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ABSTRACT

In this paper, a design space exploration is performed aiming at developing high-performance hardware
architectures for the new cryptographic hash function Skein-512. Three well-known design optimization
techniques namely, the loop unrolling, the structural and functional pipeline, are applied, while several
design alternatives have been explored to derive optimized FPGA implementations. The proposed
architectures have been implemented and evaluated in three Xilinx technologies (Virtex-4, Virtex-5, and
Virtex-6). Based on the experimental results, when all the three techniques are applied, the best
architecture is the 8-round_unroll one with two functional and three structural pipeline stages. To the best
of the authors’ knowledge, it is the first time that all these three techniques are studied and exploited
together for the Skein algorithm. Also, the proposed architectures outperform the corresponding existing
ones in terms of Throughput/Area factor from 27% up to 192%, respectively.
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1. INTRODUCTION

21st century is considered to be the era of mass communication and €electronic information
exchange. However, this advancement goes in parallel with serious considerations regarding the
security of the exchanged information, especially when this information is sensitive and/or
confidential. To overcome this problem, advanced security mechanisms are included in modern
communication protocols as well as in data transmission and communication systems. Typical
examples are the encryption and authentication which are performed in every transmitted data
packet by the forthcoming Internet Protocol version 6 (IPv6) [1] viathe Internet Protocol Security
(IPSec) [2]. Regarding authentication, which is an important feature of 1PSec, it is realized using
a standard hash agorithm [3]. Beyond that, hash functions are among the crucia building blocks
of many popular security systems and applications like Secure Electronic Transactions (SET) [4],
IEEE 802.16 standard [5] for Local and Metropolitan Networks, digital signature schemes[6] and
web protocols[7].

Skein [10], [17] is a new cryptographic hash function, introduced in the end of 2010. It combines
speed, security, simplicity, and a great ded of flexibility in a modular package that is easy to

DOI : 10.5121/cseij.2013.3101 1


mailto:gathanas@ece.upatras

Computer Science & Engineering: An International Journal (CSEIJ), Vol.3, No.1, February 2013

andyze. In fact, it was one of the five finadists of the international hash function competition,
launched by NIST [10].

It is well-known that the computational complexity of security agorithms often becomes the host
system’s bottleneck [11], [44]. This becomes more pronounced when hard rea-time constraints
must be satisfied or high-speed communication networks (e.g. optical networks) are used. In the
last case, alarge amount of the available bandwidth may not be utilized if the employed systems
are characterized by low throughput processing [43]. To overcome these bottlenecks, high-
throughput architectures are demanded, which is mainly achieved by implementing the security
algorithmsin hardware [11, 12, 13].

Regarding Skein hash function, there are few software implementations in the literature, such as
[17-20]. Regarding the hardware implementations of Skein, the works presented in literature can
be classified in two main categories. The first category includes the works that perform
comparative studies among the candidates of NIST’s hash competition [24-41]. The main goal of
these works is not to develop sophisticated architectures but to study the performance of these
algorithms when they are implemented in hardware. For that reason, different architectures for
each algorithm are proposed applying general design techniques (e.g. pipdine). Then, the
introduced architectures are implemented in hardware using mainly FPGA technologies and they
are compared in terms of area, frequency, and throughput. The second category includes the
works which target at developing advanced hardware architecture for the Skein algorithm only.
The main goa of these works is the development of architectures characterized by high
throughput and low area. In [21] the loop unrolling technique was applied in order to improve
delay and throughput. In [22], novel architectures for al the three types of Skein agorithm (256,
512, and 1024) were proposed using an 8-round unrolled data-path. Walker et a. in [23] proposed
4 different architectures depending on the number of pipeline stages, namely zero, two, four and
eight, employing the 8-round unrolled data-path. Finaly, in [42], a low-area coprocessor for the
internal structure of Skein, named Threefish, is designed, exploiting interleaving and paralelism.

In this paper, a design space exploration is performed aiming at developing hardware
architectures for the Skein-512 algorithm characterized by high performance in terms of
Throughput/Area metric. Three design optimization techniques namely, the loop unrolling, the
structural, and functiona pipeline are studied and 10 different architectures, which vary in the
number of the applied loop unrolling depth and pipeline stages, are proposed. These architectures
are categorized in three sets. The first set includes the architectures which are produced by
applying the loop unrolling technique, the second set corresponds to the architectures which are
derived by utilizing the loop unrolling and structural pipeline, while the last one includes the
architectures which are produced by applying both the three above techniques. To the best of the
authors’ knowledge, it is the first time that all these three techniques are used to develop hardware
architectures for the Skein agorithm. Moreover, al the introduced architectures have been
developed to be used either as simple hash modules on MAC ones. Also, special effort has been
pad and different design aternatives have been explored to derive optimized FPGA
implementations. The proposed architectures have been implemented in three Xilinx technologies
(Virtex-4, Virtex-5, and Virtex-6) and evauated in terms of Throughput/Area. Based on the
experimental results, when only loop unrolling is applied, the architecture with unrolling depth
equal to 8 (8-round_unroll) isthe best, while when loop unrolling and functional pipeline are used
together the 8-round_unroll architecture with two pipeline stages outperform the corresponding
ones. Finaly, when all the three techniques are used, the best architecture is the 8-round_unroll
one with two functional and three structural pipeline stages. Moreover, the proposed architectures
outperform the existing ones in terms of Throughput/Area, from 27% up to 151%, and from 43%
up to 192%, respectively.
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The rest of the paper is organized as follows. In Section 2 the Skein agorithm is described. In
Section 3 the design space exploration is anayzed and the proposed architectures are presented in
details. The experimental results and comparisons with similar existing architectures are provided
in Section 4. Finaly, Section 5 concludes the paper.

