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ABSTRACT

Our primary objective in this paper is to study the distribution of the maximal clique size of the vertices in
complex networks. We define the maximal clique size for a vertex as the maximum size of the clique that the
vertex is part of and such a clique need not be the maximum size clique for the entire network. We
determine the maximal clique size of the vertices using a modified version of a branch-and-bound based
exact algorithm that has been originally proposed to determine the maximum size clique for an entire
network graph. We then run this algorithm on two categories of complex networks: One category of
networks capture the evolution of small-world networks from regular network (according to the well-known
Watts-Strogatz model) and their subsequent evolution to random networks; we show that the distribution of
the maximal clique size of the vertices follows a Poisson-style distribution at different stages of the
evolution of the small-world network to a random network; on the other hand, the maximal clique size of
the vertices is observed to be in-variant and to be very close to that of the maximum clique size for the
entire network graph as the regular network is transformed to a small-world network. The second category
of complex networks studied are real-world networks (ranging from random networks to scale-free
networks) and we observe the maximal clique size of the vertices in five of the six real-world networks to
follow a Poisson-style distribution. In addition to the above case studies, we also analyze the correlation
between the maximal clique size and clustering coefficient as well as analyze the assortativity index of the
vertices with respect to maximal clique size and node degree.
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1. INTRODUCTION

Network Science is an emerging area of research interest to study complex real-world networks
from a graph theoretic point of view. We abstract the complex network as a graph with the nodes
representing the vertices and the connections between any two nodes in the network modeled as
edges in the graph. It is imperative that the algorithms run on these large scale graphs be as
efficient as possible and do not take significant time to determine the metrics of interest. Though
there exists efficient polynomial-time algorithms to determine widely studied metrics [1] like
centrality, diameter, clustering coefficient, etc on these graphs, there still exists certain metrics
like clique such that the problem of determining a maximum size clique is NP-hard [2]. A clique
on a graph is a subset of the vertices such that there exists an edge between any two vertices in
this subset; an algorithm to find cliques of various sizes (constituent nodes) could be used to
identify closely-knit communities [3-5] of various sizes in complex network graphs, including
both real-world networks as well as networks that evolve from theoretical models.
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The "maximum size clique" for a graph of n vertices is a clique of the largest size k (k < n) such
that there does not exist a clique of size k + 1 in the graph. A "maximal size clique for a vertex i"
in a graph is the clique of the largest size that involves vertex i as one of the constituent vertices.
While the maximum size clique for a graph is the maximal size clique for its constituent vertices,
there could exist several other vertices in the graph for which the maximal size clique is smaller
than the maximum size clique. Most of the research focus in the literature is to develop exact
algorithms that could determine the maximum size clique for the entire graph as efficiently as
possible with respect to both time and space complexity. Very little attention has been given to
determine the maximal size cliques for the individual vertices in the graph. Specifically, to the
best of our knowledge, no attempt has been made to analyze the distribution of the maximal
clique sizes of the individual vertices in complex network graphs. In this paper, we choose a
recently proposed exact algorithm [6] to determine the size of the maximum clique for large-scale
complex network graphs and extend it to determine the size of the maximal clique that a
particular node is part of. Using the exact algorithm to determine maximal clique size for the
individual vertices of the graphs, we determine the distribution of the maximal clique size for two
categories of complex networks: The first category of complex networks correspond to networks
that evolve during the transformation of a regular network to a small-world network and further to
a random network; we use the well-known Watts-Strogatz model [18] to simulate the evolution of
the small-world networks and random network from a regular network. The second category of
complex networks are six real-world network graphs (ranging from random networks to scale-
free networks). As the networks evolve from a regular network to a small-world network, we
observe the maximal clique size of the vertices to be almost identical to each other and as well
correspond to the maximum clique size for the entire network graph; on the other hand, as a
small-world network evolves to a random network, we observe the maximal clique size of the
vertices to exhibit a Poisson-style distribution. Likewise, we observe five of the six real-world
network graphs (irrespective of their number of nodes and degree distribution) to exhibit a
Poisson-style distribution for the maximal clique size. The above observations are significant to
the study of cliques and their associated phenomenon (community detection, homophily, etc) in
complex networks and such results have not been hitherto reported in the literature.

The second half of our paper focuses on identifying a computationally-light metric for the
individual nodes of a graph that correlates well (either positively or negatively) to that of the
maximal clique size (which we categorize as a computationally-hard metric, owing to the NP-
hard nature of the problem to determine this metric and the significant time complexity involved
in the exact algorithms for this metric). Once we identify such a computationally-light metric that
correlates well with the maximal clique size of the vertices in complex network graphs, we could
infer a ranking of the vertices based on this computationally-light metric as a ranking of the
vertices based on the maximal clique size. To the best of our knowledge, we have not come
across any such study to identify a computationally-light metric that correlates well with the
maximal clique size for real-world network graphs. Ours is the first attempt in this direction. The
two candidate computationally-light metrics that we consider are the clustering coefficient and
the node degree. The clustering coefficient of a vertex is the ratio of the number of edges between
the neighbors of the vertex to that of the maximum number of edges possible between the
neighbors of the vertex. Our conjecture is that nodes that are part of a larger clique are more
likely to have a larger clustering coefficient and vice-versa. Similarly, we conjecture that nodes
that have a larger degree (number of neighbors) are likely to be part of cliques of larger size and
vice-versa. Results of our correlation studies on real-world network graphs reveal that the
maximal clique size has good correlation with node degree (especially as the variation in the node
degree increases), whereas the maximal clique size correlates poorly with the clustering
coefficient. We further confirm the positive correlation between the maximal clique size and node
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degree through an analysis of the Assortativity index of the vertices [1] in the real-world network
graphs with respect to these two metrics. We observe the real-world network graphs could be
ranked in a similar order in the decreasing order of the Assortativity index of the vertices with
respect to both the maximal clique size and the node degree.

