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ABSTRACT

An intensive use of reconfigurable hardware is expected in future embedded systems. This means that the
system has to decide which tasks are more suitable for hardware execution. In order to make an efficient
use of the FPGA it is convenient to choose one that allows hardware multitasking, which is implemented by
using partial dynamic reconfiguration. One of the challenges for hardware multitasking in embedded
systems is the online management of the only reconfiguration port of present FPGA devices. This paper
presents different online reconfiguration scheduling strategies which assign the reconfiguration interface
resource using different criteria: workload distribution or task’ deadline. The online scheduling strategies
presented take efficient and fast decisions based on the information available at each moment. Experiments
have been made in order to analyze the performance and convenience of these reconfiguration strategies.
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1. INTRODUCTION

The combined need for flexibility and high performance in embedded systems today is clearly
pointing at the use of Reconfigurable Devices as the new design paradigm [1]. This expectation is
based on the performance gain achieved by using a FPGA because of the possibility to
dynamically reconfigure parts of the FPGA during run-time without disturbing the execution of
the other parts [3].

In order to achieve the maximum processing performance, in the system that combines
reconfigurable hardware and microprocessor, either the operating system (OS) or the application
designer, selects the tasks that are most suitable for hardware execution, and distribute the
workload between the FPGA and the microprocessor [2]. In this case the reconfiguration time is
an aspect of FPGA technology which adds a significant overhead to hardware execution and
becomes very important for an efficient use of present day FPGAs, as they only have one
reconfiguration port.

In such hybrid embedded designs, the decision on whether a task will be executed in the
microprocessor or the FPGA is taken during execution time. This means that the tasks that are
going to be executed are not known in advance:  the multitasking management is an online
problem. Therefore, in this approach, it is not possible to use a known task graph to schedule task
reconfiguration and execution in the FPGA. In addition, once a task begins executing in the
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FPGA it is not feasible to interrupt its execution: saving a hardware context is complex and time
consuming for the implementation of an effective real-time computing system. For these reasons
we are using a non-preemptive online model.

There are researchers, as is discussed in Related Work Section, have developed offline algorithms
to scheduling the reconfiguration of tasks. This approach is not completely applicable to a real-
time multitasking problem. On the other hand, many researchers have developed online heuristics
mainly focused on optimizing FPGA area use and where the impact of the reconfiguration
scheduling on the overall scheduling of tasks is neglected by implicitly including reconfiguration
time in the task execution time.

Scheduling the execution of tasks on the only basis of free available space leads to erroneous task
scheduling, as shown in the example in Fig. 1, in which several tasks have been scheduled for
execution following a First Fit area use heuristic. Fig. 1 presents a snapshot of the execution of
several tasks scheduling with an algorithm that considers the reconfiguration time implicitly
included in the execution time of a task (shown as trec + tex). When a task arrives at the FPGA it
is scheduled for immediate execution if there is enough free space in the FPGA. In the example,
when task T3 arrives at the FPGA there is enough free space and this task is scheduled for
execution from time units 4 to 17. However T2, which arrived previously, is being reconfigured
from time units 3 to 6, which means that both tasks would be reconfigured at the same time. This
error in the scheduling is caused by the lack of an explicit difference between execution and
reconfiguration times. This situation is remarked in the figure by red line rectangles.

Fig 1.a Task scheduling without reconfiguration scheduling

This example shows that, in order to provide a correct task scheduling, a real-time algorithm
needs to take into account the free area in the device as well as the availability of the
reconfiguration port, and that the real problem is an online problem. However, in a hardware
multitasking system with a high task frequency rate, this simple scheduling heuristic is not the
most efficient, as proved in this paper. When incoming tasks may not be immediately sent for
execution in the FPGA, one or more waiting queues may be set and other strategies to schedule
the execution of pending tasks in the FPGA may be applied.

The objective of this paper is to present different real time online reconfiguration strategies and to
compare them in order to select the best one. We have compared a simple strategy, like the one
shown in the example, with another strategy which makes an intensive use of the reconfiguration
interface.

The rest of this paper is organized as follows: section 2 presents the previous work in this subject,
section 3 describes the system model used for this study, section 4 the basic reconfiguration
algorithm, section 5 presents the Reconfiguration Intensive Use Strategy implemented using two
different priority policies. Section 6 shows the experimental results obtained and section 7
provides conclusions about the different reconfiguration strategies which are the subject of this
study.
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2. STATE OF THE ART

We may find numerous papers related to task scheduling into an FPGA. All of them are focused
on FPGA area use optimization. Diessel and Elgindy [4], Bazargan [5], Handa [6] and Ahmadinia
[7]. present interesting techniques to deal with task allocation in an FPGA that is being used for
HW multitasking, but all of them neglect the fact that reconfiguration in present day FPGAs is a
key aspect to make hardware multitasking effective. Another very interesting approach is
presented in [9] which deals with the online problem of 2D task scheduling.