2. THE SKEIN HASH FAMILY

Skein is a family of hash algorithms with three different interna state sizes: 256, 512, and 1024
bits. Skein-512 is the primary agorithm of the family and can be used for al current hashing
applications of modern security systems. Skein-1024 has the same characteristics as Skein-512
but itsinternal size is twice than the Skein-512. Finally, Skein-256 is the low-memory variant of
the algorithm but offers less security than the above two. Skein-512 is considered to be the best
choice for drop-in replacement of the existing SHA-family functionsin security systems[17].

The basic concept of Skein algorithm isto build a hash function out of atweakable block cipher.
The use of atweakable block cipher alows the hashing of configuration data along with the input
text in every block, making every instance of the compression (hash) function unique. This
property directly addresses many attacks on hash functions and greatly improves Skein's
flexibility [17]. Specifically, Skein is built by the following three components. (a) Threefish: itisa
tweakable block cipher at the core of Skein algorithm, (b)Unique Block Iteration (UBI): it is a
chaining mode that uses Threefish to build a compression function that maps an arbitrary input
sizeto afixed output size, and (c)Optional Argument System (OAS): it isaset of optional features
that are supported by Skein, without imposing any overhead on implementations that do not use
them. In the following sub-Sections, the main components (Threefish and UBI) of Skein
algorithm are presented. More details for Skein hash function can be found in [17].

2.1. Threefish Component

Threefish, is used in Matyas-Meyer-Oseas mode to construct the Skein compression function
[17]. During the Threefish process, the N-bit plaintext is portioned in w=N/64 64-bit words. These
words are grouped in pairs of two, let (W, W), for each round and serve as input in a MIX
function, which is described by the following equation:

MIX W5, W] = B + W, (W, << R) 0 (W, +W)E )

where<< and O the denotel€ft rotation by R bits and X OR operations, respectively. It should be
noticed that the constant R depends on N and it is different for each MIX function.

Threefish-512 iterates 72 times (72 rounds), while each round includes w/2 = 512/128 = 4 MIX
functions. According to the definition of Threefish-512, the rotation constants, R, are different for
the first eight rounds and then they are repeated every eight rounds. Also, they are properly
chosen to maximize the diffusion among the bits of the word. Just after the MIX stage, there is
the permutation one, which is the same for every round. Its purpose is to permute the w words
between rounds, r, so that different words to be used asinput in the MI1X function of each round.
MIX functions and permutation stages are used consecutively so as to build Threefish-512.
Specificaly, every four MIX functions are followed by a permutation of the eight 64-bit words.
Moreover, a sub-key (skey) isinserted every four rounds, which is added with the outputs of the
corresponding permute stage. These keys are generated by a specia component called Key
Schedule applying a specific procedure. Particularly, at the beginning, two new words, K,, and T,
are computed as shown in EqQ. 2.
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Ky =K, 0K, O...0K,, 0C,, @
T2 =T0 D-rl

where Kq ... K1 are the “w-1" keys, To and T; are the first two tweak factors and C,y is a
constant that ensures that the extended key will not be all zeroes. Then the scheduling of the
round keys is defined asindicated below:

Kai = Kisiimodus) fori=01...,w-4

K = K(s+i)m0d(w+1)+ Tomoas fOri=w-3 3)
Ksi = Kssiymoa(wen) T Tisetymoas O i=w-2

Ksi = Ksiiymodusn T S fori=w-1

where s= [ / 4 denoted the number of the subkey and i the number of the word.

2.2. UBI Chaining Mode

The UBI chaining mode employs consecutive instances of Threefish module to replace the
existing Merkle-Damgéard constructions. In a UBI chain for Skein-512 that incorporates three
Threefish-512 modules for processing a 166-byte (three blocks) input, the message blocks M, and
M; are of 64 bytes and M, is padded and contains the remaining 38 bytes. The tweak value of
each block encodes how many bytes have been processed so far, and whether this is the first
and/or last block of the message. In order to construct a straightforward hash function by using
the Skein algorithm, the tweak also encodes a “type” field that distinguishes the different
operational modes of each UBI inside the hash structure. It consists of a UBI for initia
configuration, the main UBI for message processing, and the output UBI for the finalization of
the hash output. To turn a Skein hash structure to MAC is simple. Instead of starting with zero
and processing the configuration block, start with zero, process the key, and then the
configuration. More details about UBI chaining of Skein hash function can be found in [17].

3. PROPOSED ARCHITECTURES

As it has been mentioned, the goa of the paper is to propose advanced hardware architectures for
Skein hash function characterized by high throughput values and low area overhead. For that
reason, three design optimization methods, namely the loop unrolling, functional and structural
pipeline are studied in depth and three sets of architectures are proposed. The first set includes the
architectures where the loop unrolling technique is applied, the second set contains the
architectures where both loop unrolling and functiona pipeline are applied, whereas the last one
contains the architectures where loop unrolling, functional, and structural pipeline are applied.

3.1. Loop-Unrolling Exploration

The loop unrolling optimization technique deals with the unfolding the body of a computational -
intensive loop by a factor m caled loop unrolling factor in order to expose and exploit the
parallelism which may exist anong the computations of the loop body. Thus: (a) the total nhumber
of the performed iterations decreases and (b) the miterations of the loop are executed in shorter
time than before. Thus, higher throughput rates are resulted.