The rest of the paper is organized as follows: Section 2 describes related work on analysis of
complex network graphs using cliques. Section 3 describes an efficient exact algorithm to
determine the maximum clique size for an entire graph and our extension to determine the
maximal clique size for the individual vertices of the graph. Section 4 presents the evolution of
small-world networks and their transformation to a random network under the Watts-Strogatz
model and describes the results of the maximal clique size of the networks that evolve during this
transformation. Section 5 presents the real-world network graphs studied in this paper and an
analysis of their degree distribution and distribution of the maximal clique size of the vertices.
Section 6 presents the results of the correlation studies between the maximal clique size and
clustering coefficient. Section 7 presents the results of the correlation studies between the
maximal clique size and the node degree. Section 8 presents the results of Assortativity index-
based analysis of the real-world network graphs with respect to maximal clique size and node
degree. Section 9 concludes the paper. Throughout the paper, we use the terms 'node' and 'vertex',
'link' and 'edge' interchangeably. They mean the same.

2. RELATED WORK

The research focus with regards to cliques in the context of complex networks is to come up with
efficient heuristics to reduce the run-time complexity in determining the maximum size clique for
the entire network graph. Though branch-and-bound has been the common theme among these
works, the variation is in the approach used to arrive at the bounds and enforce them in the search
space. Strategies used for pruning the search space are typically based on node degree (e.g., [6]),
vertex ordering (e.g., [7]) and vertex coloring (e.g., [8]). Recently, a parallelized approach [9] for
branch and bound has also been proposed for determining cliques in real-world networks ranging
from 1000 to 100 million nodes. Nevertheless, none of the research so far has focused on
identifying correlation between the maximal clique size for an individual vertex (the size of the
largest clique that a particular vertex is part of) with any of the commonly studied metrics (like
node degree, clustering coefficient) for network analysis. Ours is the first step in this direction.
With the problem of determining maximum size clique for the entire network graph and maximal
size cliques for the individual vertices being NP-hard and computationally time-consuming for
complex real-world networks of larger size, it becomes imperative to analyze the correlations of
the maximal clique size values of the individual vertices with that of the network metrics that can
be easily computed so that meaningful inferences about maximal clique size values can be made.

3. CLIQUE

A clique is a sub graph of a graph in which all the vertices are adjacent to each other. The
problems of finding maximum size clique for the entire graph as well as the maximal size cliques
for the individual nodes are NP-hard problems [2]. Several exact algorithms (that at the worst
case incur exponential time for a NP-hard problem) have been proposed to determine maximum
size cliques for sparse graphs. Recently, with the surge in interest to analyze large real-world
networks from a graph theoretic point of view, researchers have proposed efficient exact
algorithms (e.g., [6-9]) to determine maximum size cliques for large/dense graphs. The common
theme [10] behind these algorithms is a branch and bound approach of searching through all
possible candidate cliques and limiting the search to only viable candidate sets of vertices whose
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agglomeration has scope of being a clique of size larger than the currently known clique found as
part of the search; the variation among these exact algorithms is the pruning strategy (the
approach taken to compute the bounds and use them) to limit the search. In this section, we will
describe one such branch and bound-technique based exact algorithm that has been recently
proposed in the literature [6] to determine maximum size clique in large network graphs and
explain our modification to the algorithm so that it can be used to determine the maximal cliques
that each vertex in the graph is part of; the largest among these cliques is the maximum size
clique for the entire graph.

Figure 1 outlines the pseudo code of the algorithm (proposed originally in [6]) to determine the
maximum size clique for an entire graph. The algorithm starts with an estimate of O for the
maximum size clique (variable max) in the entire graph; the value for max is updated as and when
a clique of size larger than the latest value of max is found. The procedure MAXCLIQUE
proceeds in iterations, with each iteration designed to determine the maximum size clique for the
entire graph that could also include vertex v; (considered in the increasing order of the IDs). In a
particular iteration, vertex v; is considered worthy of exploration for presence in a maximum size
clique only if its degree is at least the value of max at that time (i.e., only vertices that could be
part of a clique of size larger than the currently known maximum size clique are considered - a
pruning strategy). For each such vertex v;, a candidate set U of neighbor vertices v; (whose degree
is at least the latest value for max) is constructed and passed to the sub routine CLIQUE to find a
clique among these vertices; the initial size of the clique is 1 - accounting for v;.

Subroutine CLIQUE(G = (V, E), U, size)
/1 size is the size of clique found so far

if U = ¢ then
Procedure MAXCLIQUE (G = (V, E)) if size > max then
max < 0 max <— size
fori:1tolVido return
if degree(v;) > max then while U1 > 0 do
U—¢ if size + |U| < max then
for each v; € Neighbor(v;) do return
if degree(v;) > max then select any vertex u from U
U—Uu{y} U<—U\u}
CLIQUE(G, U, 1) N'(u) := {w | w € Neighbor(u) A

degree(u) > max}
Clique(G, U N N'(u), size + 1)

Figure 1. Exact Algorithm to Determine Maximum Size Clique for a Graph (adapted from [6])

