ONE MODULO N GRACEFULNESS OF REGULAR BAMBOO TREE AND COCONUT TREE

V.Ramachandran1 C.Sekar2

1 Department of Mathematics, P.S.R Engineering College (Affiliated to Anna University Chennai), Sevalpatti, Sivakasi, Tamil Nadu, India.
2 Department of Mathematics, Aditanar College of Arts and Science (Affiliated to MS University Tirunelveli), Tiruchendur, Tamil Nadu, India.

Abstract

A function \(f \) is called a graceful labelling of a graph \(G \) with \(q \) edges if \(f \) is an injection from the vertices of \(G \) to the set \(\{0, 1, 2, \ldots, q\} \) such that, when each edge \(xy \) is assigned the label \(|f(x) - f(y)| \), the resulting edge labels are distinct. A graph \(G \) is said to be one modulo \(N \) graceful (where \(N \) is a positive integer) if there is a function \(\varphi \) from the vertex set of \(G \) to \(\{0, 1, N, (N + 1), 2N, (2N + 1), \ldots, N(q - 1), N(q - 1) + 1\} \) in such a way that (i) \(\varphi \) is 1 − 1 (ii) \(\varphi \) induces a bijection \(\varphi__ \) from the edge set of \(G \) to \(\{1, N + 1, 2N + 1, \ldots, N(q - 1) + 1\} \) where \(\varphi__(uv)=|\varphi(u) - \varphi(v)| \). In this paper we prove that the every regular bamboo tree and coconut tree are one modulo \(N \) graceful for all positive integers \(N \).

1. INTRODUCTION

S.W.Golomb [2] introduced graceful labelling. Odd gracefulness was introduced by B.Gnanajothi [1] . C.Sekar [6] introduced one modulo three graceful labelling. V.Ramachandran and C.Sekar [4] introduced the concept of one modulo \(N \) graceful where \(N \) is any positive integer. In the case \(N = 2 \), the labelling is odd graceful and in the case \(N = 1 \) the labelling is graceful. [6] Every regular bamboo tree is graceful. In this paper we establish the result for one modulo \(N \) graceful (\(N > 1 \)) of the regular bamboo tree and also we prove that coconut tree is one modulo \(N \) graceful for all positive integers \(N \). In order to prove the existing conjecture

Problem 1. All trees are graceful?
Problem 2. All lobsters are graceful?

we take a diversion to prove one modulo \(N \) graceful of acyclic graphs. Sometimes the technique involved in one modulo \(N \) graceful labelling may yield a new approach to have graceful labelling of graphs. Our approach will motivate the scholars to do more research in this area.
Main Results

Definition 2.1. A graph G with q edges is said to be one modulo N graceful (where N is a positive integer) if there is a function ϕ from the vertex set of G to $\{0, 1, N, (N + 1), 2N, (2N + 1), \ldots, N(q - 1), N(q - 1) + 1\}$ in such a way that (i) ϕ is 1-1 (ii) ϕ induces a bijection ϕ_- from the edge set of G to $\{1, N + 1, 2N + 1, \ldots, N(q - 1) + 1\}$ where $\phi_-(uv) = |\phi(u) - \phi(v)|$.

Definition 2.2. Consider k copies of paths P_n of length $n-1$ and stars S_m with m pendant vertices. Identify one of the two pendant vertices of the jth path with the centre of the jth star. Identify the other pendant vertex of each path with a single vertex u_0 (u_0 is not in any of the star and path). The graph obtained is a regular bamboo tree. **Definition 2.3.** A coconut Tree $CT(m, n)$ is the graph obtained from the path P_n by appending m new pendant edges at an end vertex of P_n.

Theorem 2.4. Every regular bamboo tree is one modulo N graceful for every positive integer $N > 1$.