On the other hand, other authors focus on the reconfiguration aspect of the problem. Such is the
case of Resano [10] who presents a technique that allows reducing reconfiguration overhead. This
work is solving an offline problem, that is, the applications that are going to be executed are
known as well as their execution graph. Thus the reconfiguration overhead may be hidden by
conveniently scheduling the reconfiguration of the tasks in the graph. They are also working on
several reconfigurable units and not a single FPGA and therefore they are not dealing neither with
the area use part of the task scheduling problem nor with the only reconfigurable interface
problem.

Götz [11] applies a server-based method and models the reconfiguration activities as aperiodic
tasks. He applies the reconfiguration scheduling heuristics to the parts of the OS that are going to
be executed in the reconfigurable hardware. Redaelli [12] has also dealt with the reconfiguration
overhead problem and has presented techniques that increase task scheduling performance by
including reconfiguration considerations into the task scheduling algorithm. However this author
also solves the offline problem in 1D.

A very interesting work has been presented by Angermeier [13] in which he points at the
importance of focusing both in the area use and reconfiguration port use in the same scheduling
algorithm. They model the reconfiguration problem as a server-parallel machines problem in a
very interesting way. They compare the reconfiguration port to the server and the slots defined in
the FPGA to the parallel machines. This author uses the Erlangen Slot machine cited in [8] and
includes some scheduling algorithms to the system. He presents three different heuristics, but two
of them are only valid for two parallel machines. They are also working on the offline problem
and they are using a 1D dynamic reconfiguration model. The FPGA they use is divided into m
equal slots, and the reconfiguration time is equal for all the slots and is normalized to value 1.
To sum up, previous research in this area has been either focused on making a good FPGA area
use by means of online scheduling heuristics, or focused on the reconfiguration scheduling for
offline problems. This research work aims at solving reconfiguration scheduling issues for 2D
online problems, which means that area availability in the FPGA has to be taken into account
although it is not the main aspect under research.

3. SYSTEM MODEL

Our system is a hybrid general computing system where tasks may be executed in a software
processor (microprocessor) or a hardware processor (FPGA). Tasks arrive at the hardware
manager on demand, and it is never known when the next task will arrive for execution or how
this task will be. Hardware multitasking is implemented by using 2D partial dynamic
reconfiguration [27]. Most previous models consider the FPGA as a homogeneous CLB array.
However, real FPGAs have BRAM blocks, multipliers and DSPs in a certain disposition and
therefore this heterogeneity in the FPGA has to be taken into account for a realistic task allocation
scheduling. This is especially important when the benchmarks being used are based on real
hardware tasks. The restrictions in the possibilities for dynamic partial reconfiguration naturally
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points at the division of the FPGA into predefined slots, as suggested by [8], although in our case
we are using this idea in a heterogeneous 2D FPGA.

From the synthetic benchmarks selected for our study, we have observed that there is a wide
variety of FPGA resources required by different tasks, which adds an extra difficulty in task
allocation in the FPGA. As area management was not our main objective, we decided to classify
tasks according to the FPGA resources they need, so that the algorithms tested are focused on
reconfiguration interface use.

Each task belongs to class ci, the one that best fits task resources and thus fulfilling:

Ti ci if resources Ti ≤ resources ci (1)

Classes have been designed taking into account the number of CLBs, RAMs and DSPs available:

(2)

The number of classes is obtained, as pointed before, from a classification of the tasks expected
for execution in the FPGA. If the sum of the number of resources needed by the classes is clearly
lower than the resources available in the FPGA, then we may say that the differences in
performance are related to the reconfiguration interface management. However, if the sum of the
number of resources needed by the classes is larger than the resources available in the FPGA, this
means that the FPGA is too small to execute the expected workload.

By combining the 2D slotted FPGA idea from [8] with a representative enough classification of
synthetic tasks, we have been able to implement a simple FPGA area management in our
algorithms, that is efficient enough to enhance the differences observed in hardware multitasking
performance, due to the reconfiguration scheduling strategies under study.