The sub routine CLIQUE called with vertex v; as the first constituent vertex of the largest possible
clique involving v;, expands with one vertex at a time through a combination of iterations and
recursions; the sub routine runs as long as the size of the set U is greater than zero or if the current
value of max is less than the sum of the sizes of the set U and the current clique found so far (a
pruning strategy). In each such iteration, a vertex u (that is also a neighbor of the starting vertex v;
and the other vertices in the clique determined so far) is randomly removed from the set U and the
neighbors of u that are also present in U (and hence are neighbors of the starting vertex v; and the
other vertices that are part of the clique found so far) are only further considered to be candidates
that could be part of the clique, and a recursive call to the CLIQUE sub routine is made with the
value of variable size (the size of the largest clique found so far involving vertex v;) incremented
by 1 - accounting for u as the latest entrant in the clique determined so far. Each recursive call to
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CLIQUE is accompanied by an iteration where a vertex u (that is also a neighbor of the vertices
already part of the clique) is removed from the set U passed to the sub routine and only the
neighbors of u that are also neighbors of the vertices already in the clique are considered. During
any such recursive call, if the size of the set U passed to the sub routine CLIQUE reaches zero,
the algorithm terminates the sequence of recursions and updates the value of max if the size of the
clique determined so far involving vertex v; is larger than the current value of max. During the
sequence of returns from the recursive calls, it is possible that a new sequence of recursions and
iterations is triggered due to the presence of a neighbor u of v; that has scope for being in a clique
(involving v;) of size larger than the clique found so far for the entire graph. The algorithm
explores all such possible cliques involving vertex v; that have scope for exceeding the currently
known maximum size clique for the entire graph.

At the end, the algorithm returns the maximum size clique for the entire graph that also happens
to be the maximal size clique involving some vertex v; such that there is no other vertex v; (i > j)
that is also part of the clique. Since the algorithm proceeds with vertices in the increasing order of
their IDs, if the maximum size clique for the entire graph involves at least one vertex v; with a
smaller ID, the presence of the maximum size clique is detected much earlier and the subsequent
iterations (with vertices whose IDs are greater than v;, but could be part of only cliques of size
smaller or equal to the maximum size clique of the entire graph involving v;) are merely pruned,
contributing to the time-efficiency of the algorithm. Hence, the labeling of the vertices with their
IDs plays a significant role in the run-time complexity of the algorithm; the algorithm is capable
of quickly determining the maximum size clique if the latter comprises of at least one vertex with
a smaller ID.

Procedure MAXIMALCLIQUE (G = (V, E))
fori:1tolVido
maximalCliqueSize[v;] < 0
U—¢
for each v; € Neighbor(v;) do
U—Uu {Vj}
CLIQUE(G, v, U, 1)

Subroutine CLIQUE(G = (V, E), v;, U, size) /I size is the size of clique found so far for
vertex v;
if U= ¢ then
if size > maximalCliqueSize[v;] then
maximalCliqueSize[v;] < size
return
while Ul > 0 do
if size + 1U| < maximalCliqueSize[v;] then
return
select any vertex u from U
U<—U\u}
N'(u) := {w | w € Neighbor(u) A degree(u) > maximalCliqueSize[v;]}
Clique(G, v, U N N'(u), size + 1)

Figure 2. Exact Algorithm to Determine the Maximal Clique Size for each Vertex in a Graph (adapted from
(61
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Figure 2 illustrates our modifications (to determine the size of the maximal clique that each vertex
is part of) to the pseudo code of the algorithm presented in Figure 1. The tradeoff is an increase in
the run-time of the algorithm: we cannot just prune our search based on the vertex IDs; we have
to explore the neighborhood of each of the vertices to determine the maximal size clique that each
vertex is part of. Since to start with, the maximal size clique known for vertex v; is 0, there is no
need to filter the neighbors of v; in procedure MAXIMALCLIQUE based on the degree of the
neighbors; all neighbors of v; are included in the set U and passed onto the sub routine CLIQUE.
However, we could retain all of the pruning steps in sub routine CLIQUE (called to find the
maximal size clique for each of the vertices v;) and recursive calls to the same: there is no need to
explore the neighbors of vertex u whose degree is less than that of the currently known maximal
clique size for vertex v;.

4. SMALL-WORLD NETWORKS AND THEIR MAXIMAL CLIQUE
SIZE DISTRIBUTION

Small-world networks are characteristic of having a smaller path length (number of hops)
between any two vertices and at the same time maintaining a higher clustering coefficient, a
measure of the probability of link between any two neighbor nodes of a node. The clustering
coefficient for a node is formally defined as the ratio of the actual number of links between any
two neighbors of the node to that of the maximum possible number of links between any two
neighbors of the node. Though all classes of complex networks (small-world network, random
network, scale-free network, etc) exhibit a relatively smaller path length between any two nodes
in the network, it is only the small-world networks that maintain a smaller path length without
incurring significant loss in the clustering coefficient of the nodes. In this section, we analyze the
distribution of the maximal clique size of the vertices during the evolution of a small-world
network from a regular network and the subsequent transformation of the small-world network to
a random network, all of which are simulated according to the well-known Watts-Strogatz model
[18], hereafter, referred to as the WS model.

