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ABSTRACT 
 
Utilization of Unmanned Aerial Vehicles (UAVs) in military and civil operations is getting popular. One of 

the challenges in effectively tasking these expensive vehicles is planning the flight routes to monitor the 

targets. In this work, we aim to develop an algorithm which produces routing plans for a limited number of 

UAVs to cover maximum number of targets considering their flight range. 

 

The proposed solution for this practical optimization problem is designed by modifying the Max-Min Ant 

System (MMAS) algorithm.  To evaluate the success of the proposed method, an alternative approach, 

based on the Nearest Neighbour (NN) heuristic, has been developed as well. The results showed the success 

of the proposed MMAS method by increasing the number of covered targets compared to the solution based 

on the NN heuristic. 
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1. INTRODUCTION 

 
The importance and the impact of using Unmanned Aerial Vehicles (UAVs) in military and civil 
operations are increasing [3,4,5]. One of the issues faced for efficient usage of UAVs is planning 
the flight routes to monitor all or the maximum number of the given targets. This problem is 
related with the Multiple Travelling Salesman Problem (mTSP) [1] and the Vehicle Routing 
Problem (VRP) [6]. In these well-defined problems, it is mostly assumed that travelling salesmen 
or vehicles should visit all the targets and the target function is defined as to find a minimum-
distant route. Even, in the constraint versions of the mTSP and VRP, some other restrictions 
(visiting time windows, number of depots, etc.) are included; it is still assumed that there exists 
enough number of travelling salesmen or vehicles to cover all the given locations.  
 
However, in reality the number and flight range of UAVs might be insufficient to cover all the 
targets. As a result, the maximization of the number of targets covered by the limited number of 
UAVs can be defined as a new problem. Thus, this article presents a solution for this practical 
optimization problem by modifying the Max-Min Ant System (MMAS) algorithm [2] 
accordingly.   
 
In the proposed solution, each ant constructs routes for the given number of UAVs using 
pheromone and heuristic information. After each iteration, the solution which covers more targets 
with less route distance is selected as the iteration-best solution and the pheromone values of the 
edges on that route are increased. According to the termination condition, the algorithm stops and 
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outputs the best route found so far as the result. To evaluate the success of the proposed method, 
another approach, based on the Nearest Neighbour (NN) heuristic, is designed as well. In this 
solution, an UAV always select the nearest target to move on until its remaining flight range 
urges the UAV to return the base. 
 
Both solutions are implemented using MASON simulation library [7] and compared by extensive 
experiments with different parameters and standard TSP data files [9]. The results showed the 
success of the proposed MMAS method by increasing the number of covered targets up to 10% 
compared to the solution based on the NN heuristic. 
 

2. PROBLEM DEFINITION 

 
We assume that we are given the location of each target along with the base location, the number, 
and   flight range of the UAVs. The problem is to create routes for each UAV such that any target 
is visited by only one UAV and once, every UAV’s route distance has to be equal or less than the 
flight range, and the number of total targets visited by the all UAVs is maximized. Thus the target 
function is to maximize the number of targets to be visited by the all UAVs. The constraints are 
the flight range and the number of UAVs. 
 

3. MAX-MIN ANT SYSTEM   

 
Stützle and Hoos proposed the Max-Min Ant Colony System (MMAS) as a successful alternative 
to Ant System (AS) [8]. In the referenced work, they show the relative success. The basic 
difference between the MMAS and AS is the setting up limits on the maximum and minimum 
values of the pheromone values that can be compiled on an edge. We apply MMAS to find a 
route planning to cover most of the targets as explained below. 
 

4. APPLYING MMAS TO TARGET COVERAGE PROBLEM     

 
Below, we first explain the MMAS basics and then provide the algorithm to generate a solution to 
cover maximum number of targets. 
 
