received his MBA degree in Department of Information
Management of National Central University in 2006. He interests in System
Integration, Web technology, and network security.

68

International Journal of Computer Networks & Communications (IJCNC), Vol.1, No.3, October 2009

Shih-Chiang Chien was born on May 26, 1984 in Taipei, Taiwan, Republic
of China. He received his MS degree in Computer Science from National
Chiao-Tung University in 2008. He interests in Distributed System, Web
technology, and Peer-to-Peer Network.

CHING-TSORNG TSAI received the B.S. degree in computer science and
information engineering from Tunghai University, Taiwan, in 1988, the M.S.
degree in information engineering from National Cheng-Kung University,
Taiwan, in 1990, and the Ph.D. degree from the Department of Electrical
Engineering, National Cheng-Kung University, Tainan, Taiwan, in 1994.
Since 1994, he has been an associate professor with the Department of
Computer Science, Tunghai University. His current research interests include
internet technology, image information processing, and computer graphic.

Shyan-Ming Yuan was born on July 11, 1959 in Mauli, Taiwan, Republic of
China. He received his BSEE degree from National Taiwan University in
1981, his MS degree in Computer Science from University of Maryland,
Baltimore County in 1985, and his PhD degree in Computer Science from the
University of Maryland College Park in 1989. Dr. Yuan joined the
Electronics Research and Service Organization, Industrial Technology
Research Institute as a Research Member in October 1989. Since September
1990, he has been an Associate Professor at the Department of Computer and
Information Science, National Chiao Tung University, Hsinchu, Taiwan. He
became a Professor in June 1995. His current research interests include
Distributed Objects, Internet Technologies, and Software System Integration.
Dr. Yuan is a member of ACM and IEEE.

69

	Abstract
	Keywords
	P2P, Pub/Sub