FPGA area management is thus implemented by writing incoming tasks into the task queue
associated to the task class, and may be scheduled for execution when a slot in the FPGA
containing the resources needed by the task class becomes free as well as the reconfiguration port.

Tasks are written into queues which group them according to their class (Algorithm 1). Therefore,
finding an empty slot that fulfils the task resource requirements for the task in the FPGA may be
done with a fast and simple algorithm.

The N FPGA classes are named 0 to N-1, where class 0 represents tasks with the smallest
resources’ restrictions and N represents those with the highest FPGA resources needs (not just
CLBs, but also DSPs and/or BRAMs). Subroutine FitQj(Ti) checks if Class j contains enough
resources for Ti. Therefore Classj is the smallest class where Ti may be classified, and Ti is
written into waiting queue Qj associated to Class j (Write(Ti,Qj)).

int SelectQueue(Ti)
j = 0;
sel = false;
while ((j < N-1) and (sel == false)) do

if (FitQj(Ti) == true) then
Write(Ti,Qj)

sel = true
return = j;

end if;
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j++;
end while

Algorithm 1. Select Queue Algorithm

Where:

In addition, before reconfiguring task Ti into the FPGA, the system has to check whether the time
constraints for Ti (tmaxi) are met:

(4)

tmaxi: stands for the maximum time unit for the task to have finished execution
treci: stands for the reconfiguration time required by the task Ti

texi: stands for the execution time of the task Ti

tstarti: stands for the time unit when Ti will begin its reconfiguration

The values of tmaxi and texi are characteristic of the task. The value of treci depends on the slot
assigned to the class of the task, as reconfiguration time is proportional to the FPGA area
reconfigured.

4. ORDERLY RECONFIGURATION STRATEGY

Orderly Strategy is the simplest idea to deal with the problem. This strategy uses a
reconfiguration FIFO in order to guarantee that the reconfiguration scheduling is correct. Tasks
are written into queues according to their sizes and their execution scheduling in the FPGA is
done by taking into account both the availability of space in the FPGA as well as the availability
of the reconfiguration port. The scheduling algorithm maintains task arrival order when assigning
reconfiguration resources to tasks. This is a very simple algorithm with a low computational cost
that we use as a baseline for the evaluation of the efficiency of the other algorithms presented.
When a task Ti arrives for execution, an exact calculation for its starting time, tstarti, is made,
which depends on the availability of the reconfiguration interface and the availability of space in
the FPGA:
tstarti = MAX[tfreeICAP(Ti), tfreeA(Ti, Qj), tarri] (5)

In this equation, tfreeICAP(Ti) is the time unit at which the reconfiguration interface (Internal
Configuration Access Port, ICAP) will be free to reconfigure another task and is calculated as
follows:

tfreeICAP(Ti)= tstarti-1+treci-1 (6)

According to the Orderly Strategy, the task which arrived immediately before Ti, Ti-1, is the task
scheduled to reconfigure before Ti. Therefore the reconfiguration interface will be free when Ti-1

finishes its reconfiguration.
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In equation 5, tfreeA( Qj) is the time unit at which there will be a free space for Ti, assigned to
class j. This time is calculated by the area assignment strategy chosen for the implementation In
our case, tfreeA(Ti) indicates the time unit when there is a free  slot in the FPGA containing the
resources needed by the Task Class j.

It is possible that both the reconfiguration interface and the FPGA be free at the arrival of Ti. In
this case Ti is immediately reconfigured and executed: tstarti = tarri, where tarri stands for the
arrival time of Ti.

The algorithm for the Orderly Strategy works as shown in algorithm 2. The function Schedule(cj,
Ti, tstarti) schedules the reconfiguration of Ti at time unit tstarti. Ti is deleted from queue Qj,
associated to class c at time tstarti, when its bitmap is loaded into the FPGA. The function
Reject(Ti) deletes Ti from the queue and reports that it is not possible to execute it in the FPGA
with the present constraints.

tstart1 = 0;
tfreeA(T1) = 0;
tfreeICAP(T1) = 0;
while (tasks in queues)

j = SelectQueue(Ti);
tstarti = MAX[tfreeICAP(Ti), tfreeA(Qj), tarrivali];
if (tmaxi ≥ tstarti+treci+texi)

Schedule(cj, Ti, tstarti);
else

Reject(Ti);
end if;
i ++;

end while;

Algorithm 2. Orderly Strategy, reconfiguration scheduling algorithm

Therefore, the Orderly Strategy may be applied when a task Ti arrives at the FPGA. Its start time
can be calculated accurately, so whether the task may be executed within its time constraints or
not is immediately known. Tasks are reconfigured at the tstarti time scheduled into the
reconfiguration FIFO, which follow the same arrival order of tasks. By using this strategy there
are intervals of time when both the reconfiguration interface and there is enough free space in the
FPGA, but not for the next task scheduled for reconfiguration. These intervals could be used to
reconfigure tasks assigned to the free slots and a more efficient use of the reconfiguration
interface and FPGA area would be achieved.

