International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

An Optimal Software Framework for Parallel
Computation of CRC

Hamed Sheidaeian® and Behrouz Zolfaghari?

'Department of Engineering, Islamic Azad University, Garmsar Branch, Iran
shei daei an@it . ac.ir

Department of Engineering, Islamic Azad University, Garmsar Branch, Iran
zol faghari @ut.ac.ir

ABSTRACT

CRC is a common error detection method used in different areas such as information storage and data
communication. CRC depends on modulo-2 division by a predetermined divisor called the generator. In
this method, the transmitter divides the message by the generator and concatenates the calculated residue
to the message. CRC is not able to detect every kind of errors. The properties of the generator determine
the range of errors which are detectable in the receiver side. The division operation is currently performed
sequentially, so developing methods for parallel computation of the residue makes CRC suitable for
network protocols and software applications. This paper presents a novel software framework for parallel
computation of CRC using ODP polynomials.

KEYWORDS

Parallel CRC computation, ODP polynomial, OZO generator

1. I ntroduction and Basic Concepts

CRC is a widdy adopted method for detecting errors which is used in various systems.
Applications of CRC [4-8] as well as developing methods for improving its efficiency [9-11] have
been research focuses in recent years. Before discussing the CRC method and introducing the
proposed approach, some definitions and basic concepts are needed which they are shortly
presented in the following.

Polynomial: isanotation for abit string in which the positions of 1s a shown by the exponents of a
variable such as X . In other words, a polynomia appears in the form of z a;X'. Each a,canbe0

or 1 and is equa to the corresponding bit in the string. Each X' shows that the corresponding bit
has been located in the position i of the string. For example the bit string 1101 can be shown by
the polynomial x* + x? + 1. The degree of a polynomia is equa to the largest exponent of X in
the polynomia. A polynomia of degree m is equivalent to a string than consists of lengthm + 1
bits. Every polynomid of an even degree isreferred to an even polynomial in this paper. Similarly
polynomials having odd degrees are called odd polynomials.

Modulo-2 bitwise addition and subtraction: are both equal to logic XOR. Modulo-2 addition and

subtraction generate no carry or borrow. Thus, the addition/subtraction of two strings is smply
accomplished by adding/subtracting corresponding bits of the strings.

DOl : 10.512V/ijenc.2013.5315 201

mailto:sheidaeian@ut.ac
mailto:zolfaghari@aut.ac

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

Modulo-2 bitwise multiplication: is equal to logica AND. String multiplication is accomplished
by bitwise multiplications, shifts and string additions. Especially Multiplying a bit string like S by
2" (or equally x") means concatenating N zero bitsto theright end of the string. Therefore, s.2"
is called ashifted multiple of Sfor every valueofn .

Modulo-2 division: is often explained in terms of a polynomia divison method called long
divison which imitates consecutive modulo-2 subtractions. In other words, modulo-2 division is
accomplished by subtracting the dividend by multiples of the divisor until the degree of the residue
islessthan that of the divisor.

Generator: is a predetermined unique string (polynomial) used as the divisor by both the
transmitter and the receiver. The generator plays a key role in the error detection capability of the
CRC method. For example, a generator containing an even number of 1s can detect every error
whose vector contains an odd number of 1s.

Above concepts and definitions are essentia for the reader to understand the rest of this paper, so
they were discussed briefly. Readers are referred to [12] for more detail s regarding these concepts.
In a system which uses CRC for error detection, the transmitter adds a redundancy code to the end
of the message which can be used by the receiver in order to determine whether the message has
been changed during the transmission. The length of the code varies from one system to ancther.
Especialy the Ethernet protocol uses a 32-bit CRC 9.The process of using an n-bit CRC is as
follows:

» Thetransmitter concatenates n zero bitsto the end of the message M (convertingittom * 2°
). Next, it divides the whole string (including the message as well as the added zero hits) by the
predetermined generator (G) which is n+ 1 bit long and caculates the residue (
(M *2"YMod G).Inthenext step, the transmitter inserts the n-bit residue of the division (

R) in place of the zero bits and transmits the result string which will be equa to
MR =M *2"+ (M *2")Mod G . Figureldemonstrates these steps.