However, the application of loop unrolling imposes significant area overhead. Specifically, the
area of the data-path increases because more functiona units are demanded to execute the
4
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computations of m iterations of the loop, whereas the control unit also becomes more complex.
Hence, a careful study is required to determine the best unrolling factor in terms of
Throughput/Area metric.

The straightforward design of Skein-512 function corresponds to one MIX-permute pair (with no
unrolling) plus the appropriate 64-bit adders for the keys’ additions. Due to the fact that the sub-
keys are inserted every four rounds, another approach is the 4-round unrolled alternative that is
followed in many works [27], [29], [36-38], [41]. Additionally, the fact that the round constants,
R, are different for the first eight rounds and then they are repeated every eight rounds, the third
dternative for unrolling is the 8-round unrolled one, which is aso followed by many researchers,
as well asthe creators of the Skein family [17], [22], [37-38], [41]. Due to the above facts, al the
intermediate possible alternatives with different unrolling factor are considered as non-effective
in terms of area because they demand more steering logic for the sub-keys and the rotation
constants resulting in an increase of the critical path.

In order to accurately determine the best from the above alternatives, we developed and set for
evaluation three different architectures of Skein-512 agorithm, which are the 1-round (m=1), 4-
round (m=4), and 8-round unrolled (m=8). We applied the same design optimization techniques,
aiming a achieving the best results by al the architectures and we compared them in terms of
throughput, area, and throughput/area.

3.1.1. 1-round Unrolled Architecture

The block diagram of the 1-round unrolled architecture (1-round_unroll) is shown in Figure 1. It
consists of six main components, which are the Input Block, Rounds, Key Generator, Tweak
Generator and Output Block and the Control Unit. Concerning the 1/0 interface, it isformed by 5
inputs (sel_mac, msg, length, new_msg, last_block) and 2 outputs (md, valid).
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Figure 1. 1-round unrolled Skein-512 Hash/MAC Architecture
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The architecture is able to operate either as Hash or MAC module depending on the user’s choice.
For that reason, the sel_mac signd is used to determine the type of operation (Hash or MAC).
Concerning the input message, thisisfed in through the msg input in 64-bit words, while the 7-bit
length input denotes the number of the bits of the last active data of the input message. Also, the
signals new_msg and last_block are active when a new message exists and the last message block
is inserted, respectively. The architecture outputs the hash value in 64-bit words through the md
output, whereas the valid signa is set to high level during this procedure. To perform a complete
Skein operation, 73 clock cycles are demanded. Specifically, 72 clock cycles are needed to
execute the 72 rounds of Threefish-512 components, whereas one more cycle is spent for the
computation of the first sub-key. More details, on the required clock cycles are given in the
presentation of the control unit.

The Input Block component contains the Padding unit, which is responsible to form the 512-hit
input block for the hash computation and the Sarting Sgnal Production unit, which produces
four signals. The three of them (first, final, position) are used as input in the Teak Generator for
the production of the teak values, while the forth signal (start_keygen) is fed in the Control Unit
in order to start the computation of the sub-keys. The Control Unit itself sends two
synchronization signals (start_counter, rst_inp) to the Input Block to start a new padding.

The Tweak Generator component is responsible for producing the appropriate teak values for
each operation mode [17]. It uses the first, final, pad (non-zero when padding was performed in
Input Block) bits, along with the 96-bit position quantity that indicates the number of message
bytes that have aready been processed, and forms the teak value through concatenation (as
imposed by the standard [17]).

The main part of the computations is performed by the Rounds component, which isillustrated in
Figure 2. Its organization is based on the MIX-permute pairing structure of the agorithm. In
particular, it consists of four MIX and one permutation module, while eight 64-bit adders are also
included for adding the sub-keys. Regarding the MIX and Permute modules, they have been
designed as described in the algorithm’s specifications (Section 2 and [17]). Due to the fact that
every four rounds a different sub-key is added, there is a 512-bit 2tol multiplexer before the MIX
modules. Moreover, as it shown in Figure 1, just before the Rounds component, there is a 4tol
multiplexer that is responsible of feeding it with the appropriate input. If a configuration UBI has
to take place, then the input of the Rounds is the predetermined input for it, as described by the
algorithm, while if an output UBI is to begin, then the input is set to “0”. To start the hash
computation of a new message, the output of the Input Block is chosen, while if a multi-block
message is processed, the multiplexer feeds back the 512-bit output.
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The required sub-keys are produced by the Key Generator component, the block diagram of
which is shown in Figure 3(a). This component implements the key computation equations, which
has been presented in Eq.3 of Section 2. However, instead of using ssimple registers for storing the
intermediate values of the sub-keys and tweaks, two shift registers are used so as to fully exploit
the cyclic process of the key/tweak production that the algorithm imposes (circles 1 and 2). It also
contains XOR gates, three 64-bit adders, and two concatenation modules (circuitry in cycle 3).