5. RECONFIGURATION PORT INTENSIVE USE STRATEGY

As we have seen, there is only one reconfiguration interface for the whole FPGA, which may
reconfigure any of the first tasks in each queue when the ICAP becomes free. The overall
scheduling problem may be viewed as a multiple stations-one server problem, where the server is
the reconfiguration interface and the stations are the tasks’ queues associated with free FPGA
slots of a given class.

When a new task arrives, the scheduling algorithm assigns a queue for the task according to its
characteristics In order to make an intensive use of the ICAP, the reconfiguration time for this
task will be decided later, so that when the ICAP becomes free any task from the queues’ heads
may be chosen for reconfiguration, as long as there is enough free space in the FPGA.
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Function FreeA(Qc)=(tfreeA, Tj) returns Tj, which is  the task waiting for execution in queue Qc,
associated to class c, and time unit tfreeA is the time when a FPGA slot with the characteristics of
class c will be free.

Function StrategyRPIU(FreeQ(0), FreeQ(1), …) is executed each time there are free slots in the
FPGA as well as the reconfiguration interface is available. This function analyzes the values
returned by FreeA() for each class and chooses that with the lowest tfreeA and the task associated
that will be scheduled next for reconfiguration and execution only if equations 4 is fulfilled.
Otherwise, that task is rejected and deleted from the queue and function StrategyRPIU() is
executed again in search for a new candidate (shown in algorithm 3).

tstart1=0;
tfreeA(T1)=0;
tfreeICAP(T1)=0;
if (reconfiguration interface = free)
[(Qj, Ti), (Qk, Tv), …]= StrategyRPIU(FreeA(0), FreeA(1), …);
(Qj, Ti) = ICAParbiter((Qj, Ti), (Qk, Tv), …);
tstarti = MAX[t, tfreeICAP(Tk), tfreeA(Qj)];

if (tmaxi ≥ tstarti+treci+texi)
Schedule(Qj, Ti, tstarti);

else
Reject(Ti);

end if;
end if;

Algorithm 3. Reconfiguration Port Intensive Use Strategy, reconfiguration scheduling algorithm

It may happen that more than one class finds available slots in the FPGA at the same time unit (or
that the only free slot is suitable for several classes); in such cases, the function StrategyRPIU
returns one task for each class for which there is available space in the FPGA. Then the
ICAParbiter() chooses which task is first to be reconfigured.

The starting time for Ti is calculated as shown the algorithm, where: t is the current time unit and
fulfills t ≥ tarri, tfreeICAP(Tk)= tstartk + treck where Tk is the task scheduled to reconfigure before
Ti and tfreeA(Qj)=tstartm+trecm+texm is the time when a slot with the resources for class Qi will
be free (Tm is the task scheduled to execute in this slot before Ti).

This strategy allows making an intensive use of the reconfiguration port and therefore yields
better performance results than the basic orderly strategy.

We have developed two distinct policies that implement the RPIU strategy in combination with
two priority criteria that select the task to be reconfigured and executed first in cases where there
is a reconfiguration interface use conflict, that is, two different version of the ICAParbiter()
policy.

5.1 Most Loaded Queue Policy

This algorithm implements the RPIU Strategy with a version of the ICAP arbiter function that
gives priority to tasks in the most loaded queue (algorithm 4).

This version of the ICAParbiter() first checks if the task in the queue head fits the free slot; it then
checks if this queue is more loaded than the other queues containing tasks that also fit the free
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slot. When it has reviewed all queues, the function returns the task written at the head of the most
loaded queue that fits the free slot. If there are no tasks that fit the free slot, the function returns T
= null.