Initially, we start with a regular network wherein the number of neighbors per node (i.e., the
number of links per node, identified as K,.g.,) is the same (and typically, an even number of links
per node) as well as there is a particular pattern in the distribution of the links in the network
(typically dependent on the dimension of the network). In this paper, we restrict ourselves to a
one-dimensional regular network. The regular network envisioned in this paper has a ring as the
underlying topological structure. Each node is connected to at least two other nodes (i.e., to the
two neighboring nodes that are each one hop away in the ring): if there are more than 2 links per
node, then the node is connected to nodes in the increasing order of the hop count in the ring. In
general, if the number of links per node is K.uar then a node is connected to neighbor nodes that
are 1, 2, ..., Kioeua/2 hops away from the node on the ring. Figure 3 displays a 10-node regular
network with four links per node (i.e., K,.qu.r = 4) and each node is connected to nodes that are 1
and 2 hops away from it in the ring.
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Figure 3. Example for an One-Dimensional Regular Network (K. = 4 Links per Node)

The WS model operates based on a tuning parameter called the probability of link rewiring
(Pyewire)- We rewire each link in the regular network with the probability P,.,;.. As part of the
procedure to decide whether or not to rewire a link u-v, we generate a random number (in the
range 0O to 1) and if it is less than P,,,;., then we decide to rewire the link. When a link u-v is
chosen for rewiring, we choose a target node w uniform-randomly among the nodes in the
network (such that w is neither u nor v), remove the link u-v and connect node u with node w (i.e.,
add the link u-w to the network). We repeat the above procedure for every link in the initial
regular network. Note that the newly added links are not considered for rewiring.

We conduct simulations to transform a regular network to a small-world network and
subsequently to a random network according to the WS model. The simulations are conducted for
networks of 100 nodes and 200 nodes; the probability of rewiring is varied from values of 0.01 to
0.1, in increments of 0.01 (referred to as small-world network zone), and from values of 0.1 to
1.0, in increments of 0.1 (referred to as random network zone). The reasoning behind the above
distinction for the probability of rewiring is based on our observations from the simulation
results: for P, values of 0.01 to 0.1, the average diameter of any node in the network (average
of the maximum of the number of hops from a node to any other node) reduces significantly, but
with only a moderate reduction in the clustering coefficient - a phenomenon characteristic of
small-world networks. On the other hand, as we vary the probability of rewiring from 0.1 to 1.0,
the average diameter of any node in the network reduces only marginally, whereas the clustering
coefficient reduces significantly, indicating the transformation of the small-world network to a
random network. We also vary the initial number of links per node (Kjeu.r) in the regular
network from 4 to 20, in increments of 2. The results presented in Figures 4-10 are the average of
the results observed for 100 network graphs, simulated for each value of the number of nodes
(100 and 200 nodes) and each value of the probability of rewiring as mentioned above.
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Figure 4. Impact of the Probability of Link Rewiring and the Initial Number of Links per Node on the
Average Diameter per Node: Transition from Regular Network to Small-World Network and Random
Network

Figure 4 captures the absolute values of the average diameter of any node in the network as well
as the ratio of the average diameter with and without rewiring. For a given probability of
rewiring, we observe the absolute average value for the diameter to be smaller when we start with
a regular network with a larger number of links per node. As we do rewiring, within the small-
world zone, we observe the differences in the average diameter per node (for different values of
K, eouar) to reduce significantly (in an exponential fashion); in the random network zone, the
average diameter per node for different values of K., does not vary appreciably. Based on the
results for the ratio of the average diameter per node with and without rewiring, we observe that
the percentage decrease in the average diameter per node is much higher for regular networks
with fewer number of initial links, indicating the effectiveness of rewiring in reducing the path
length. As we increase the number of nodes from 100 to 200, we observe the average diameter
per node to further reduce (for a given probability of rewiring and initial number of links per node
in the regular network), especially as we transform from a small-world network zone to a random
network zone.
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Figure 5. Impact of the Probability of Link Rewiring and the Initial Number of Links per Node on the
Average Clustering Coefficient per Node: Transition from Regular Network to Small-World Network and
Random Network

Figure 5 captures the reduction in the average clustering coefficient per node (average of the
clustering coefficient of all the nodes in the network) due to rewiring. We observe the clustering
coefficient to reduce only by about 25% in the small-world zone and the percentage reduction is
the same for all values of K., indicating that regular networks that start with a relatively larger
value of K,z (expected to have a larger initial clustering coefficient, without rewiring) continue
to maintain a relatively larger value (when compared to the regular networks that start with a
smaller value of K,.,) for the average clustering coefficient per node with rewiring. As we enter
the random network zone and with increase in the probability of rewiring, we observe the
percentage decrease in the clustering coefficient to be significantly higher for random networks
whose predecessor regular networks had a fewer number of initial links per node. For a given
probability of rewiring and initial number of links per node in the regular network, we observe the
clustering coefficient to reduce at a relatively faster rate (with respect to both the magnitude and
the rate of decrease) for networks of 200 nodes compared to networks of 100 nodes. Also, in the
random network zone, for a fixed probability of rewiring and number of links per node, the
variation in the clustering coefficient per node for various values of Kj.g.- tends to reduce with
increase in the total number of nodes from 200 to 100.
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Figure 6. Impact of the Probability of Link Rewiring and the Initial Number of Links per Node on the
Average Maximal Clique Size per Node: Transition from Regular Network to Small-World Network and
Random Network

Figure 6 captures the variation in the average maximal clique size per node (average of the
maximal clique size of all the nodes, measured at the end of rewiring) for various values of the
probability of rewiring and the initial number of links per node in the originating regular network.
We observe that the small-world zone does not suffer any noticeable decrease in the average
maximal clique size per node and the ratio of the average maximal clique size per node with and
without rewiring is close to 1. As we transition from the small-world zone to the random network
zone, we observe the average maximal clique size to reduce relatively at a much faster rate, with
increase in the probability of rewiring. We also notice that the rate of decrease in the average
maximal clique size per node is much more steep for larger values of K,.gu,» indicating that
cliques of larger size get dismantled due to rewiring; on the other hand, even though the absolute
values for the average maximal clique size per node is much smaller for lower values of Keuiars
the rate of decrease in the average maximal clique size is much flat, vindicating that there are
larger cliques to start with. An interesting observation is that the average maximal clique size per
nodes for different values of K. tend to get closer as we increase the probability of rewiring in
the random network zone, and such a converge is relatively more pronounced for networks with
200 nodes, compared to 100 nodes. Accordingly, for a given Py and Kieguar the rate of

decrease in the average maximal clique size per node is much more steeper for networks with 200
nodes.
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Figure 7. Distribution of the Maximal Clique Size vs. Initial Number of Links per Node: Transition from
Regular Network to Small World Network [100 Node Network]
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Figure 8. Distribution of the Maximal Clique Size vs. Probability of Link Rewiring: Transition from Small
World Network to Random Network [100 Node Network]