Also, asit isshown in Figure 1, an additional 512-bit 3tol multiplexer, whose output is fed to the
Key Generator component, isincluded in the architecture. It is controlled by the Control Unit and
feeds the Key Generator component with the appropriate values based on the architecture’s
operation mode. Specificaly, if the calculation of the first sub-key takes place (the process of the
first 512-bit bloc has not started yet), then the “0” value is set, whereas if the Configuration UBI
process is to be performed, then the predetermined configuration value is set. In any other case
the current Threefish output is set asinput and used as key for the next Threefish.
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Figure 3. (@) The Key Generation component, (b) The FSM’s state diagram

Concerning the Control Unit, it has been implemented as a Finite Sate Machine (FSM) including
also a counter to control the Rounds component. The FSM, which isillustrated in Figure 3(b), has
five states, namely the: Idle, Key, Config, Message, and Output. The system’s initial is the Idlein
which the system remains until a new message block arrives (new_msg=1). Then, based on the
value of the sel_mac signal, it starts the production either of the key (when it isin MAC mode -
sel_mac=1) or the hash computation (hash mode - sel_mac=0). As far as MAC operations mode

concerns, the key UBI is accomplished after 73, 3@/ _lengthC clock cycles (where key lenght is
052 E

the desired length of the key, in bits). Afterwards, the system flips to Config (Configuration UBI)
where it remains for 73 cycles. Then it flips to Message state, where the main hash computation

takes place. The system remains there for 73, CTesSage_lengthC cycles (where message length is
H 12
the length of the message in bits). The last state is the Output (Output UBI) where the system

remains for 73 cycles before pops out the result, when in MAC mode. If there is another message
for processing, the system goes back to Message. In other case, it flips to Idle. Regarding the hash

7
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mode, the computation, after the Idle state, continues to Message and then to Output, similarly to
above.

The Control Unit’s circuitry contains a counter and simple logic modules, such as logic gates,
flip-flops etc. Additionally to the above control component, there is a smaller counter that counts
up to 8 inside the Input Block component. This small counter is responsible for the appropriate
synchronization of the padding procedure with the rest of the architecture and the indicating that
new data can be inserted for padding.

3.1.2. 4-round Unrolled Architecture

Regarding the 4-round unrolled architecture (4-round_unroll), there are few differences compared
to the 1-round unrolled one, mainly concerning the organization of the Rounds and Control Unit.
The other components have negligible, logic-level, differences. In particular, in the Rounds
component, 4 MIX-permute pairs are sequentially connected resulting in 16 MIX and 4 Permute
modules. Also, there are eight 64-bit adders for the subkeys. Due to the fact that every four
rounds a different subkey is added, there is a 2tol multiplexer before the M1Xes.

Concerning the Control Unit, it is similar to the one presented in Figure 3(b). However, to
correctly control the current architecture, the interna counter counts up to 17. Thus, the
Config_1, Message 2, and Output_1 states iterate (when desired) 17 times. The rest functionality
of the Control Unit isthe same as described in 3.1.1.

3.1.3. 8-round Unrolled Architecture

Asin 4-round unrolled architecture, the differences between the 8-round (8-round_unroll) and the
1-round unrolled architectures, mainly concern the Rounds and the Control Unit. Regarding the
Rounds component, there are 32 MIX and 8 Permute modules in total. Additionally, due to the
applied eight times loop unrolling, the Rounds component has two separate inputs for sub-keys.
Also, just before the Rounds component, there is a 4tol multiplexer that is responsible of feeding
it with the appropriate input.

Furthermore, due to the 8-round unrolling and the fact that a sub-key is need every 4 rounds, the
Key Generator produces two sub-keys at the same time. The block diagram of this Key Generator
issimilar to one of Figure 3(a), however it has some modifications. Instead of simple registers for
storing the intermediate values of the sub-keys and tweaks, two shift registers are used again, to
fully exploit the cyclic process of the keys and tweaks that the algorithm imposes (Section 2 and
[17]). However, it contains twice the circuitry of circle 3 in Figure3 (@) (6 64-bit adders and 4
concatenation modules) so as to feed the Rounds component with two sub-keys per clock cycle.
Concerning the Control Unit, is similar to the one presented in Figure 3(b), however, to correct
control the current architecture, the internal counter counts up to 8. Thus, the Config_1,
Message 2, and Output_1 states iterate (when desired) 8 times. The rest functionality of the sis
the same as described in 3.1.1).

3.2. Pipeline Exploration

As it is known, a widely-used method to improve throughput is pipeline. This is accomplished
splitting the critical path in shorter ones by inserting registersin proper positions creating pipeline
stages, which are located between the pipeline registers. In that way, after a latency delay,
different input data are processed concurrently in the pipeline stages resulting in significant
throughput improvement. However, the use of the pipeline registers resultsin area increase, while
the control unit aso becomes more complex. Moreover, after a certain point, the increase of the

8
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number of pipeline stages results in negligible throughput improvements. Hence, in order to
develop an architecture characterized by high Throughput/Area vaues, a careful study is
demanded to determine the number and position of the pipeline stages.

3.2.1. Functional Pipeline

Concerning the Skein algorithm, a way of applying the pipeline technique is the insertion of
pipeline registers inside the Round component and specifically between the consecutive executed
rounds. This kind of pipeline is denoted as Functional Pipeline. As it will be reported and
discussed in the experimental results (Section 4.1), the 8-round unroll architecture is the best in
terms of Throughput/Area factor. Thus, it is considered as the base architecture on which the
functiona pipeline is applied. Due to the 8 times loop unfolding, the Round component executes
8 iterations together. Thus, as the am is the insertion of pipeline registers between the
consecutive rounds without causing significant synchronization overheads, three design
aternatives exist. These are the 2, 4, and 8-staged pipelined architectures.

