
Computer Science & Engineering: An International Journal (CSEIJ), Vol. 4, No.5/6, December 2014

DOI : 10.5121/cseij.2014.4602 11

A Novel Design of a Parallel Machine Learnt

Generational Garbage Collector

Vasanthakumar .S,

thisisvasanths@gmail.com

Anna University, Chennai, India.

ABSTRACT

The Generational Garbage collection involves organizing the heap into different divisions of memory space

in-order to filter long-lived objects from short-lived objects through moving the surviving object of each

generation’s GC cycle to another memory space, updating its age and reclaiming space from the dead

ones. The problem in this method is that, the longer an object is alive during its initial generations, the

longer the garbage collector will have to deal with it by checking for its reachability from the root and

promoting it to other space divisions, where as the ultimate goal of the GC is to reclaim memory from

unreachable objects at a minimal time possible. This paper is a proposal of a method where the lifetime of

every object getting into the heap will be predicted and will be placed in heap accordingly for the garbage

collector to deal more with reclaiming space from dead object and less in promoting the live ones to the

higher level.

1. INTRODUCTION

The currently well-established generational garbage collector works in a way to filter the long-

lived objects in the heap from the short-lived ones, since 80-98% of the newly allocated objects

will be dead within a few million instructions or before they meet their first GC cycle [2]. The

Generational GC attains this by dividing the heap into different regions of memory spaces called

generations. All newly created objects will be allocated with space in the generational space

division meant for the new objects, which is comparatively very small to the generational space

division for the old objects, in order to have a Young generation GC which will be faster and

frequent. As the GC cycles occur, whenever the space in this young generation is filled up, the

surviving objects from this GC will be promoted to another space division meant for the

surviving objects. This space acts like a buffer space where the objects are aged by swapping live

objects between sub-divisions and clearing the dean objects through each GC cycle. Ones the

objects have attained a certain age they are moved from here to the space division meant for the

old objects. By this way the heap will have a group of filtered objects which have survived to the

old space and will be expected to age here. This space for Old objects is bigger than the other two

and the garbage collection will take place here less frequently and takes more time comparatively.

The problem with this method is that the garbage collections here are focused on filtering out the

longer living objects from the short-lived ones and so ends up spending considerable amount of

time in dealing with the live objects. The ultimate goal of the garbage collection is to reclaim the

space allocated to objects which are dead to get the space ready for newer objects. So every

encounter with a live object is waste of computational time since these activities are carried out as

Computer Science & Engineering: An International Journal (CSEIJ), Vol. 4, No.5/6, December 2014

12

stop-the-world actions which means, all the current program threads will be paused while the

garbage collection is done. As the number of program threads increases, the delay due to garbage

collection also increases, and the time spent in checking reachability for live objects and

promoting them can turn to be a counter-productive activity.

This scenario of entities being created, aged and reclaimed when dead, caries the computational

advantages of a quintessential subject for the heuristic prediction over the lifetime of entities in a

particular domain [1, 39]. This paper is a proposal of a method in which the expected life time of

the objects getting created in the heap can be calculated in parallel to the application and sorted in

the live data structure from the root, so that when a garbage collection cycle is initiated, the GC

will encounter only with dead objects almost all the time and comparatively a very less number of

live objects. The objects which the GC would not encounter will be promoted in parallel, to

generation spaces where they are highly likely to die. By this way the pause times can be greatly

reduced at situations where the application usually has a large number of long-living objects in its

heap.

2. ASSUMPTIONS

Many different languages use automatic garbage collection as an integrated part of them. The

Generational Garbage collection method has been implemented as a part of the JVM the .Net

Framework and as part of many other languages as well. For feasibility of explanations, in this

paper we will consider a java application running in a Sun JDK to be our subject. All our

terminologies, and implementation details shall be in accordance to the JVM’s Generation

Garbage collection and JVM’s Heap related for the rest of the paper. We will be using a sample

java application named java2demo.jar as our subject to discuss the feasibility of prediction as the

control flows for this application is very limited. Let us assume to have a JVM whose Garbage

Collector code has been modified to inject a data retrieval module, which can log the details

regarding objects creation, space allocation, current generation of an object, and reclamation. This

particular injected module can be turn on or off when required by specifying the same as JVM

arguments.