Figures 7-10 capture the variation in the maximal clique size for the nodes in the small-world
zones and random network zones. For a given value of P, and K., We observe the
distribution of the maximal clique size is Poisson for both the zones. Figures 7 and 9 capture the
distribution of the maximal clique size in the small-world zone. For smaller values of K,.gur (4
and 6 links per node), we observe the maximal clique size per node to be very close to the
average value for all the nodes; as we increase the value of K.z, We observe the maximal clique
size per node to vary slightly, but not much different from the average value for the maximal
clique size - coinciding with the invariant nature of the average maximal clique size per node
observed in Figure 6. For a given K., We observe the initial value (also the average value) for
the maximal clique size per node in a regular network is 1 + K,oua/2; in the small-world zone,
the average value for the maximal clique size per node stays much closer to this initial value for
the maximal clique size per node and the variation is much minimal. For networks with larger
K equiar values, the values for the maximal clique size per node is less than the average value by at
most 2 and greater than the average value by at most 1, and as observed in Figures 7 and 9, these
deviations occur with a vary small probability. The Poisson curve for the maximal clique size per
node shifts to the right in such a way that the peak for the curve increases by a value of 1 as we
increase the value of Kz, by 2. For a given K., the tallest peak in the distribution of the
maximal clique size per node is observed for a lower probability of rewiring (0.01) and the most
shallow peak with relatively larger variation is observed for high probability of rewiring (0.1).
Coinciding with the observations made in Figure 6, for a given value of K¢ and P, there is
not much variation in the distribution of the maximal clique size per node for networks of 100
nodes and 200 nodes.
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Figure 9. Distribution of the Maximal Clique Size vs. Initial Number of Links per Node: Transition from
Regular Network to Small World Network [200 Node Network]
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Figure 10. Distribution of the Maximal Clique Size vs. Probability of Link Rewiring: Transition from Small
World Network to Random Network [200 Node Network]

Figures 8 and 10 capture the variation in the maximal clique size for the nodes in the random
network zone for a given probability of rewiring and varying the initial number of links per node
with values of 4, 12 and 20 links - scenarios that exhibit minimal, moderate and maximum
variation in the maximal clique size per node as the probability of rewiring increases. For lower
values of the probability of rewiring (0.1 and 0.2; when the network is still in the small-world
zone), the distribution of the maximal clique size per node is taller for each value of K.z, and
the distributions are non overlapping (as the K., values are 4, 12 and 20, the average maximal
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clique size is around 3, 7 and 11 - vindicating the non-overlapping nature of the peaks and the
distribution of the maximal clique size for lower values of P,,,;.). With increase in P, we start
observing the distributions of the maximal clique size for the three fairly different values of
K equiar to start overlapping; the distributions tend to shift to the left - coinciding with a decrease in
the average maximal clique value. With increase in P,.,;., the shift towards lower values of the
maximal clique is more pronounced for networks with a larger K,..r value, vindicating the rapid
fall in the average maximal clique size; also for larger values of K,.qu.r the distributions for the
maximal clique become more spread out with increase in P,.,;., - lowering the probability of
finding the maximal clique size per node to be close to the average value. On the other hand, for
networks with lower values of K,.g the distribution for the maximal clique size remains fairly
narrow (even with increase in the P,.,;. values), indicating that it is still possible to observe the
maximal clique size for any node to be close to the average value.

S.REAL-WORLD NETWORK GRAPHS AND THEIR ANALYSIS

In this section, we describe the network graphs analyzed and illustrate the degree distribution and
the distribution of the maximal clique size of the vertices in the network graphs. We do so to
understand the topological structure of the real-world network graphs as well as to elucidate the
impact of the degree and maximal clique size distribution of the vertices on the correlation
between the centrality values and the maximal clique size observed for the vertices. The network
graphs analyzed are briefly described as follows: (i) Zachary's Karate Club [11]: Social network
of friendships (78 edges) between 34 members of a karate club at a US university in the 1970s;
(i) Dolphins' Social Network [12]: An undirected social network of frequent associations (159
edges) between 62 dolphins in a community living off Doubtful Sound, New Zealand; (iii) US
Politics Books Network [13]: Nodes represent a total of 105 books about US politics sold by the
online bookseller Amazon.com. A total of 441 edges represent frequent co-purchasing of books
by the same buyers, as indicated by the "customers who bought this book also bought these other
books" feature on Amazon; (iv) Word Adjacencies Network [14]: This is a word co-appearance
network representing adjacencies of common adjective and noun in the novel "David
Copperfield" by Charles Dickens. A total of 112 nodes represent the most commonly occurring
adjectives and nouns in the book. A total of 425 edges connect any pair of words that occur in
adjacent position in the text of the book; (v) US College Football Network [15]: Network
represents the teams that played in the Fall 2000 season of the American Football games and their
previous rivalry - nodes (115 nodes) are college teams and there is an edge (613 edges) between
two nodes if and only if the corresponding teams have competed against each other earlier; (vi)
US Airports 1997 Network: A network of 332 airports in the United States (as of year 1997)
wherein the vertices are the airports and two airports are connected with an edge (a total of 2126
edges) if there is at least one direct flight between them in both the directions. Data for networks
(i) through (v) can be obtained from http://www-personal.umich.edu/~mejn/netdata/. Data for
network (vi) can be obtained from: http://vlado.fmf.uni-lj.si/pub/networks/pajek/data/gphs.htm.
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Figure 11. Distribution of Node Degrees (Probability Mass Function and Cumulative Distribution)