A generd block diagram of a p-stage (p =2, 4, 8) pipelined architecture is shown in Figure 4.
Comparing this architecture to that of Figure 1, they differ in three points. First, in the Rounds
component, there are 8/p MIX-Permute pairs followed by a pipeline register. The triplet (MIX-
permute) - Register - (MIX-Permute) is repeated p/2 times before and after the 8 64-bit adders
that are located in the middle. Additionally, there are p registers on the left of Rounds component
for the correct synchronization of the appropriate input block that is to be XORed with the
corresponding output. Also, for synchronization reasons, there are (p-1) additional registers at the
XORs output that isfed in the 3tol multiplexer that feeds the Key Generators.
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In order to support the Rounds component with the required sub-keys, the Key Generator
component has to be modified as well. The straightforward choice would be the incorporation of
p Key Generator components, each one responsible for the corresponding message block that is
processed in each one of the p stages. However, this would lead to significant increase of the
occupied area. To overcome this issue without increasing the critical path, which islocated inside
the Rounds component, a different approach was followed. Specificaly, two Key Generator
components were designed (Key Generator 0 and Key Generator 1). Each one includes p/2 shift
registers (same asthoseinside circles 1 and 2 of Figure 3(a)), which are responsible for producing
the appropriate sub-key and tweak values for the corresponding message block. In every clock
cycle, one key shift-register-tweak shift-register pair will operate, supporting the corresponding
message block that is processed. This way, there are only three adders and two concatenation
modules (same circuitry as in circle 3 of Figure 3(a@)) that are shared among the shift-registers,
leading to significant area decrease compared to the straightforward choice. To correctly control
the above procedure and selecting the working shift-register, additiona steering logic is used
consisting of two p/2_to_1 multiplexers before the above circuitry.

Regarding the Control Unit it is aso developed as hardwired FSM and it is similar to that of
Figure 3(b). However, it islarger as additional control signals must be produced. Also it contains
a counter that counts up to a number which depends on the number of the employed pipeline
stages p. To compute a hash value of a 512-bit message block, the Round component iterates 72/3
= 9 times (due to the 8-round unrolling), but now its iteration last p clock cycles. An additional
clock cycle for producing the first sub-key isrequired (similarly to the designs with no pipeline of
sub-Section 4.1), as well as one more for synchronization purposes of the last pipeline stage with
the rest ones. Hence, the total clock cycles of the above designs functionality, regarding the hash
processing of amessage block, are: (9 x p) + 2, and specifically 20, 38, and 74 clock cyclesfor 2,
4, and 8-staged pipelined designs, respectively.

3.2.2. Structural Pipeine

Another pipeline topology that could be considered for the Skein algorithm is the structural one.
Thisis accomplished by repeating consecutively modules of Threefish module, which operate on
data of different message blocks independently from one to another. Taking into account that the
8-round unrolled module is the best choice for the Threefish module, a structura pipelined
architecture considering three of the above modules is constructed, asillustrated in Figure 5. Asit
is shown, there are three independent 8-round unrolled Threefish modules (Round) consecutively
connected. Each one of them performs three iterations, so as the design to perform (3 x 8) x 3 =
72.

Regarding the Key Generator component, it is split to three different ones, which are the Key
Generator 1, 2, and 3. Each one of them is responsible to feed the corresponding Round
component with the required sub-keys. Concerning their internal organization, the Key Generator
1 issimilar to the one shown in Figure 4, with an additional output for feeding the Key Generator
2 with the appropriate sub-keys and tweaks for its computation, through parallel loading of its
shift registers. Key Generator 2 is similar to Key Generator 1 without the XOR trees before the
shift registers (see Figure 3(a)). Findly, the Key Generator 3 is smilar to Key Generator 2
without the output for parallel loading.

As discussed in sub-Section 3.1.3, the 8-round unrolled architecture requires one extra clock
cycle for the computation of the first sub-key. Hence, in the 3-staged structura pipelined
architecture three additional clock cycles would be required. To avoid the delay of these cycles,
there is an additional one (Key Generation 0) just before the first Round component, which is
responsible for the computation of the first sub-key. This component is much simpler than the
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other key generators. Asimposed by the algorithm, for the computation of the first subkey, the K8
and t2 values are not required. Thus, the corresponding XOR trees of Figure 3(a) are omitted.
Additionally, as only one subkey is produced, there is no need for shiftregisters and extra addition
with the subkey’s order number (Figure 3(a)). Hence, this block consists of only two 64-bit
adders (key+tweak) and a concatenation that forms the final skey. Finadly, similarly to Figurel,
there isamultiplexer in front of each Round, so asto feed it with the appropriate input (feed-back
the current output or the output of the previous Round).
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Figure 5. 3-staged structural pipelined architecture based on the 8-round unrolled Skein-512

The Control Unit of the pipelined designs consists, once again, of an FSM. However, it is larger,
and is split to 4 sub-components. The FSM, as well as the main circuitry of the unit isincluded in
11
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the Control Unit 1/2, while the rest isincluded in the Control Unit 2/2. The latter consists of three
counters, each one of them counting up to and producing the additiona control signals, required
by its corresponding Round and Key Generator.