2.1. Selecting Next Target 

 
In MMAS, each artificial ant tries to create a route planning for all the UAVs by visiting targets 
considering the given problem constraints. Beginning from the base, each ant calculates the 
probability of movement from the current location to the all unvisited targets as in the following 
formula: 
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In Eq (1), i is the current location, j is the possible next location, τij is the pheromone value 
between two locations,   ηij is the heuristic value between two locations, β is the coefficient for 
the heuristic parameter, and Mk is the memory for storing list of the targets which either are 
already visited by the ant k or cannot be accessible with the remaining flight range. Thus, Pij is the 
normalized probability of ant k to move from target i to target j. After calculating the movement 
probability for all the targets, a random number between 0 and 1 is generated to select the next 
target according to total probabilities of all the possible targets. If all the targets’ probability is 0, 
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it means that either all the targets are visited or the flight range is not enough to visit any targets 
any more. Then, ant returns to the base. Thus, a route for a UAV is completed. The ant begins a 
new route for the next UAV with a refreshed flight range. When all the routes are prepared for all 
the UAVs an iteration of the ants has been finished. Each ant builds its own route planning 
simultaneously by exploiting the experiences of other ants by sensing the pheromone values in 
the formula. 
 

4.2. Assigning Initial Pheromone Values 
 

The initial pheromone values (τ0) between all target in the set (H) are initiated to the selected 
maximum value (τmax). We calculated the τmax as in Eq.(4).  

max0 ττ =                                                                      

          (2) 

0ττ =ij ,   i,j ∈H                                                                    

          (3) 

initcp *

1
max =τ                                                                                (4) 

 

In Eq. (4), p is the evaporation parameter and cinit is the cost of the initial solution. Cost of a 
solution is calculated as follows: 

all

visited

T

T
c −=1                                                                     (5) 

Thus, if a routing plan can lead to visit all the targets, its cost will be zero. The initial solution is 
constructed using Nearest Neighbors heuristic. 
 

The minimum pheromone value is defined as 

max
10

min *)1( ττ
iteration

p−=                   (6) 

As a result of Eq. (6), any edge would have pheromone at least ten times evaporated value of the 
maximum pheromone value. Thus, we do not allow unvisited edges get very low pheromone 
values which otherwise would decrease their probability. 
     
4.3. Updating Pheromone Values 
 

After completing a tour, each ant calculates the tour cost as given in Eq. (5). Before applying any 
pheromone update on the targets, first evaporation should take place. Thus, all the pheromone 
values between all the targets are decreased using the evaporation parameter value (p) as in the 
following formula: 

ijij p ττ )1( −= , i,j ∈H                          (7) 

Then, all targets on the route constructed by the ant (Rk) receive an update depending on the cost 
of the tour (c): 
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Eq. (8) dictates that the solutions with less cost, that is covering more targets, leave more 
pheromone on the paths to provide positive feedback for the other ants. 
 

4.4. Calculating Heuristic Value 

The heuristic value (ηij) between two locations is defined as 
ij

ij
d

1
=η , where ijd is the distance 

between the locations. 
 

4.5. Algorithm 

 
Using the steps defined above an implementation of the MMAS is given in Table 1. We input the 
target list (H), the distances between the targets (dij), the flight range (FR), and the number of 
UAVs (UAV) to the algorithm. The algorithm first calculates an initial solution by applying the 
NN heuristic. By using the cost of the initial solution, minimum and maximum pheromone values 
are set. Then, using the distance matrix, the heuristic values are calculated. After creating a 
number of ants (m), each ant builds its solution and updates the pheromone values according to 
the cost of the solution. When, a pre-defined number of iterations has been executed algorithm 
terminates by outputting the best solution found so far. 
 

Table 1.  Pseudocode for the proposed algorithm. 
 

MaxTarget (H, dij , FR, UAV) 
 { 
    UAV_used = 0; 
    remaining_Range = FR; 
    RNN=  NN(H, Mij , FR ); 
    init_Pheromone_Values(); 
    init_Heuristic(Mij); 
    create_Ants(m, base); 
  
    while (!end_condition_satisfied) 
    { 
           for each ant 
           { 
                while (UAV_used<UAV) 
               { 
                       next = find_Next_Target(); 
                       if (base_Reachable(next)) 
                       { 
                            move(next); 
                           remaining_Range -= dcurrent,next; 
                          target_Number ++; 
                        } 
                       else 
                       {  
                           move(base); 
                           UAV_used++; 
                           remaining_Range = FR; 
                         } 
              } //end_while 
             evoporate_Pheromone(); 
             update_Pheromone(); 
             update_Best_Solution();                        