5.1. Degree Distribution of the Real-World Network Graphs

Figure 11 presents the degree distribution of the vertices in the six network graphs in the form of
both the Probability Mass Function (the fraction of the vertices with a particular degree) and the
Cumulative Distribution Function (the sum of the fractions of the vertices with degrees less than
or equal to a certain value). We also compute the average node degree and the spectral radius
degree ratio (ratio of the spectral radius and the average node degree); the spectral radius
(bounded below by the average node degree and bounded above by the maximum node degree) is
the largest eigenvalue of the adjacency matrix of the network graph, obtained as a result of
computing the eigenvector centrality of the network graphs. The spectral radius degree ratio is a
measure of the variation in the node degree with respect to the average node degree; the closer the
ratio is to 1, the smaller the variations in the node degree and the degrees of the vertices are closer
to the average node degree (characteristic of random graph networks). The farther is the ratio
from 1, the larger the variations in the node degree (characteristic of scale-free networks). Figure
11 presents the degree distribution of the network graphs in the increasing order of their spectral
radius ratio for node degree (1.01 to 3.23). The US College Football network exhibits minimal
variations in the degree of its vertices (each team has more or less played against an equal number
of other teams). The US Airports network exhibits maximum variation in the degree of its
vertices (there are some hub airports from which there are flights to several other airports;
whereas there are several airports with only fewer connections to other airports). In between these
two extremes of networks, we have the other four network graphs, all of which have a spectral
radius ratio for node degree around 1.4-1.7, indicating a moderate variation in the node degree
(compared to the spectral radius ratios observed for the US College Football network and the US
Airports network).
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Figure 12. Distribution of Maximal Clique Size of the Vertices in Real-World Network Graphs

5.2. Maximal Clique Size Distribution of the Real-World Network Graphs

Figure 12 presents the distribution of the maximal clique size of the vertices for the six real-world
network graphs, in the increasing order of the average value for the maximal clique size of the
vertices. An interesting observation is that five of the six real-world network graphs exhibit a
Poisson-style distribution for the maximal clique size and the average value of the maximal clique
size for the nodes is very close to the maximum value. The only real-world network that does not
exhibit a Poisson-style distribution for the maximal clique size is the US Airports network whose
distribution of the maximal clique size appears to be more of a scale-free (power-law) pattern
with a long tail (wherein the average maximal clique size is 5.56, but there exists a significant
number of nodes whose maximal clique size values are 21 and 22). We can also notice that the
average value of the maximal clique size of the nodes is not proportional to the number of nodes
in the network nor to the spectral radius ratio for node degree. This is evident from three of the
six real-world networks with comparable number of nodes (Word Adjacency Network - 112
nodes, US Politics Books Network - 112 nodes and the US Football Network - 105 nodes)
incurring significantly different average values for the maximal clique size (3.56, 4.57 and 6.38
respectively). Similarly, though the spectral radius ratio for node degree increases with increase in
the scale-free nature of the networks, we do not observe any such pattern of increase or decrease
for the maximal clique size; for example: the US Football Network, Word Adjacency Network
and the US Airports Network have spectral radius ratio for node degree values of 1.01, 1.73 and
3.22 respectively; whereas, their average maximal clique size values are 6.38, 3.56 and 5.56
respectively (no pattern of increase or decrease with increase in the spectral radius ratio for node
degree).

6. CORRELATION COEFFICIENT ANALYSIS: MAXIMAL CLIQUE
SIZE VS. CLUSTERING COEFFICIENT

The clustering coefficient of a node is the ratio of the number of links between the neighbors of
the node to that of the maximum possible number of links between the neighbors of the node [1].
If a node i has k; neighbors and there are L; links among these k; neighbors, then the clustering

coefficient for node i is: C, = L

k.(k,—1)/2
coefficient of the nodes in the six real world network graphs is positively correlated to the
maximal clique size of the nodes in these graphs. Our reasoning is that a clique comprises of links
between any two of its constituent nodes; thus, the neighbors of a node in a clique are also
connected with links among themselves. We wanted to examine whether or not this corresponds
to links between any two neighbors of a node in the real world network graph itself.

. In this section, we examine whether the clustering
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If X and Y are the average values of the two metrics (say X and Y) observed for the vertices (IDs
1 to n, where n is the number of vertices) in the network, the formula used to compute the
Correlation Coefficient between two metrics X and Y is given in equation (1), as follows:

> (X[ID]-X)*(¥[ID]-¥)
CorrCoeff (X ,Y) =—2= (1)

\/ i(X[lD] -X)? \/ i(Y[lD] -Y)

ID=1 ID=1

Table 1. Correlation Coefficient between Maximal Clique Size and Clustering Coefficient

Network Spectral Radius Correlation Coefficient:
Network Name Ratio for Node Maximal Clique Size vs.

Index . ..