Function Fit(free_slot,Ti) checks that the free slot has enough resources for the execution of Ti, as
shown in equation 2.  Function load(Qj) returns the number of tasks in Qj. The variable old_sel is
used to avoid that one of the classes may become too greedy and block access to FPGA resources
to the other classes. The use of this variable allows this policy to occasionally reconfigure tasks
from less loaded queues in-between the reconfiguration of tasks from the most loaded queue.

function ICAParbiter(Qj, Qk, …)
sel = null;
for j=0 to N-1

T = head(Qj);
if Fit(free_slot,T) = true

if load(sel) < load(Qj)
if old_sel ≠ Qj

sel = Qj;
end if;

end if;
end if;

end for;
if sel=null

old_sel=null; // the only task that fits free slots is from old_sel
(sel, T)= ICAParbiter(Qj, Qk, …)

end if;
old_sel=sel;
return sel, T;

Algorithm 4. ICAP Arbiter Function for Most Loaded Queue Policy

5.2 Deadline Policy

This ICAP arbiter function (Algorithm 5) gives priority to the task with the lowest execution
margin. It is focused on reconfiguring those tasks which are closer to be rejected.

When tmargin is the same for more than one task, the Deadline Policy algorithm chooses the task
that belongs to the class which at this time makes the best use of the FPGA free resources.

function ICAParbiter(Qj, Qk, …)
sel = null;
T = null;
tmargin=1015;
for j=0 to N-1

Ti = head(Qj);
if Fit(free_slot,Ti) = true

if tmaxi – (t + treci +texi) < tmargin;
sel = Qj;
T = Ti;
tmargin = tmaxi – (t + treci + texi);

else if tmaxi – (t + treci +texi) = tmargin;
if compare_fit(T, Ti, free_slot) = true

sel = Qj;
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tmargin = tmaxi – (t + treci +texi);
end if;

end if;
end if;

end for;
return sel, T;

Algorithm 5. ICAP Arbiter Function for Deadline Policy

This version of the ICAParbiter() first checks there is more than one task that fit the slot with the
minimum tmargin, the task that makes the best use of the resources in the slot is selected. This is
implemented by using function compare_fit(T, Ti, free_slot), which returns a true value if Ti
makes better use of the free slot than T. When ICAParbiter() has reviewed all queues, it returns
the task (among those in the head of queues) with the lowest deadline that best fits the free slot, as
well as its associated queue. If there are no tasks that fit the free slot, the function returns T = null.

The criterion used to define a better use of the resources in the slot makes use of the following
equation:

pairs(x) = #CLBs·(#LUT-Flipflop_pair/CLB) +
#BRAMs·(#LUT-Flipflop_pair/CLB) + (7)
#DSPs·(#LUT-Flipflop_pair /CLB)

where x may either be a task or a slot. We are using this definition because all FPGA vendors
provide the correspondence between pair LUT-flip-flop and the different elements in their FPGAs
as standard FPGA size unit. Therefore, if compare_fit(T, Ti, free_slot) is true it means that the
value of pairs(Ti) is closer to pairs(free_slot) than pairs(T).

6. EXPERIMENTAL RESULTS

We have developed several experiments in order to compare the performance of the different
algorithms presented. As was previously explained, the objective of this paper is to discuss the
impact of the reconfiguration strategy on the performance of a hardware multitasking scheduling
algorithm.

We have used information from real applications’ hardware synthesis from Xilinx in order to
develop several synthetic benchmarks that are described in detail in subsection 6.3.
We have also generated artificial sets of tasks with a balanced profile in relation to the classes
defined from the real application data.

6.1 Experiments’ design

For each set of tasks we have done an offline study and have calculated a theoretical average
rejection ratio of the tasks in the set, ARR.  As we have explained, each task is restricted by the
value of its tmax, and the chances to reject the task are related to the ratio between the offline
estimation of the task execution end time and its tmax:

(8)

Therefore the higher ARR of a task set is, the lower we expect the number of executed tasks to
be. Our study includes benchmarks with values of ARR over 1, because we are assuming a
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regular intensive use of the FPGA. And it is also possible that at some time intervals our system
may need to execute even more computational work on the FPGA. Therefore, it is very important
to understand how the different strategies behave in heavy workload situations.

A set of tasks consists of a file with 52 different tasks arranged according to their arrival times.
This simulates the online arrival of tasks at the hardware manager. The hardware manager reads
one task from the file and does not have any information about the characteristics of the rest of
the tasks in the file (arrival of next task, number of remaining tasks...) as happens in an online
system.