3. SOLUTION PROPOSAL

There are three important phases in the solution proposed through this paper. They are, Prediction

of object life time in heap, structuring of data to hold dead objects first and reclamation of space

parallel to promotion of objects.

3.1 Prediction

Computer programs are highly structured set of instructions and so a fully functional software

application would have only a few finite different flows of execution. In the case of Object

Oriented Programming, these control flows will determine which objects will be instantiated and

which object’s scope will be exited. These characteristics of software applications written in

object oriented programming languages makes their objects creation pattern to be predictable in a

given flow of execution. In this proposed method, the important module happens to be the

prediction module. This a module which will run in parallel to the application threads and collects

objects creation detail for a few initial test runs by injecting a data set retrieval code into the

Computer Science & Engineering: An International Journal (CSEIJ), Vol. 4, No.5/6, December 2014

13

application’s JVM’s garbage collector module. This phase of running the application with

injector codes will be purely testing intended and so the application’s performance will be

impacted due to the data collection retrieval for every object creation, promotion and reclamation.

Once we have the test set in hand, the machine learning module will go through the test set and

generates prediction data for each object, which will be the expected life time for the object in

heap.

3.2 Structuring Reachability Data

The traditional approach by which the garbage collector in JVM will differentiate the dead

objects from the lives one is based on their reachability form the root. Thus for each object, the

GC will be traversing from the root until it either encounters the object or reaches the point where

further traversal is not possible. According to this proposed model, the Root will hold only two

children. One child will serve as the root for all the objects which are highly like to die before

they meet their first GC cycle and the other child will be serving as the root for all the objects

highly like to live longer or at the least long enough to survive their first GC encounter.

3.3 Parallel Reclamation and Promotion

Now, since we have two sub-roots under the main root, only one will be of the interest of the GC

where objects residing are highly likely to be reclaimed of their space. Thus there will be one GC

cycle running in parallel with another thread, which we shall call as the Object Promoter (OP).

The OP will run through every child from its root where all the objects are expected to be alive.

Here the OP will check for the expected life time of each object and will promote them

accordingly to the respective generation space. If the OP encounters a dead object (which will

occur often during the initial test runs to obtain the data set), the OP will act like a GC and

reclaim its space.

4. DATA COLLECTION AND ANALYSIS

In order to verify how feasible the prediction phase of this model can be implemented, we can use

the java2demo.jar application, as our subject and collect data during its runtime regarding its

objects lifetime and analyze it. Using the jmap tool which is an integrated part of Sun JDK we

can retrieve the histogram of the heap at any point during the runtime of the application. Further

using the JvisualVM tool which also an integral part of the JDk with its plugin visualGC, we can

have a graphical depiction of the GC cycles and the objects promotion.

The jmap’s –histo and –histo:live options can be used to get the list of class names, number of

instances for each class name and their size in bytes for all the objects and only the live objects

respectively. Using the jvisualVM we can learn when the GC cycle is taking place. A –histo from

jmap after each GC cycle, followed by a –histo:live can give us enough data to understand that

the number of live instances of a particular class after a particular GC cycle happens to be almost

the same every other time we run the application with minor variation which is due to the

interruptions from our jmap commands and jvisualvm.