» The receiver on the other hand, divides the received string (MR) by the generator and
calculates the residue again. If the transmitted string does not change while passing through the
channel, the residue here will be equa to (M * 2" + (M * 2")Mod G)Mod G = 0 (The notation
1 has been used to emphasize the fact that addition and subtraction are the same in modul o-2
arithmetic). Thus, if the residue is not equal to zero, the receiver considers an error. In fact, if
an error occurs during the transmission, the corresponding error vector (E) will be added to
MR . Inthis case, the receiver will obtain (MR+ E)Mod G = E Mod G instead of zero.

One of the shortcomings of CRC is that it cannot detect all types of errors. To make this point
more clear, supposethat Eisamultiple of G . In this case the residue calculated in the receiver side
will be equal toE Mod G = 0. Thismideads the receiver to assume that there has been no error. In

fact, if the error vector is a multiple of the generator, the receiver cannot detect the error. To
mitigate this problem, electrical and mechanical properties of the channel should be analyzed
carefully as well as the environmental noises. This way, the dominant types of error can be
determined and calculated the corresponding error vectors. Now a generator should be selected
which does not have any multiples equal to the dominant error vectors.

In this paper a software framework is proposed for accelerated computation of CRC using OZO-
based generators. The rest of this paper is organized as follows. Section 2 presents Preliminary
discussions about OZO generators and parallel computation of CRC using them, section 3 explains
a traditional software framework for sequential computation of CRC. The proposed accelerated

202

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

framework is discussed in section 4. Section 5 is dedicated to finding OZO generators in the
framework .Section 6 shows experimental results and finaly section 7 presents conclusions and
suggests further works.

2. Preliminary discussions about parallel CRC computation

2.1. 0OZO Generators

CRC istraditionally computed by serid circuits called LFSRs (Linear Feedback Shift Registers).
An LFSR is a specia kind of shift register in which the output of the last flip flop is fed to the
input of the first flip flop through a number of XOR gates. This paper utilizes a novel method for
parale computation of CRC using mathematical properties of a specia category of generator
polynomias caled ODPs (OZO Dividing Polynomials). ODPs are polynomias having multiples
of form 100...001. The latter form of polynomials is called OZO (One-Zero-One).lt is
demonstrated that if the generator is selected from this category, the CRC can be calculated by
parallel circuits with minor hardware requirements. B.Zolfaghari and H.Sheidagian [1, 2 & 3]
introduced OZOs and ODPs. They developed a systematic method for constructing ODP
polynomias. This method has been used in proposed software framework for computing OZO-
based polynomials.

A burst Error is defined in their works as an error which flips alarge number of consecutive bits.
The vector of such an error will have such aform: 00...011...100...0. Such strings are caled ZOZ
(Zero-One-Zero) dtrings in this paper. A ZOZ string consists of three substrings; an al-zero
substring in the left side, an all-1 substring in the middle and ancther all-zero substring in the right
side. The all-1 substring of a ZOZ string is referred as an ALO (All One) string. Every polynomia
that has an ALO multiple aso is referred as an ADP (ALO Dividing Polynomial). Especidly,
every ADP of degree 32 is called an ADP32. Every ALO polynomia of an even degreeis called
an even ALO polynomia and every ALO polynomia of an odd degree is called an odd ALO
polynomial.

Z0OZ strings can be equivaently shown by ZOZ polynomias which contain a set of consecutive
n n-m

exponents of X like Z X' = Xm(z X' +1) wheren is the degree of the polynomial and m is
i=m =1

n-m

the number of Os in the right side of the string. The sum ZX; +q (or equaJIy”iXJ) shows the
A a

=

polynomia form of the ALO substring.

An OZO (One-Zero-One) string is one which contains a single 1 in the left side, a number of
consecutive Os in the middle and another single 1 in the right side (like this: 100...001). The

equivaent polynomial form of an OZO stringislike X"+ 1.

2.2. Analytical Discussions

In order to calculate CRC using the proposed parallel agorithm, a software program should be
developed which generates al possible 32-bit strings S and concatenate 32 zero hits to each Sto
make S.2" .In the next step, S. 2™should be divided into G to calculate the remainder R and then
each S should be stored in afile along with the corresponding R.