We are using the ARR factor to characterize our experiments. We have obtained sets of tasks with
a low ARR by either leaving long time intervals between the arrival of tasks or by assigning them
a very high tmax value (or a combination of both). As was previously discussed, for the sets with
a low ARR, the impact on the value of tstart due to the reconfiguration interface is very low
because most of the new arriving tasks will find the reconfiguration interface free. In addition, if
the tasks’ deadlines are high, they can afford to wait for a long time until they may be
reconfigured. Then, the sets with a low ARR should be less sensitive to the reconfiguration
strategy used and we would expect to execute 100% of tasks for any of the reconfiguration
strategies used. If either the arrival times of tasks are very close to each other or the tmax value of
the tasks in the set is small (only a little margin for reconfiguration and execution) or a
combination of both, then the set of tasks has a high ARR and it is expected that many tasks will
be rejected. In these situations, a good management of the reconfiguration interface becomes
crucial and therefore these sets of tasks are more sensitive to the reconfiguration strategy used.
This is the reason why we have focused our experiments on sets of tasks with an ARR value
around 1.

6.2 Description of the target architecture

We have used a simulation platform with a Virtex 5 XC5VSX50T FPGA according to the
technical details provided by Xilinx in [26].  This FPGA consists of 4080 CLBs, 132 BRAMs and
288 DSPs.

Four different tasks’ classes have been defined according to the analysis of the data collected
from Xilinx cores of real applications, as shown in Table 1. In a hardware multitasking system it
is not expected that tasks executing will need the whole FPGA resources for execution, nor that
most of them will need less than 10% of it.  We believe that these four classes of tasks chosen for
our benchmarks is representative enough of the hardware multitasking environment and serves
the purpose of our study which is the impact of the reconfiguration scheduling on total system
performance. The reconfiguration times associated to each task class have been normalized. Thus,
the basic time unit used for the experiments is the reconfiguration time for the smallest task
assigned present in C0.

Table 1. Task class profiling

Task class max. #CLBs max. #BRAMs max. #DSPs
C0 204 4 16
C1 480 20 32
C2 1000 18 80
C3 2400 90 160
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6.3 Descriptions of the benchmarks

We have created three groups of Balanced Artificial benchmarks in which the fraction of the
workload according to tasks’ classes (sum of reconfiguration and execution times of the tasks for
each class) are equal. Thus the workload is perfectly balanced for the resources of the FPGA. We
have created 10 sets of tasks with different ARR values for each group (see Table 2). The value of
the arrival time of the last task in the set is also shown to highlight whether the  differences in the
ARR are due to an increase in task frequency rate.

Table 2. Perfect, Semi-perfect and Global Balanced Benchmark Profiling

PB ARR tarr52 SB ARR tarr52 GB ARR tarr52

PB0 0.85 260 SB0 0.85 260 GB0 0.85 260
PB1 0.88 258 SB1 0.88 258 GB1 0.88 258
PB2 0.91 258 SB2 0.91 258 GB2 0.91 248
PB3 0.94 258 SB3 0.94 210 GB3 0.94 200
PB4 0.98 206 SB4 0.98 210 GB4 0.98 200
PB5 1.00 206 SB5 1.00 188 GB5 1.00 188
PB6 1.03 206 SB6 1.03 188 GB6 1.03 188
PB7 1.06 154 SB7 1.06 188 GB7 1.06 198
PB8 1.10 154 SB8 1.10 136 GB8 1.10 136
PB9 1.15 154 SB9 1.15 136 GB9 1.15 126

• Perfect Balance (PB): the arrival order of tasks is uniform in relation to their classes, that
is, a task from C0 arrives first, then a task from C1, then another from C2, etc.

• Semi-perfect Balance (SB): the arrival order of 25% of tasks in the PB task set has been
modified.

• Global Balance (GB): although the total workload is perfectly balanced in terms of tasks’
classes, the arrival order of tasks is random. However, we have checked that no more
than three tasks of the same class arrive consecutively.

We have created three groups of synthetic benchmarks, S1, S2 and S3, using Xilinx cores for
different real applications. Table 3 describes the three groups of synthetic benchmarks created
from Xilinx cores for different applications available at:
xilinx.com/support/documentation/ip_documentation/. For each group of synthetic benchmarks
we have designed three different sets of tasks. Their profiling is shown in table V. As these sets of
tasks are synthetic, we have not been able to create perfectly balanced profiles with them.
Therefore we also include information about the workload profiling, where the fraction of tasks of
each class in the total workload has been represented.