The difference between two –histo:live lists taken in consecutive GC , (i.e.) removing the old

list’s number of instances from the new list’s number of instances will give us the number of

Computer Science & Engineering: An International Journal (CSEIJ), Vol. 4, No.5/6, December 2014

14

objects surviving the Eden Space and their class name and size. This data will also be consistent

for every other run of the application. As an example, running the jmap –histo after the first GC

cycle gave me a set of results, a very few of them for comparison are as follows,

Fig. 1 Jmap –histo Output 1

And running jmap-histo after the first GC cycle during the second run of the application gave me

the another set of results and the data for the same five classes are as follows,

Fig. 2 Jmap –histo Output 2

Now from the above data we can infer that the number of objects that are being formed, and

number of objects surviving the Eden space will be the same for every run of the application at a

given instance. Here, it happens to have a slight variation in the number of instances for classes

which has huge number of instances and that is due to our interruptions, as mentioned earlier. On

the other hand, the similarity is also mainly because the application has only minimal number of

control flows in which it can progress. Hence the prediction of objects life time over these

applications can be simple. Further for applications which are widely dynamic in their flow of

control, for example an application that reacts in a different way to each different input from the

user, the prediction can get tougher but still possible. The only difference will be the effect of

presence of one object over the other will have to be taken into consideration. By which the

presence of a given number of different instances can be used to predict the control flow of the

application and then the creation and deletion of objects in that control flow. Such a scenario

where one feature of an entity has a direct influence on another feature of the same entity, or

another entity in the same domain, the prediction of data can be performed through probabilistic

Computer Science & Engineering: An International Journal (CSEIJ), Vol. 4, No.5/6, December 2014

15

inference [4]. This can be achieved by using widely implemented conditional probability

theorems such as the Bayesian Network discussed in the next section.

5. BAYESIAN NETWORK

Bayes' Theorem is a theorem of probability theory which can be seen as a way of understanding

how, the probability that a theory is true; is affected by a given piece of evidence. It has been

used in a wide variety of contexts, ranging from marine biology to the development of "Bayesian"

spam blockers for email systems. The Bayesian network will be the right approach to this

scenario, since our prediction in here is based on conditional probability (i.e.) the probability of

event B to occur given that the an event A has occurred [5]. Here the event B refers to the

survival of an object for a specific time, given that a number objects from another class already

exist or the number of GC cycles spent or the same object has survived the Eden space etc.

5.1 Features and Probability

Bayes' theorem expresses the conditional probability, or 'posterior probability', of an event A after

B is observed in terms of the 'prior probability' of A, prior probability of B, and the conditional

probability of B given A, denoted B |A. Bayes' theorem is valid in all common interpretations of

probability.[6]

Bayes' theorem provides an expression for the conditional probability of A given B, which is

The features based on which the probability has to be calculated will depend on the feature data

that can be retrieved from the heap during the run time of the application. As per our earlier

assumption, let us assume that there are ‘n’ different features which can be recorded or

calculated, during or after the runtime of the application from the data our injected code can

retrieve during the initial few test runs. The features set will include features like the object’s

class name, depth of hierarchy from the root parent, number of same class’s objects formed,

number of same class’s objects surviving the Eden space, size of the object, etc. For each of these

features, the Bayes theorem will be used to calculate the posterior probability of the particular

object to survive the generation is currently in.

Fig. 4 Bayes Theorem Implementation

Here, Pr(Y|Fn) is the probability of an object to survive given that a feature meets a condition.

Pr(Fn|Y) is the probability of the feature to meet the condition given that the object has survived.

Computer Science & Engineering: An International Journal (CSEIJ), Vol. 4, No.5/6, December 2014

16

Pr(Y) is the probability of the object to survive the current generational space and Pr(Fn) is the

probability of the feature to meet the conditions.

For example, taking each of the feature into consideration such as,

F1 = depth of hierarchy

F2 = className

.

.

Fn = size

The probability of the object to survive this generation given that the feature Fx holds this

particular value can be calculated.

For features that hold static value such as the class name and depth of hierarchy, the

probability can be calculated just once, whereas for the dynamic ones such as the number

of instances will have to be calculated for every GC cycle.

Here, π(Xi) stands for the set of parents (direct ancestors) of Xi.