The next required program should take an input string M and repeat the following steps until there

remains 32 bitsfrom M as the fina remainder.

203

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

e Take 32 hitsfrom the left of M.
* Lookup the taken 32-bit string among S strings and find the corresponding R.
¢ XOR R with next 32 bits and truncate the first 32 bitsfrom M.

The above programs aim at totally parallel calculation of CRC using a table-driven approach.
Suppose a dividend M is to be divided against a divisor G. The goal of such a division is to
permanently subtract multiples of G from M and turn left side bits of G to 0 reduce the length of
M. The division is finished when the length of M is smaler than that of G. at the end of this
process, M itself will bethe remainder. If G isn+1 bitslong, the length of the final remainder will
be equal to n. In this approach, a special multiple of G isfound in each step which is 2n bits long
and has n bits equal to M in the left. Thusin each step, n bits of M turn to zero instead of just one
bit. This multiple of G named G’’. In fact G’ has an n-bit left prefix exactly equal to M and
since the modulo-2 operation is the same as XOR operation, each step of the division works like
shown in the figure 1.

MH ML

o IEEH
o X)

G“H “L
M.,
O XOR
G".
M,
XOR

Figure 1. Schematic of asingle step of the algorithm

As seen in the above image, this agorithm depends on parallel conversion of n bits of M to zero
in each step instead of converting a single bit. In each step n bits from the left of are truncated and
the next n bits (M) are XORed with n least significant bits of G*” (G";). Notethat M;, My , G",
and G"y areeach n bitslong.

In order to calculate G*” from G, n zero bits should be concatenated to My; and get M. 2™. Then
My . 2™ should be divided against G and remainder R should be gathered. if R is subtracted from
My.2"™, a string will be reached which is obvioudly divisible to G. This multiple of G isin fact
My R which is named G™.

Now the division can be performed with G*” as a multiple of G instead of G itself. To do this, &l
possible n-bit strings M should be creasted and stored in a table along with the corresponding
Mpy. 2™ Mod G. In each step, an n-bit prefix M is truncated from M and next n-bit is XORed with
My.2™ Mod G. The string M. 2™ Mod G should be looked up in the table.

204

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

If this approach is to be applied to 32-bit CRC, 232 strings should be calculated each 32 bits
length and each of them should be stored in a table with the corresponding 32-bit remainder. Thus
232 division operations will be needed and the size of the table will be equal to23?
(32 +32) = 2%, but in order to reduce the number of division operations and the size of the
table, 32-bit strings like M can be generated and stored along with the 32-bit string
My. 2% Mod G in thetable. The figure 2 shows the way thisis done.

16 bits 48 bits H
H | 0000...00000 Fﬂ’t -
- . R1
16 bite 32 bits 5&:::,1 T e L&]
L | 0000...0 E=>

&

L

16 hits 16 bits 32 bits
H L 0000...0

Figure 2. Computing mid-sums

In this approach another table containing 16-bit M strings will be needed aong with the
corresponding 32-bit remainders My,. 232 Mod G. The total size of the two tables will be equal to
2 216 (2164 232) =217 (216 4+ 232) = 233 + 248 which shows an obvious reduction. Also
the number of required division operations will be equal to 2 2'¢ = 217 which exhibits an
obvious reduction again. But each step of this approach includes to cycles and two XOR
operations. The choice between the two approaches depends on the most important parameters. In
fact there is a trade-off between the size of the table and the static calculations in one hand and
the dynamic run-time calculations in other hand. This trade-off should be resolved by the

designer.

3. A Software Framework for Regular CRC Computation

The main function which used for CRC computation is GenerateCRCResi due;

voi d Cener at eCRCResi due(string data, string CRCGen) ({
string zero = InitBinary(32);
string pattern = data + zero;
string res[] = DivideMdul o2(pattern, CRCGen);
string R =res[1];
return R

205

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

In this function CRC generator is stored in CRCPoly variable. The function calculates CRC using
returned residue value of a Modulo-2 division function. Some extra subroutines are used in above
function as follows.