3.2.3. Combination of Functional and Structural Pipeline

The two pipeline styles (functional and structural) can be combined leading to more effective
designs in terms of throughput. However, this results in important area overhead. Hence, an
exploration is required in order to develop an architecture characterized by improved
Throughput/Area values. To accomplish this exploration, three more architectures were
developed, which incorporated 2, 4, and 8 stages of functiona pipelining inside the Rounds
component. Regarding the rest components (e.g. Key Generators, Control Unit(s), etc), a
combination of the above topologies was accomplished. For clarity reasons, as well as to avoid
increased length of the manuscript, the block diagrams of these architectures are not presented.

4. EXPERIMENTAL RESULTSAND COMPARISONS

The above-introduced architectures were captured in VHDL, synthesized, and implemented in
FPGA technology using the Xilinx ISE Design Suite v.13.1. Also, for the implementation of the
architectures, the Virtex-4 (xc4vix160-FF1148) and Virtex-5 (xc5vix130t-FF1738), and Virtex-6
(xcbvIx365t-FF1759) FPGA families were selected. The correct functionality of the architectures
was initially verified through Post-Place and Route (Post-P&R) simulations using the ModelSim
simulator. Thereafter, downloading to FPGA boards was performed and the functionality of each
implementation was verified on the board using the Xilinx ChipScope tool.

The comparisons among all the proposed architectures are accomplished in terms Delay,
Throughput, Area, and Throughput/Area cost factor. Similarly to previous works dealing with
hardware implementations of Skein hash family, Throughput is calculated by Eq. 4:

Throughput :—(#blts) X
c

(4)

where f and ¢ correspond to the frequency and the consumed clock cycles, while #bits denotes the
data bits that are processed in each cycle. The total number of clock cycles includes the cycles
consumed to input data, to execute hashing process in the core function block, to perform the
final calculation process and to output the hash results. However, when the hashing concerns long
messages (which is the real world case), given the fact that the Throughput, in most of the cases,
is the maximum sustainable throughput for a given frequency, the potential cycles for inserting
data, performing the final calculation process and popping out the hash result are negligible and
ignored.

In the following sections the experimental results are presented and discussed. Firstly, we present
the performance results of the proposed architectures and we discuss and evaluate the application
of the applied optimization techniques (loop unrolling, functional, and structural pipeline). Then,
comparisons between the introduced and existing works are presented.

4.1. Loop-Unrolling Evaluation

As stated above, the critical path of al the three architectures is located inside the Rounds
component. In particular, the 1-round unrolled architecture presents the smallest critica path
(one MIX-permute pair, one 64-bit adder, one 512-bit 2tol multiplexer, and one 512-bit 4tol
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multiplexer). Moreover, it occupies the least area among the three architectures. Consequently, as
the unrolling factor increases from one to four and then to 8, the occupied area increases and the
critical path gets longer. Additionaly, due to the unrolling application, the ¢ variable in Eq. 4 is
rather smaller in 4-round_unrolled and 8-round_unrolled architectures (19 and 10 respectively)
compared to the corresponding one of 1-round unrolled architecture (73). However, the
behaviour of the Throughput metric, as the unrolling factor increases cannot be fully theoretically
determined.

Figure 6 shows the experimental results for the proposed loop unrolled architectures. As it was
expected the 1-round_unroll architecture (i.e. without performing loop unrolling) exhibits the
smallest delay and occupied area, whereas as the value of the unrolling factor increase both delay
and area aso increase. However, the increase of area and delay is not linear to the unrolling
factor. This happens due to the following reasons.

Concerning area, as it known each FPGA dlice contains one or more LUTs, multiplexers, and
flip-flops (F/Fs) to implement logic. Thus, as the number of the unrolling factor increases and the
design becomes more complex, better exploitation of the slice’s resources takes place, which
results in a non-linear area increase. In more details, comparing the 8-round_unroll architecture
with the 4-round and 1-round unroll ones in Virtex-6 technology, the area increases by 9% and
33%, respectively. Similar results stand for the Virtex-4 and Virtex-5 implementations.
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Figure 6. Loop unrolled architectures: (a) Frequency, area, throughput, (b) Throughput/Area

Regarding the achieved frequency, the architectures’ organization must be taken into account.
Specificaly, in the Rounds component of the 4-round-unrolled architecture there is not any
internal steering logic of the input block controlled by the appropriate sub-keys; in contrast, in
case of 1-round-unrolled architecture, there is a 2tol 512-bit multiplexer. Also, the 4-round
unfolding operation corresponds to the placement of 4 MIX-permute pairs consecutively. Hence,
the 4tol 512-bit multiplexer, which is placed before the Rounds component and included in the
critical path, is not repeated 4 times. Additionally, the internal 64-bit adders and XOR gates are
not repeated. Finaly, due to the incorporation of more MIX-permute pairs inside the Rounds
component of the 4-round-unrolled architecture, more compact placement is achieved by the
synthesis tool, which decreases the net delay. Due to the above reasons, comparing the 1-round-
unrolled and the 4-round-unrolled architectures, the decrement of the frequency is not quite close
to the theoretical one (4x lower). Specifically, in Virtex-6 technology, the frequency of the 8-
round unroll architecture is lower by 35% and 58% compared to frequency of the 4- and 1-round
unroll architectures, respectively. Similar results stand for Virtex-4 and Virtex-5.
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Studying the achieved throughput it is clear that it is improved with the increase of the unrolling
factor and the best architecture in terms of throughput in all technologies is the 8-round unrolled
one. Asit has been explained in Section 3, 8 iterations of the algorithm are executed in each clock
cycle, which results in a drastic decrease of the clock cycles. In Virtex-6, the throughput of the 8-
round unroll architecture isimproved by 24% and 207% compared to the throughput of the 4- and
1-round unroll architectures, respectively. The corresponding improvements in Virtex-5
technology are 28% and 241%, whereas in Virtex-4 they are 30% and 229%.