Degree Clustering Coefficient

(vi) US Airports 1997 Network 3.22 -0.47

i) Karate Club Network 1.46 -0.22

(i) Dolphins' Social Network 1.40 -0.17

@iv) Word Adjacencies Network 1.73 -0.09

(ii1) US Politics Books Network 1.41 0.07

) US College Football Network | 1.01 0.69

Table 1 lists the correlation coefficient observed for the clustering coefficient and the maximal
clique size of the nodes for the six real world network graphs (in the order of increasing values of
the correlation coefficient), along with the spectral radius ratio for node degree observed for these
networks. Contrary to our hypothesis, we observe the clustering coefficient of the nodes in four of
the six real world network graphs to be poorly correlated to the maximal clique size of the nodes;
the exceptions being the US College Football network (a random network graph) and the US
Airports' 97 network (a scale-free network graph) exhibiting respectively moderate levels of
positive and negative correlations between the clustering coefficient and the maximal clique size
of the nodes. Hence, if at all a positive correlation is observed between the clustering coefficient
and maximal clique size, it is most likely by chance. On the other hand, the correlation between
the clustering coefficient and maximal clique size turns more negative with increase in the scale-
free nature of the networks. For networks that have moderate values of the spectral radius ratio
for node degree (that is the networks are neither scale-free nor random), there is pretty much no
correlation between the clustering coefficient and maximal clique size of the nodes.

7.CORRELATION COEFFICIENT ANALYSIS: MAXIMAL CLIQUE
SIZE VS. NODE DEGREE

In this section, we present the results of correlation coefficient analysis conducted between node
degree vis-a-vis the maximal size clique that each vertex is part of. The analysis has been
conducted on the six real-world network graphs (mentioned in Section 5) with respect to the node
degree and the maximal clique size measured for the vertices in these graphs. We implemented
the exact algorithm to determine the maximal clique size for each of the vertices in a graph (see
Figure 2). The visualization figures presented in the paper were obtained by porting the network
data as well as the node degree/maximal clique size results to Gephi [16] and making appropriate
changes to the settings in the latter. The layout algorithm chosen in Gephi for visualization is the
Fruchterman Reingold algorithm [17] that presents the network in a circular format (like a globe).
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Table 2. Correlation Coefficient between Maximal Clique Size and Node Degree

Network Spectral Radius | Correlation Coefficient:
Network Name Ratio for Node Maximal Clique Size vs.
Index
Degree Node Degree
(vi) US Airports 1997 Network 3.22 0.87
1) Karate Club Network 1.46 0.64
(i1) Dolphins' Social Network 1.40 0.78
>iv) Word Adjacencies Network 1.73 0.71
(ii1) US Politics Books Network 1.41 0.70
W) US College Football Network | 1.01 0.32

\

N

Y
: <)
US Airports 1997Network Karate Club Network Dolphins' Social Network
(332 nodes, 2126 edges) (34 nodes, 78 edges) (62 nodes, 159 edges)

‘\~  N ~20@
Word Adjacencies Network US Politics Books Network US College Football Network
(112 nodes, 425 edges) (105 nodes, 441 edges) (115 nodes, 613 edges)

Figure 13. Correlation of Maximal Clique Size of the Vertices and Node Degree in the Real-World
Network Graphs

Table 2 presents a correlation coefficient analysis of node degree and the maximal clique size
observed for the vertices in each of the six real-world network graphs (in the decreasing order of
the spectral radius ratio for node degree). As we can see in Table 2, in general, the correlation
between the node degree and the maximal clique size increases as the spectral radius ratio for
node degree increases. This implies, the more scale-free a real-world network is, the higher the
correlation between the centrality value and the maximal clique size observed for a node. With
several of the real-world networks being mostly scale-free, we expect these networks to exhibit a
similar correlation to that observed in this paper. Also, since the correlation between the maximal
clique size and node degree is the lowest (correlation coefficient of 0.31) for the US College
Football Network (a random network), we conjecture that the stronger correlation (correlation
coefficient of 0.7 or above) observed between these two metrics in the other five real-world
network graphs is not merely by chance.
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Figure 13 depicts the correlation observed for the node degree with that of the maximal clique
size for the vertices in the real-world network graphs. In these figures, the node size is a measure
of the node degree (the larger a node is, the larger is its degree); the node color is a measure of the
maximal size clique the vertex is part of (the darker a node is, the larger is the size of the maximal
clique for the node). We observe a high correlation between maximal clique size of nodes and
nodes with a higher degree as well as located in a neighborhood of high degree nodes. That is, a
node with high degree as well as located in a neighborhood of high degree vertices is more likely
to be part of a maximal clique of larger size. In addition, as the networks get increasingly scale-
free, nodes with high degree are more likely connected to other similar nodes with high degree (to
facilitate an average path length that is almost independent of network size: characteristic of
scale-free networks [1]) contributing to a positive correlation between degree-based centrality
metrics and maximal clique size. We anticipate that as the networks become increasingly scale-
free, the hubs (that facilitate shortest-path communication between any two nodes) are more
likely to form the maximum clique for the entire network graph - contributing to higher levels of
positive correlation between node degree and maximal clique size.

8.ASSORTATIVITY INDEX-BASED ANALYSIS: MAXIMAL
CLIQUE SIZE AND NODE DEGREE

The assortativity index for a network graph with respect to a particular node-related metric is a
measure of the association of nodes with similar values for the metric [1]. For example, the
assortativity index of a graph with respect to node degree is a measure of the association of higher
degree nodes with other high degree nodes as well as the association of nodes of lower degree
nodes with other lower degree nodes. In this section, we analyze the assortativity index of the six
real-world network graphs with respect to the maximal clique size and node degree, and examine
the nature of association between nodes having higher values for each of these two metrics. If m
is the node-related metric of interest, then the assortativity index of the network graph with
respect to m is evaluated as the correlation coefficient of the values (with respect to metric m) for
the end nodes of the edges in the graph. Consider a network graph of n nodes and set of
undirected (bi-directional) edges E; let m[1], m[2], ...., m[n] be the values for nodes 1, 2, ...,n with

respect to metric m and m be the average value of the metric, the assortativity index with respect
to metric m is given by equation (2).