InitBinary function initializes an n-bit string-based binary number with zero value. I ncreament
function takes one string based binary parameter and returns that value plus one
ConvertToBinary function is used for converting an integer number to equivalent N-bit binary
string with alignment of N.

DivideModulo2 function cal culates modul o-2 binary division.

string[] DivideMdul 02(string a, string b) {
string[] res = new string[2];
if (a.Length < b.Length) {
res[0] = "0";
res[1] a;

}

el se {
ArraylList md_quotients = new ArrayList();
string tempa = a;
whi |l e (tenpa. Lengt h>=b. Length) {
string tenpb = b;
string tenpquot = "1";
int len_dif = tenpa.Length-b. Length;
for (int i=0;i<len_dif;i++) {
t enpquot += "0";
tempb += "0";

nm d_quotients. Add(t enpquot);
tenpa = Sumvbdul 02(t enpa, t enpb) ;
i f (tenpa.Length>=b. Length)
tenpa = RenoveZer oFronlLeft (tenpa);
i f (tenpa.Length<b.Length) {
string t = tenpa;
for (int i=0;i<b.Length-t.Length-1;i++)
tenpa = "0"+t enpa;
}
}
string quotient = "0";
for (int i=0;i<md_quotients.Count;i++)
Sumvbdul o2(mi d_quotients[i].ToString(), quotient);
res[0] = quotient;
res[1] t enpa;

}

return res;

SumModulo2 function computes modulo-2 addition. Abs method returns the absolute value of a
number and Convert. ToByte method converts the specified string representation of a number to an
equivalent 8-bit unsigned byte. RemoveZeroFormLeft function eliminates extra zeroes from left
side of a string-based binary number.

206

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

string[] SumVbodul 02(string a, string b) {

string tenpa = a;
string tenmpb = b;
int len_dif = Abs(a.Length-b.Length);

if (a.Length>b.Length) {
for (int i=0;i<len_dif;i++)
tenpb = " 0"+t enpb;

}
el se if (a.Length<b.Length) {
for (int i=0;i<len_dif;i++)
tenpa = "0"+t enpa;
}
string result = "";
for (int i=tenpa.LlLength-1;i>=0;i--) {
byte bita = Convert. ToByte(tenpa. Substring(i,1));
byte bitb = Convert. ToByte(tenpb. Substring(i,1));
byte bit_xor = (byte)(bita ™ bitb);
result = bit_xor.ToString() + result;

}

return result;

}

string RenoveZeroFromLeft(string x) {

string res = "";

int i = 0;

for (i=0;i<x.Length;i++) {
byte bit = Convert. ToByte(x.Substring(i,1));
if (bit==1) break;

}

Res = x. Substring(1);

return res;

}

4, Proposed Framework for Accelerated Computation of CRC

Sequential schema of proposed CalculateCRC subroutine is shown in next page. In this pseudo-
code input data is fragmented to 32-bit segments and DivideModulo2 is performed on each
segment to retrieve residue value as partial CRC. Finally XOR logic operation is used between
these partial CRCs for computing final CRC value.

The input data can be divided to 32-bit segments and multithread programming features of .Net
can be used for paralld and fast computation of partiadl CRCs instead of this sequential schema.
XOR helper function performs modulo-2 addition between its first argument and 32 least
significant bits of its second argument, then concatenates this intermediate value to 32 most
significant bits of the second arguments and finally returns this result.

207

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

string Cal cul ateCRC(string data, string CRCPoly) {

string tenp = data;

string zero I nitBinary(32);

for (int i=0;i<(int)(data.Length/32)-1;i++) {
string split = tenp. Substring(0, 32);
string data = split+zero;
string[] res = DivideMdul o2(data, CRCPoly);
string R = res[1];
temp = tenp. Substring(32);
temp = XOR(R tenp);

}

return tenp;

}

string XOR(string s, string main) {
string subMain = main. Substring(0, 32);
string res = Sumvbdul 02(subMai n, s) +nai n. Substri ng(32);
return res;

}

5. Finding OZO-based Generators

There are five steps for generating al 32 bits OZO-based polynomials can used for paralel
computation of CRC. Figure 3 shows these steps.