To peform a more accurate and fair evaluation of the proposed architectures, the
Throughput/Area metric is studied. As it shown in Figure 6(b), the Throughput/Area factor is
improved when the unrolling factor increases. Specifically, comparing the 8-round unrolled
architecture with the 4-round and 1-round unrolled ones in Virtex-6 technology, the
Throughput/Area factor isimproved by 14% and 133%, respectively. Similar results also hold for
the Virtex-4 and Virtex-5 implementations. Findly, the 8-round unroll architecture achieves the
higher Throughput/Area value among al the implementations of all architectures in dl
technologies. For that reason, this architecture was selected as the base one to apply the functiona
and structural pipeline techniques.

4.2. Functional Pipeline Evaluation

In Figure 7 the experimental results of the pipelined architectures are presented. Four pipelined
architectures are studied, which are the 8r_nFp, 8r_2Fp, 8r_4Fp, and 8r_8Fp with none, two, four,
and eight pipeline stages, respectively. For the reason explained above, the 8-round unroll one
was used as the base architecture in which pipeline was applied.

As expected, the frequency, area, and throughput increase as the number of the stages increases.
Also, the above metrics are improved when the modern Virtex-6 FPGA technology is used.
Specificdly, in Virtex-6, the frequency improvements of the 8r_2Fp, 8r_4Fp, and 8r_8Fp
architectures over the 8r_nFp one are 75%, 109%, and 125%, respectively. Also, comparing the
8r_nFp design with the 8r_2Fp, 8r_4Fp, and 8r_8Fp ones, the throughput improvements are 75%,
109%, and 125%, whereas the area increases by 36%, 98%, and 162%, respectively.

Family | Architecture Fr(e’at;{ezr;cy (Sirceeas) Th(r“at:)gphS;Jut e-Viterd 8- Vitexs —a—Vitexs

8r_nFp 77.3 4616 3957.8 5 L
: 8r_2Fp 1085 6133 5556.2 s

Ve s 142 | 8465 | 63500 o 3R~ » ~30
8r_8Fp 1335 11369 6835.2 g, 276 e I
8r_nFp 99.4 1841 5089.3 7 - e 2‘4

Virtex.s | 82D 162.3 2675 8309.8 £, — ---1-ﬁ5
8r_4rp 1916 4082 9809.9 2 086 001 ors
8r_8Fp 199.3 5506 10204.2 11 e . M 06
8r_nFp 1183 1629 6057.0 B

Virtex. |—8r2Fp 206.6 2212 10579.5 0 oo e wie | o
8r_4rp 247.0 3219 12647.9 - P rehitectun -
8r_8Fp 266.4 4272 13639.2

(a} (b)
Figure 7. Functional pipelined architectures: (a) Freq., area, throughput, (b) Throughput/Area

It should be mentioned that the frequency improvement is not proportional to the number of the
pipeline stages because increasing the pipeline stages the design becomes more complex making
difficult the efficient implementation (e.g. placement) of the logic in the FPGA resources. This
results in high routing overhead which strongly affects the final delay. Concerning the area
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increase, it is aso exhibits a similar behaviour and the explanation of this is the same asin loop
unrolled architectures discussed above.

Observing the Throughput/Area metric, the 8r_2Fp architecture exhibits the best performance in
all technologies. Moreover, asit is shown in Figure 15(b), the Throughput/Area factor is reduced
significantly in all FPGA technologies, when the number of the pipeline stages increases beyond
two. Furthermore, comparing the 8-round unrolled (Section 5.1) and 8r_2Fp architectures in
terms of Throughput/Area, it derived that the 8r_2Fp architecture outperforms the 8-round
unrolled one in all technologies. Specifically, the Throughput/Area factor is improved by 5.9%,
17.4%, and 28.4% in Virtex-4, Virtex-5, and Virtex-6 technologies, respectively. These
improvements justify the worth of the application of the functional pipeline and its combination
with the loop unrolling technique.

4.3. Mixed (Functional and Structural) Pipeline Evaluation

Figure 8 shows the experimenta results for the proposed mixed-pipelined architectures where
both loop unrolling, functional, and structural pipeline are applied. Specificaly, 3 additional
structural pipeline stages (3Sp) are applied in each architecture. Again, the frequency, area, and
throughput increase with the number of the pipeline stages, while the implementations on the
Virtex-6 technology outperform those on the Virtex-5 and Virtex-4 devices.

Frequenc Area Throughput
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Figure 8. Mixed pipelined architectures: (a) Frequency, area, throughput, (b) Throughput/Area

Comparing these architectures with those where only functional pipeline is applied, it is derived
that the throughput of the mixed-pipeline designs is improved drastically. For instance, for the
implementations on the Virtex-6 technology, the throughput of the 8r_8Fp_3Sp architecture is
improved by 197% compared to the 8r_8Fp architecture. The corresponding improvements of the
8r_nFp _3Sp, 8r 2Fp 3Sp, 8r_4Fp 3Sp architectures are 210%, 206%, and 209%, respectively.
However, thisimprovement comes with a significant areaincrease.