By constructing a Bayesian Network as proposed above, we will arrive at a Directed Acyclic

Graph where nodes are variables and edges indicate casual influences. A Bayesian network

implicitly defines a joint distribution.

Fig. 6 Bayesian Network

Computer Science & Engineering: An International Journal (CSEIJ), Vol. 4, No.5/6, December 2014

17

This joint distribution will on the whole calculate the probability of an object to survive a

particular generational space. On the whole for our implementation we will need to calculate this

for an object only twice, i.e. the probability that an object will survive the Eden space, and the

probability of an object to reach the tenured space.

5.2 Threshold and Decision making

Since the Bayesian network will give us a probability of an object to survive a particular

generation space or reach a particular generation space, the output will be a value between 0 and

1, inclusive. Now, we will have to find a threshold value which will be the deciding factor above

which the object will be surviving or moving to a space, below which the object won’t. This

value can be a tunable factor which can be set, based on the performance of the algorithm over

the application for improved results. But we need to consider the fact that a false prediction of an

object to not to survive a generational space can be tolerated as the GC will anyway promote the

object to the next generation of buffer space, But a false prediction of an object to survive a

generation space cannot be tolerated as an ‘about to be dead’ object will be promoted which will

cause further computational expenses. And so the threshold for this scenario will have to be

generally high, for instance a threshold value of 0.8 will perform better than the threshold 0.55.

Fig. 7 Logistic Regression

6. PRECISION AND RECALL TRADE OFF

This prediction method proposed for the scenario has two cases of false predictions. One is a

False Positive, which is that the algorithm predicts that the object in question will survive the

space but it would turn out to die due to which we would promote a dead object. The second case

Computer Science & Engineering: An International Journal (CSEIJ), Vol. 4, No.5/6, December 2014

18

is a False Negative where the algorithm predicts the object to die but instead survives the GC

cycle, in which case the GC will promote the object. Considering both the cases we can clearly

decide that a False Negative is a tolerable scenario where as the False Positive cannot be

tolerated. Thus we will have to tune the prediction module to have absolutely no False Positive

which might give space to a few false negative. Such a prediction system is High Precision

Classifier system.

Fig. 8 Precision and Recall

This will be a tradeoff between the precision and recall of the classifier where we will choose to

have higher Precision which will result in less recall. In order to set a classifier system to have

higher precision we will have to assign a higher value to the threshold. For example, setting up

the threshold to have a value of 0.8, the system will be a high precision classifier. By which the

prediction module’s confidence will be higher for a Positive prediction (i.e.) an object will

survive the current GC cycle. This confidence will increase the reliability over the prediction

module to predict objects survival.

7. DATA STRUCTURING

This method of garbage collection with predicted life time of objects will need to have a slightly

different implementation of the data structure used for to detect the dead objects from the live

one. The traditional Generational GC will do this by checking the reachability of an object from

the root. But in this case we will maintain a root node which has two child nodes, each one acting

as a root for a map. One child will act as the root for objects which are highly likely to die in this

current GC cycle, whereas the other child will act as the root for the objects which are highly

likely to survive the current GC cycle. The child holding the objects which are about to die will

be acting as the root for the GC , whereas the other child holding the objects about to be promoted

will act as the root for the OP. This way, the GC will use a root where a very small set of objects

are reachable, which are the ones predicted to die in the GC cycle and in turn survived (False

Negatives). The OP will deal with the root from where almost all the reachable objects are. This

will result in a big cut down of the GC cycle pauses which runs as a ‘stop-the-world’ process.

Computer Science & Engineering: An International Journal (CSEIJ), Vol. 4, No.5/6, December 2014

19

Once an object is allocated space in the Eden generational space, the object will be under the

OP’s root. The OP will go through each object from the root and predict the life time of the

objects. As the OP moves through the tree every object whose probability to survive the

upcoming GC cycle is low will be made available from the GC root and removed reference from

the OP root. Every dead object that the OP faces will be reclaimed of memory and every object

which is likely to survive the GC cycle will be marked with its expected life time. The objects

will also be sorted in a way that the ones with higher life time expectancy will be closer to the

root than the ones which have less life time expectancy. During the GC cycle , the OP will run

through the reachable objects from the OP root and promote the objects to their respective

generational spaces where they are likely to die. Things under the GC root will be the same

process as the traditional Generational Garbage Collection process.