Generate Prime primes.txt
Numbers
/ > Prime
~ Factorization
Generate 0Z0 \
Polynomials 020s.txt primefactors.txt
J

\ 4

generators.txt

Generators Generators final_generators.txt

Detection Partitioning

Figure 2. Block diagram of finding OZO-based generators subsystem

5.1 Generating Prime Numbers

First of al aglobal ArraylList variable is needed for preserving all 32-bits prime numbers. So in
first step 32 bits prime numbers should be computed using sieve of Eratosthenes algorithm.
Result prime numbers are stored in atext file using a special StreamWriter object that implements
atext writer for writing strings to an 1/O stream in a particular encoding.

208

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

void CreatePrimNunbers(string main, string s) {
//sw : prinme nunbers
Pri mNunbers. Add("11");
sw. WitelLine("11");
for (int i=4;i<=Int32. MaxVal ue;i++) {
string binary_val = ConvertToBinary(i);
int count = CountOF CharInString(binary val,'1");
/1l i must not be even and the count of 1s in binary
val nust be odd
if ((i&l)==1 && (count&l)==1) {
bool isPrime = true;
for (int j=0;j<Primlunbers. Count;j++) {
i f ((Floor((decimal)(binary_val.Length/2
+1) <Pri mNunbers[j]. ToString(). Length)
br eak;
string[] div = DivideMdul 02(bi nary_val,
PrimNunbers[j].ToString());
if (IszZero(div[1]) {
isPrime = fal se;
br eak;

}
if (isPrime==true) {

Pri mNunber s. Add(bi nary_val);
sw. WiteLine(binary_val);

}

sw. 0 ose();

}

Floor method returns the largest integer less than or equa to the specified number. Some other
helper functions are used in above code. CountOfCharInString function counts repetition number
of acharacter in astring and IsZero function determinesif astring variableis a binary zero or not.

5.2 Generating OZO Polynomials

In this step al OZO polynomialsis generated easily and stored in atext file.

void CreatezQ() ({
[Isw : ozos
sw. WitelLine("11");
for (int i=0;i<=128;i++) {
string tnp = "1";
for (int j=0;j<=l;j++) tnp += "0";

tnp += "1";
sw. WiteLine(tnp);}
sw. d ose();

209

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

5.3 Prime Factorization

In prime factorization step al previous generated data (32 bits prime numbers and OZO
polynomials) are read by two special StreamReaders object. This object implements a text reader
that reads strings from an /O stream in a particular encoding. In the next step aloop structure is
used for modulo-2 dividing each OZO polynomial by all prime numbers. If an OZO polynomial is
divisible by a prime number (all bits of string-based residue should be zero), prime number will
be stored in a text file and replace current OZO value by quotient of division for examination
using next prime number.

void PrinmeFactorization() {
/lsw: prinmefactors
string tnmp = sr_prine. ReadLi ne();
ArrayLi st primes = new ArraylList();
ArraylLi st ozos = new Arraylist();

while (tnmp!=null) {

primes. Add(t np);

tnp = sr_primnes. ReadLi ne();
}

sr_prines. d ose();
tnp = sr_ozos. ReadLi ne();

while (tnp!=null) {
0zo0s. Add(t nmp) ;
tnp = sr_ozos. ReadLi ne();

}

sr_ozos. d ose();

for (int i=0;i<ozos.Count;i++) {
string result ="";
string ozo = ozos[i].ToString();
for (int j=0;j<prinmes.Count;j++) {
if (o0zo.Length>=primes[j].ToString().Length) {
String pr = prinmes[j].ToString();
string[] res = DivideMdul 02(ozo, pr);
if ('res[1].Contains("1")) {
ozo = res[0];
result += pr+" ";
j--; countinue;

}

el se break;

sw. WitelLine(result);}
sw. d ose();

210

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013
5.4 GeneratorsDetection

The prime factors generated in previous step (the set of prime divisor for each OZO string) are
used for generating power set for them. Then for each subset exist in this power set, al divisors
are multiplied together. If the length of this result is 33 bits, it should be added to generators file.
Solit method in related pseudo code returns a string array that contains the substringsin this string
that are delimited by a specified character.