Computer Science & Engineering: An International Journal (CSEIJ), Vol.2, No.6, December 2012

12

Table 3. Composition of Synthetic Benchmarks

Table 4. Profiles of Synthetic Benchmarks

ARR tarr52 C0 C1 C2 C3

S1A 0.75 242 0.24 0.25 0.24 0.27
S2A 0.75 205 0.21 0.28 0.28 0.26
S3A 0.76 303 0.13 0.31 0.30 0.26
S1B 0.81 187 0.24 0.25 0.24 0.27
S2B 0.80 201 0.21 0.28 0.28 0.26
S3B 0.80 303 0.13 0.31 0.30 0.26
S1C 0.88 184 0.24 0.25 0.24 0.27
S2C 0.87 154 0.21 0.28 0.28 0.26
S3C 0.88 252 0.13 0.31 0.30 0.26

6.3 Simulation Results

In this subsection we present four tables, one for each group of benchmarks. The first column
shows the name of set of task, the second column shows the ARR obtained for these sets of tasks
and the other columns, divided into two sub-columns each, show the performance results of the
two strategies and their associated policies.

We are using two parameters to describe the performance of a scheduling strategy: n, the total
number of executed tasks by the strategy, and improvement, which represents the performance
ratio of the RPIU strategy, and its two policies, in comparison with the Orderly Strategy
(percentage of tasks executed by any strategy over those executed by Orderly Strategy).

Table 5 shows that for Perfect Balanced benchmarks all algorithms execute all tasks for ARR
values up to 0.94. This is due to the uniformity of these sets of tasks, as the balance of their
workload is ideal. For higher values of ARR, none of the strategies is able to execute all tasks, as
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expected, and we observe that the RPIU with Deadline Policy always yields better performance
than any of the other two.

Table 5. Results for Perfect Balanced Benchmarks

ARR
Orderly Deadline Queue Load

n n Improvement n Improvement
PB0 0.85 52 52 0 % 52 0 %
PB1 0.88 52 52 0 % 52 0 %
PB2 0.91 52 52 0 % 52 0 %
PB3 0.94 52 52 0 % 52 0 %
PB4 0.98 50 50 0 % 50 0 %
PB5 1 49 50 1.9 % 50 1.9 %
PB6 1.03 47 47 0 % 48 1.9 %
PB7 1.06 32 45 25 % 46 26.9 %
PB8 1.10 36 44 15.4 % 45 17.3 %
PB9 1.15 30 40 19.2 % 41 21.1 %

Table 6. Results for Semi-Perfect Balanced Benchmarks

ARR
Orderly Deadline Queue Load

n n Improvement n Improvement
SB0 0.85 52 52 0 % 52 0 %
SB1 0.88 51 52 1.9 % 52 1.9 %
SB2 0.91 50 52 2.8 % 52 2.8 %
SB3 0.94 43 52 17.1 % 52 17.1 %
SB4 0.98 43 48 9.5 % 48 9.5 %
SB5 1 38 49 20.9 % 48 20.9 %
SB6 1.03 38 48 19 % 47 17.1 %
SB7 1.06 38 45 13.4 % 44 11.5 %
SB8 1.10 29 40 21.1 % 40 21.1 %
SB9 1.15 29 36 13.4 % 36 13.4 %

From Table 6 we observe that although the sets of tasks are also balanced, the differences in the
performance of the reconfiguration algorithms become noticeable for lower values of ARR than
in the previous case. This group of experiments shows again that the RPIU Strategy with
Deadline Policy is better than the others. Although for the experiment SB5, the number of
executed tasks with the Queue Load Policy is slightly higher than that of the Deadline. Both
policies achieve better results than the Orderly Strategy from an ARR value of 0.91.

Table 7 follows the trend seen in Table 6. For this group of experiments, a high value of ARR has
more impact on the number of executed tasks than we have seen in the previous experiments.
These experiments have been designed with random arrival of tasks and therefore there are lapses
of time when the workload assigned to the FPGA is largely over the FPGA capacity. The more
efficient the reconfiguration strategy is, the lower the impact of these task peaks on the global
performance. We may see that both Queue Load and Deadline policies yield good performance
for limit ARR values (all 52 tasks are executed even with ARR=0.94) while the Orderly Strategy
starts rejecting tasks for ARR values over 0.85.

We would like to remark that Table 8 presents three different synthetic benchmarks with three
different values for ARR each, which have been grouped in contiguous lines for clarity. These
benchmarks are formed by tasks with a wide variety in resource requirements as well as in
execution times: a Discrete Fourier Transform takes about a hundred times more time to execute
than a Color Correction Matrix and uses about 30 times more FPGA resources. In spite of this,
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both the Deadline Strategy and the Queue Load Policy are able to schedule all tasks for execution
for an ARR value of 0.85, and fail to schedule 100% of the tasks for higher values of ARR.
However, in all cases the performance of the RPIU Strategy is well over the performance of the
Orderly.