8. PARALLELIZATION OF PROCESSES

This Garbage Collection method has been designed to be suitable for implementation on multiple

processor machines. For each application for which we plan to use this Predictive GC, we need to

get a number of initial trial runs to obtain the data set to work on which number will be based on

the complexity of the application. Once the data set has been acquired and processed, apart from

the heavily reduced GC pause times, every other action in this proposed method of GC can be

parallelized and performed with-out disturbing the run of the application threads. The OP can run

in parallel with the GC since they don’t share the same root and can promote the objects to the

expected generational spaces where they are highly likely to be reclaimed of their spaces. The OP

can also predict the life time of objects in parallel to the application threads.

9. CONCLUSION

I have proposed the description of a Parallelized Machine Learnt Generational Garbage Collector

which uses Bayesian Network to predict and manage the objects in the heap accordingly to

reduce the time spent by the GC in dealing with live objects. This proposed model, when

implemented is highly likely to result in reducing the work load of the GC in each generational

phase as it will not deal with the live objects if the prediction is 100% accurate. The pause times

will be greatly reduced in applications containing a large amount of live objects in their Eden and

Survivor spaces. Since the Generational Garbage Collection is used along with many

programming languages which are being used widely across the globe for application

engineering, such a model can improve the performance of the GCs which in turn will reflect as a

performance increment over the application. This model is based on the assumption that the

application taken as a subject doesn’t have much different control flows which affects the objects

creation pattern. As a future enhancement to this paper, I will be carrying out a research to amend

this model to be fit for predicting objects lifetime in a highly complex application with a large

number of different control flows.

Computer Science & Engineering: An International Journal (CSEIJ), Vol. 4, No.5/6, December 2014

20

REFERENCES

[1] Henry G. Baker., Infant mortality and generational garbage collection in SIGPLAN Notices 28(4),

April 1993, pages 55–57.

[2] Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tuning, in www.oracle.com

[3] Yama: A Scalable Generational Garbage Collector for Java in Multiprocessor Systems February 2006

(vol. 17 no. 2)

[4] Richard E. Neapolitan in Learning Bayesian Networks

[5] David Barker in Bayesian Reasoning and Machine Learning

[6] http://www.bayesian-inference.com/bayestheorem

[7] Tim Brecht, Eshrat Arjomandi, Chang Li, Hang Pham, Controlling garbage collection and heap

growth to reduce the execution time of java applications in Proceedings of the OOPSLA’01

Conference on Object Oriented Programming Systems Languages and Applications, ACM Press

(2001).

[8] Hans-Juergen Boehm, Alan J. Demers, Scott Shenker, Mostly parallel garbage collection in ACM

SIGPLAN Notices, 26 (6) (1991).

[9] Hans-Juergen Boehm, Mark Weiser, Garbage collection in an uncooperative environment in

Software—Practice and Experience, 18 (9) (1988).

[10] Zaman, W.U., Ahmad, S.A., Abbas, A., Qadeer, A., A novel design of a generational garbage

collector in Students Conference, 2002. ISCON '02. Proceedings. IEEE (Volume:1)

[11] H. Lieberman and C. Hewitt, “A real-time garbage collector based on the lifetime of objects,” in

Communications of the ACM 26, pp 419-429, June 1983.

[12] Sun Wenjing ; Dept. of Math., Xidian Univ., Xi'an, China ; Yang Youlong ; Li Yangying, Learning

Bayesian Network Classifier Based on Dependency Analysis and Hypothesis Testing in Intelligent

Human-Machine Systems and Cybernetics (IHMSC), 2013 5th International Conference on

(Volume:1)