Studying the Throughput/Area ratios (Figure 7(b) and Figure 8(b)), it is derived that the mixed
pipelined architecture is dightly better compared to functiona pipelined one. However, as it is
mentioned previoudly, in the mixed pipelined architectures the throughput isimproved drasticaly.
Thus, these architectures can be used when the time constraints are very hard and the designer can
afford the corresponding areaincrease.
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4.4. Comparisons with Previous Works

As reported in the Introduction, there are many works published in previous years regarding the
implementation of Skein algorithm(s) on FPGA technology. In this Section, we compare and
discuss these architectures with the corresponding proposed ones. Initially, the comparison among
the un-optimized architectures and the proposed 1-round unroll architecture takes place. In these
architectures neither loop unrolling nor pipeline is applied. Then, we compare the architecturesin
which loop unrolling is applied. Finally, the comparison among the architectures in which loop
unrolling and (or) functional pipeline are applied takes place. In the following tables the mark “-”
denotes that the corresponding metric is not provided. Also, as in some works the area is
measured in terms of LUTs-FF pairs, we include this metric in the provided results. It must be
noticed that we do not compare the proposed mixed-pipelined architectures as it is the first time
that such kind of architectureis presented.

4.4.1. Un-optimized Architectures

Figure 9 shows the comparison of the proposed un-optimized architecture (1-round unroll) with
the existing ones for implementations on Virtex-5 and Virtex-6 technologies. The proposed
architecture outperforms the existing ones in terms of throughput in Virtex-6 technology, where
the throughput improvement ranges from 45% up to 2363%. Regarding the Virtex-5
implementations, the throughput of the proposed architecture is higher by 13% up to 4167% than
that of [37], [38], and [40], whereas the throughput of [34] is better by 3%.

Area
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Figure 9. Un-optimized architectures: (a) Frequency, area, throughput, (b) Throughput/Areafor Virtex-5
technology, (c) Throughput/Areafor Virtex-6 technology

However, as it shown in Figure 9(b) and (c), the proposed architectures outperform al existing
ones in terms of Throughput/Area factor in both technologies (34% up to 620% and from 25% up
to 165% on Virtex-5 and Virtex-6, respectively).

4.4.2. Loop-Unrolled Architectures

Figure 10 presents the comparisons of the proposed 4-round loop unrolled with corresponding
existing ones. Asit is shown, the proposed architecture outperforms the existing ones in terms of
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throughput in al technologies. Specifically, the throughput improvements range from 25% up to
105% and from 30% up to 61% in Virtex-5 and Virtex-6 technologies, respectively. Comparing
the proposed architecture with the existing ones in terms of Throughput/Area factor, it is
improved from 4% up to 275% and from 18% up to 30% in Virtex-5 and Virtex-6 technologies,
respectively.
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Figure 10. 4-round unrolled architectures: (a) Frequency, area, throughput, (b) Throughput/Areafor Virtex-
5 technology, (c) Throughput/Areafor Virtex-6 technology

In Figure 11 the comparisons of the proposed 8-round loop unrolled architecture with existing
corresponding ones are presented. Again, the proposed architecture outperforms the existing ones
in terms of throughput and Throughput/Areametricsin al the considered technologies (from 44%
up to 259% and from 27% up to 151%, respectively, in Virtex-5).
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Figure 11. 8-round unrolled architectures: (a) Freq., area, throughput, (b) Throughput/Areafor Virtex-5
technology

4.4.3. Loop-Unrolled and Pipelined Architectures

Figure 12 presents the comparisons of the proposed 8-round loop unrolled with two functional
pipeline stages (8r_2Fp) architecture with corresponding ones presented in literature. The
proposed architecture outperforms the existing ones in terms of throughput in the considered
technologies except of the architectures of [37]*** and [38]***. There, the throughput is higher
by 24% and 12% in Virtex-5 and Virtex-6 technologies, respectively. In al other, cases the
throughput isimproved from 36% to 66% (Virtex-5) and from 38% to 87% (Virtex-6). However,
concerning the Throughput/Area factor, the proposed designs achieve the highest values.
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Particularly, the Throughput/Area factor is improved from 43% up to 150% and from 54% up to
192% for the Virtex-5 and Virtex-6 technologies, respectively.
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Figure 12. Loop-unrolled & functional pipelined architectures: (a) Frequency, area, throughput, (b)
Throughput/Areafor Virtex-5 technology, (b) Throughput/Areafor Virtex-6 technol ogy

5. CONCLUSIONS

High-throughput implementations of cryptographic systems are essential nowadays, where
security is an indispensable feature of almost all e-transactions and at the same time high-speed
communication networks (e.g. optical) are used. Towards this direction, throughput-increasing
techniques, such as loop-unrolling and pipeline, are widely used in developing cryptographic hash
architectures that achieve high throughput rates. However, they should be used carefully so as not
to increase the overal system’s area, keeping the Throughput/Area value high as well.

In this paper, the loop unrolling, the functional and structural pipeline techniques have been
studied in order to develop optimized hardware architectures for the Skein hash agorithm. It must
be stressed that it isthe first time that architectures, which are based on the application of both the
three above-mentioned techniques, are proposed. Ten different architectures, which vary in the
applied unrolling depth and functional and structural pipeline stages have been introduced,
implemented in several Xilinx FPGA technologies, and evaluated in terms of Throughput and
Throughput/Area. When al the three techniques are used, the best architecture is the 8-
round_unroll one with two functiona and three structural pipeline stages. The proposed
architectures outperform the corresponding existing ones in terms of Throughput/Areafactor.
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