> (mli]— m)* (m{ j1- m)

AssortativityIndex(m) = IEE = )
D (mlil=m)* | > (m[ j1-m)’
(i,jeE (i.j)eE

Positive values for the assortativity index with respect to a metric indicates that the network
exhibits assortativity with respect to the metric (nodes with higher values for the metric are more
likely to be connected to nodes with higher values for the metric and vice-versa); negative values
for the assortativity index indicates the network exhibits disassortativity (nodes with lower values
for the metric are more likely to be connected to nodes with higher values for the metric and vice-
versa); assortativity index values close to 0 indicates the network is more neutral with respect to
the metric (i.e., the values for the end nodes of the edges with respect to the metric do not exhibit
any correlation).

Table 3 lists the assortativity index values for the maximal clique size and degree of the vertices
for the six real-world network graphs, along with their spectral radius ratio for node degree. We
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observe the assortativity index (with respect to the maximal clique size) for all the six network
graphs to be positive and the assortativity index value for the maximal clique size increases with
increase in the level of randomness in the network, indicating that the association of nodes of a
particular maximal clique size with other nodes that are also of the same maximal clique size is
more by chance. On the other hand, we observe the assortativity index (with respect to the node
degree) for five of the six network graphs (i.e., all network graphs, except the US Football
Network that exhibits the characteristic of random graphs) to be negative and the assortativity
index values for the node degree gets more negative with increase in the scale-free nature of the
network, indicating high degree nodes are more likely to be associated with low degree nodes
(especially with increase in the spectral radius ratio for node degree). Finally, to confirm our
earlier observation of a positive correlation between maximal clique size of the vertices and node
degree, we observe in Table 3 that the six-real world networks could be listed in an identical
order, in the increasing order of the Assortativity Index of the network graphs with respect to both
maximal clique size of the vertices and node degree.

Table 3. Assortativity Index of the Real-World Network Graphs based on Maximal Clique Size of the
Vertices and Node Degree

Spectral Assortativity Assortativity

Network Radius Ratio | Index for

Network Name . Index for

Index for Node Maximal Node Degree
Degree Clique Size

@) Zachary's Karate Network 1.46 0.13 -0.48

(vi) US Airports 1997 Network 3.22 0.17 -0.21

@iv) Word Adjacencies Network 1.73 0.20 -0.09

(ii1) US Politics Books Network 1.41 0.20 -0.04

(i1) Dolphins' Social Network 1.40 0.23 -0.02

) US College Football Network | 1.01 0.59 0.19

9. CONCLUSIONS

The first half of the paper reveals interesting observations with regards to the distribution of the
maximal clique size per node for small-world networks and random networks that evolve from a
regular network. As we transform from a regular network (with K4, number of links per node)
to a small-world network through link rewiring, we observe the maximal clique size of the nodes
to be invariant and very close to that of the average maximal clique size per node as well as close
to that of the average maximal clique size per node in the regular network. As we transform from
a small-world network to a random network (by increasing the probability of rewiring), we
observe the distribution of the maximal clique size per node to become more broader and thereby
the probability of observing a maximal clique size per node close to that of the average maximal
clique size is relatively much lower. Also, with increase in the probability of rewiring, the
distributions for the maximal clique size obtained for different K,.q..- values overlap each other
and shift towards a lower average value. Nevertheless, for all the scenarios/values for the
probability of rewiring and the initial number of links per node, the distribution for the maximal
clique size reflects that of a Poisson distribution.

Similar to that of the theoretically simulated networks, in the second half of the paper, we also
observe a Poisson-style distribution for maximal clique size of the vertices in real-world network
graphs irrespective of the number of nodes and the degree distribution of the vertices is an
interesting observation that has not been hitherto reported in the literature. We conjecture the
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distribution for the maximal clique size of the vertices to transform from Poisson to Power-law
distribution in networks that are highly scale-free (as observed in the case of the US Airports'97
Network). With the problem of determining maximal clique sizes for individual vertices being
computationally time consuming, our approach taken in this paper to study the correlation
between maximal clique sizes vis-a-vis node degree and clustering coefficient could be the first
step in identifying correlation between cliques/clique size in real-world network graphs and one
or more computationally-light node-based network metrics that can be quickly determined and
henceforth appropriate inferences can be made about a ranking of the vertices with respect to
maximal clique size. The approach taken to first to find the correlation coefficient between the
two metrics of interest (like node degree and maximal clique size of the vertices) in the individual
network graphs and then ranking the network graphs in the increasing order of the Assortativity
Index of the graphs with respect to each of the two metrics (an identical or close to identical
listing of the network graphs with respect to the each of the two metrics vindicates the positive
correlation observed between the two metrics based on correlation coefficient analysis). Such an
approach for correlation study between two node-based metrics is a unique approach that has
been so far not presented in the literature. We observe node degree to show promising positive
correlations to that of maximal clique sizes of the individual vertices, especially as the networks
get increasingly scale-free; this observation could form the basis of future research for analysis of
maximal clique size of the vertices in complex real-world network graphs and the correlations of
the maximal clique size of the vertices with other computationally-light metrics for complex
network analysis.
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