         }// end_for_each_ant 
     } 
    return (Best_Solution); 
} 



Computer Science & Engineering: An International Journal (CSEIJ), Vol. 4, No. 1, February 2014 

31 

 

3. SIMULATION MODEL AND RESULTS 

 
We have implemented the proposed MMAS solution using the MASON simulation library (Luke 
et al. 2003). The simulation and MMAS parameters with the default values are given in Table 2. 
We use several different TSP data files (TSPLIB, 1995) with various flight range and UAV 
number to observe the results. Below we report only the preliminary results for the TSP data file 
name CH150. The first location in the data file is selected as the base where all the UAVs are 
assumed to be located at the beginning and must return to it at the end of the flight. Thus, the total 
number of the targets is 149. 
 

Table 2.  Simulation Parameters and default values. 
 

Parameter Definition Default Value 

DF Data File CH150.dat 

T Total Number of Targets 149  

dij Distance matrix Calculated according to the input file. 

FR Flight range 3  

p Pheromone evaporation 0.01 

 Heuristic effect factor 7 

m Number of ants 151 

t Iteration number 1000 
 
To determine the flight range (FR) we define a parameter called Critical Distance (CD). The CD 
is the distance of the farthest target from the selected base. We test three FRs with respect to the 
CD as Case 1: FR = CD, Case 2: FR = CD/2, and Case 3: FR =CD*2. 
 
The main performance metric, Target Coverage (TC), is the ratio of the number of the targets 
visited by all the UAVs to the existing targets as formulated below: 

100*
all

visited

T

T
TC =                                                  (9) 

To obtain the results, we run each simulation 10 times and get the averages of these results to find 
the mean values. 
 

5.1. Results for Case 1 

 
In the first test, FR is set CD and the results are presented in Table 3. The first column shows the 
number of UAVs, the second and the third give the TC results for the NN and MMAS heuristics 
respectively. 
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Table 3.  The target coverage ratios for the heuristics when FR = CD. 
 

UAV  TCNN TCMMAS  

1 22% 28% 

3 45% 63% 

5 70% 85% 

6 85% 95% 

7 90% 99% 

9 92% 100% 

11 97% 100% 

13 100% 100% 

 
As seen in Table 3, the MMAS can generate more target coverage compared to the NN heuristic. 
For example, to cover all the targets, the MMAS can need only 9 UAVs whereas NN requires 13. 
This results shows that the MMAS can use UAVs much more efficiently to cover most of the 
targets with respect to the NN heuristic. 
 
5.2. Results for Case 2 

 
When the FR is decreased to half of the CD value, the generated results are as in Table 4. As the 
FR is not enough to reach some of the targets, increasing the number of UAVs cannot help after 
some point. In the experiments, we observe that the MMAS can access all possible targets with 
using 11 UAVs where the NN needs 14 to cover the same number of targets. 

 
Table 4.  The target coverage ratios for the heuristics when FR = CD/2. 

 

UAV  TCNN TCMMAS  

1 11% 12% 

3 20% 29% 

5 30% 35% 

7 34% 38% 

9 36% 40% 

11 38% 41% 

13 40% 41% 

14 41% 41% 

 
5.3. Results for Case 3 

 
For the last experiment, we set the FR double length of the CD. Since the FR is relatively large, 
we expect to cover all the targets with less number of UAVs. The MMAS performs better for any 
number of UAVs in this set of experiments as well. For instance, 4 UAVs are successfully routed 
by the MMAS to cover all the targets while the NN prepares a routing plan for the same number 
of UAVs missing 4% of the targets. 
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Table 5.  The target coverage ratios for the heuristics when FR = CD*2. 
 

UAV  TCNN TCMMAS  

1 33% 37% 

2 61% 70% 

3 79% 85% 

4 96% 100% 

 

3. CONCLUSIONS 

 
In this work, we define a practical problem faced in route planning of a limited number of UAVs 
to cover maximum number of the given targets with a pre-defined flight range. We propose to 
adapt the MMAS meta-heuristic to solve this problem. After implementing the proposed solution 
we compare the results with an alternative heuristic, namely the Nearest Neighbor.  
 
The preliminary results show the effectiveness of the MMAS in route planning. We would like to 
extend the work by defining different performance metrics and executing the experiments with 
different location set ups. 
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