An examplein integer domain can explain the operation:

Assume that we want to find al numbers with a multiple equal to ‘30°. So we should find al
prime divisors of 30 first (prime decomposition of 30): 30=2* 3* 5

PF(30) ={2,35}

After that, the power set of PF(30) is:

PS(PF(30)) = {{ }{2}{3}{5}{23},{25} {35} {235}

Now if we multiply all membersin each subset together, we can produce a set of numbers which
30’ is a multiple of them.
D(30) = {2,3,5,6,10,15,30}

5.5 GeneratorsPartitioning

If an k-bit OZO polynomial is presented by OZO(K), it can be easily shown that OZO(2k-1) is a
multiple of OZO(K). The intersection of OZO(k) and OZO(2k-1) divisor sets (which are produced
in previous stage) definitely is not empty. In the set theory, the intersection of two sets A and B is
the set that contains al elements of A that also belong to B, but no other elements. So the union of
divisor sets (retrieved from OZO polynomials in previous step) is computed and duplicate
members are removed. The union of two setsisthe set of all distinct elementsin them.

void DistinctGenerators() {
/1l sw:final _generators
/1 sr :generators
ArraylLi st gen = new Arraylist():
String tnp = sr.ReadLine();
while (tnp!=null) {
string[] factors =tnp.Split(' ');
for (int i=0;i<factors.Length;i++) {
if ('gen.Contains(factor[i])) {
gen. Add(factors[i]);
sw. WiteLine(factors[i]);
}
}
tnp = sr.ReadLine();
}
sw. O ose();
sr.d ose();

211

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

voi d DetectGenerators() {
/!l sw: generators

/1 sr : primefactors
String tnp = sr.ReadLine();

int kK = 0;
while (tnmp !'= null) {
kK++;

string[] factors = tnp.Split(" ");
ArraylLi st generator = new ArraylList();
for (int i=0;i<factors.Length;i++) {

if ('generator.Contains(factors[i]) &&
factors[i].Lengt h=33)

generator. Add(factors[i]);

}
string pattern = InitBinary(factors. Length);
while (pattern. Contains("0")) {

pattern = | ncreanent(pattern);

string nultiply = "1";

int len_sum= 0;int count = O;

for (int j=0;j<factors.Length;j++) {

if (pattern. Substring(j,1)=="1") {

l en_sum += factors[j]. Length;

count ++;

}
}

| en_sum -= count - 1;

if (len_sum=33) {

for (int j=0;j<factors.Length;j++) {
if (pattern. Substring(j,1)=="1")
multiply = Multipl yMdul 02(

mul tiply,factors[j]);

if (!'generator.Contains(nultiply))
generat or. Add(nul tiply);
}

}
tnp = sr.ReadLine(); string gen = "";

for (int i=0;i<generator.Count;i++)
gen += generator[i].ToString()+" ";
sw. WiteLine(gen);

sr.C ose(); sw Cose();

}

6. EXPERIMENTAL RESULTS

Sequential GenerateCRCRes due method and proposed Cal culateCRC are implemented in C# 3.0
using Visua Studio 2008. Multithreading is used for parale implementation of CalculateCRC.
Parallel code is executed on Intel Core i5 CPU. Table 1 shows the average execution time (in
millisecond) needed for computing CRC for al possible 32-bit input strings (all possible
232 values) using both sequential and parallel schemas. Elapsed computation time is calculated

212

using StopWatch class in C#. This table and related figure 4 show that the multithreaded parallel

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

computation of CRC code works faster than its corresponding sequential code.

Table 1. Execution time for sequential and parallel CRC computation of all 32-bit input values

Input String # of Execution time | Execution time
Length (bit) | threads | (Sequential) (MT)
2 24
320 7 47 128
2 934
1600 7 1774 19
2 36204
6400 2 65892 18934
100000
0@ 10000
ES 1000
g £ 100 320 bits
55 10 - 1600 bits
¢S .
b §° 1 M 6400 bits
- 1 2 4
number of threads

Figure 4. Execution time of sequential and parallel CRC computation

1. CONCLUSION

The CRC computation is traditionally implemented using sequentia schemas. These codes divide
an n bit dividend by an m bit divisor in n iterations regardless of the size of the divisor. In this
paper a systematic method is proposed and explained to implement a software framework for
parallel commutation of CRC based on modulo-2 mathematics. This paper also shows that if the
divisor polynomial is selected from a special family of 32-bits strings called OZO, the division
can be implemented using a parallel schema like multithreading and this code works faster than
its corresponding sequential code. This work can be continued with designing parallel codes for
other families of divisors.