Table 7. Results for Global Balanced Benchmarks

ARR
Orderly Deadline Queue Load

n n Improvement n Improvement
GB0 0.85 47 52 5.7 % 52 5.7 %
GB1 0.88 44 51 13.4 % 51 13.4 %
GB2 0.91 43 50 13.4 % 50 13.4 %
GB3 0.94 46 50 7.7 % 50 7.7 %
GB4 0.98 44 50 11.5 % 50 11.5 %
GB5 1 44 48 7.7 % 49 7.7 %
GB6 1.03 41 43 2.8 % 42 1.9 %
GB7 1.06 39 40 1.9 % 40 1.9 %
GB8 1.10 36 40 7.7 % 40 7.7 %
GB9 1.15 30 40 19 % 41 17.3 %

Table 8. Result for Synthetic Benchmarks

ARR
Orderly Deadline Queue Load

n n Improvement n Improvement
S1A 0,85 42 52 19 % 52 19%
S2A 0,85 49 52 5.7 % 52 5.7 %
S3A 0,86 52 52 0 % 52 0%
S1B 0,91 41 48 13.4 % 47 11.5 %
S2B 0,91 36 41 9.6 % 40 7.7 %
S3B 0,91 51 51 0% 51 0%
S1C 0,98 39 47 15.3 % 46 13.4  %
S2C 0,97 27 34 13.4 % 36 17.1 %
S3C 0,98 43 43 0% 42 -1.9%

This group of experiments is most interesting, not only because it simulates the behavior of real
applications, but also because of the difficulties that the dispersion in both the execution times
and the tasks’ sizes present, and highlights the importance of a good reconfiguration strategy in
hardware multitasking scheduling.

We have calculated the average number of tasks executed for all benchmarks (artificial and
synthetic) grouped by their ARR value, and have represented them in a graph shown in Figure 2.
Being conscious that although we have made a wide range of experiments, we can never cover
the infinite possibilities that may be found in a real computing system, we have calculated a linear
interpolation of the results in order to find out whether there is a clear difference in the
performance tendency of the strategies under study.

The analysis of this graph clearly points at RPIU Strategy with Deadline Policy as a better
reconfiguration management than the Orderly Strategy and the RPIU with Queue Load policy. In
systems where an intensive use of the FPGA is expected (ARR > 0,8) the reconfiguration strategy
used is crucial for a good performance and the Deadline Poicy is the most suitable of the three
strategies analysed.
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Figure 2. Lineal approximation of the number of tasks executed by the strategies tested

6. CONCLUSION

In this paper we have presented different reconfiguration strategies which have been combined
with a simple heuristic used to find an empty slot in the FPGA.

The FIFO strategy schedules the start time of the tasks as soon as they arrive. Then the FPGA
manager may report task rejection at a very early stage.

The RPIU strategy delays this scheduling to the time when a task may be executed in the FPGA,
this is, when there is a free slot in the FPGA and the reconfiguration interface is free. Delaying
the scheduling decision allows taking into account more parameters that are available in the
system at task launch time. Therefore, RPIU uses a wider scope for the scheduling and yields
better results. The performance difference between the RPIU policies is not as remarkable as that
of RPIU and FIFO. The difference lies in the priority criteria used to resolve reconfiguration
conflicts (there are enough FPGA resources available for several tasks at the same time).

The aim of the Queue Load Policy is to keep the workload balance among the queues. In case of
conflict this policy gives priority to the task in the most loaded queue. The Deadline Policy
calculates the execution margin of tasks in conflict and gives priority to the one with the lowest
remaining time.

The experimental results show that when the workload assigned is close to the maximum
theoretical FPGA capacity, the RPIU strategy achieves better results. Among the two RPIU
policies, the Deadline is the one that achieves more efficient results in most experiments. The
explanation for this is that if in times of conflict there is a queue that is significantly more loaded
than the rest, it is very likely that the tasks in this queue may have been waiting for a long time.
Therefore, the Deadline Policy will launch them for execution, similar to what Queue Load would
do. However, if the tasks in the most loaded queue may wait for a longer time than the others, it is
reasonable to give priority to tasks that are closer to rejection. In addition, as displayed in Fig. 2,
the RPIU Strategy with Deadline Policy has a tendency to make the best use of the FPGA
resources.
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