REFERENCES

[1] Hamed Sheidaeian, Behrouz Zolfaghari, Parallel Computation of CRC Using Special Generator
Polynomials, International Journal of Computer Networks & Communications (IJCNC), Val. 4, No.
1, January 2012

[2] Behrouz Zolfaghari, Hamed Sheidaeian, Saadat Pour Mozafari, Systematic Selection of CRC
Generator Polynomials to Detect Double Bit Errors in Ethernet Networks, In Proceedings of The
Third International Conference on Computer Networks & Communications (CoNeCo 2011), Ankara,
Turkey, June 26 ~ 28, 2011.

[3] Behrouz Zolfaghari, Saadat Pour Mozaffari, Haleh Karkhane, A Systematic Approach to the Selection
of CRC Generators to Detect Burst Errors in Ethernet Networks, In proceedings of the IEEE
International Conference on Intelligent Network and Computing (ICINC 2010), Kuala Lumpur,
Malaysia, November 2010.

213

(4]

(]

6]

(8]

(9]

[10]
[11]

[12]

International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.3, May 2013

Hamed Sheidaeian, Behrouz Zolfaghari, An Efficient and Secure Approach to Multi-User Image
Seganography Using CRC-Based CDMA, In Proceedings of IEEE 3rd International Conference on
Signal Acquisition and Processing, 2011, Singapure, Singapure.

Xiaodong Deng, Mengtian Rong, Tao Liu, Yong Yuan, Dan Yu, Segmented Cyclic Redundancy
Check: A Data Protection Scheme for Fast Reading RFID Tag's Memory. In Proceedings of IEEE
Wireless Communications & Networking Conference (WCNC 2008), pp. 1576-1581, March 31 2008
- April 32008, Las Vegas, Nevada, USA.

Ahmad, A. and Hayat, L., Algorithmic Polynomial Selection Procedure for Cyclic Redundancy Check
for the use of High Speed Embedded Networking Devices, In Proceedings of International Conference
on Computer and Communication Engineering 2008 (ICCCE’08), Kuala Lumpur, Malaysia - on 13-
15 May, 2008.

Yun Pana, Ning Ge, Zaiwang Dong, CRC Look-up Table Optimization for Sngle-Bit Error
Correction, Tsinghua University Journal of Science & Technology, Tsinghua Science & Technology,
Voal. 12, Issue 5, pp. 620-623, October 2007.

Liu Zhanli, Liang Xiao, Zhao Chunming, Wang Jing, CRC-Aided Turbo Equalization For MIMO
Frequency Selective Fading Channels, Journal of Electronics(China), Vol. 24, Issue 1, pp. 69-74,
2007.

Wama Mathys, Pipelined Cyclic Redundancy Check (CRC) Calculation, In Proceedings of
International Conference on Computer Communications and Networks, 2007 ICCCN 2007, In
Proceedings of 16th International Conference on, pp 365-370, 13-16 August 2007.

Raman Assaf, Tyszberowicz Shmuel, The EasyCRC Tool, In Proceedings of 2007 Internationa
Conference on Software Engineering Advances (ICSEA 2007), pp. 25-31, August 2007.

Y alamarthy, Ragha Sudha; Wilson, G. Stephen, Near-ML Decoding of CRC Codes, In Proceedinggs
of 41st Annual Conference on Information Sciences and Systems, pp. 92-94, 14-16 March 2007.
Andrew. S. Tanenbaum, Computer Networks, 5th Edition, 2010, Prentice Hall

Authors

Hamed Sheidaeian isa Ph.D. student in computer engineering at University of Tehran, Iran.
Hisr esearch areas include computer architecture, embedded system design, data
communication and multimedia systems.

Behrouz Zolfaghari is a Ph.D. student in computer engineering at Amirkabir University of
Technology (AUT), Tehran, Iran. His research areas include image processing, computer
architecture and computer networks. ' .

214