Proof: Let $v_1^{(j)}, v_2^{(j)}, \ldots, v_{n-1}^{(j)}$ be the vertices of the jth path where $v_1^{(j)}$ is identified with u_0 and $v_{n-1}^{(j)}$ is identified with $v_0^{(j)}$ which is the centre of the jth star. Let $v_1^{(j)}, v_2^{(j)}, \ldots, v_{m-1}^{(j)}$ be the pendant vertices of the jth star. The bamboo tree has $k(n+m-1)+1$ vertices and $k(n+m-1)$ edges. Name the vertices as shown in the figure.

![Diagram](image)

Case (i) k is odd and n is odd

Define
We compute the edge labelling in the following sequence.

For $1 \leq j \leq k$

$$| \phi(u_2^{(j)}) - \phi(u_0) | = Nk(n + m - 1) - Nj + 1$$

For $1 \leq r \leq m$ and $j = 1, 2, \ldots, \frac{k-1}{2}$

$$| \phi(v_r^{(j)}) - \phi(u_n^{(j)}) | = Nk(m - r + 1) - 2Nj + 1$$

For $1 \leq r \leq m$ and $j = \frac{k+1}{2}, \frac{k+3}{2}, \ldots, k$

$$| \phi(v_r^{(j)}) - \phi(u_n^{(j)}) | = Nk(m - r + 2) - 2Nj + 1$$

For $j = 2, 4, \ldots, n - 1$ and $j = 1, 2, \ldots, \frac{k-1}{2}$

$$| \phi(u_i^{(j)}) - \phi(u_{i+1}^{(j)}) | = Nk(n + m - i) - 2Nj + 1$$

For $j = 2, 4, \ldots, n - 1$ and $j = \frac{k+1}{2}, \frac{k+3}{2}, \ldots, k$

$$| \phi(u_i^{(j)}) - \phi(u_{i+1}^{(j)}) | = Nk(n + m - i + 1) - 2Nj + 1$$

This shows that the edges have the distinct labels $\{1, N + 1, 2N + 1, \ldots, N(q - 1) + 1\}.$
Example 2.5. One modulo 5 graceful labelling of regular bamboo tree. (k = 5 , n = 5 , m = 3)

Case (ii) k is odd and n is even
Define

\[\phi : \{1, N+1, 2N+1, \ldots, N(q-1)+1\} \rightarrow \{0, 1, 2, \ldots, N\} \]

Hence the regular bamboo tree is one modulo N graceful.
Clearly \(\phi \) defines a one modulo N graceful labelling of regular bamboo tree.
Case (iii) k is even and n is odd

Define

$$\phi(u_0) = \phi(u_1) = 0$$

For $i = 2, 4, \ldots, n$

$$\phi(u_i) = Nk(n + m - 1) - (N - 1) - N(j - 1) - \frac{Nk(i-2)}{2}$$

for $j = 1, 2, \ldots, k$

For $i = 3, 5, \ldots, n - 1$

$$\phi(u_i) = \left\{ \begin{array}{ll}
N(k + 1) + N(j - 1) + \frac{Nk(i-1)}{2} & \text{for } j = 1, 2, \ldots, \frac{(k-1)}{2} \\
N(k + 1) + N(j - \frac{(k+1)}{2}) + \frac{Nk(i-3)}{2} & \text{for } j = \frac{(k+1)}{2}, \frac{(k+3)}{2}, \ldots, k
\end{array} \right.$$
International journal on applications of graph theory in wireless ad hoc networks and sensor networks

\(\phi(v_{i}^{(1)}) = N(r - 1) \) for \(r = 1, 2, \ldots, m \)

\[\phi(u_{0}) = NK(n + m - 1) - (N - 1) - \frac{N(n-1)}{2} \]

\[\phi(u_{i}^{(1)}) = \begin{cases}
N(m - 1) + \frac{N(n-1)}{2} + \frac{N(k-1)(k-2)}{2} & \text{for } i = 2, 4, \ldots, n-1 \\
NK(m + n - 1) + 1 - \frac{N(n-1)}{2} + \frac{N(k-1)(k-2)}{2} & \text{for } i = 3, 5, \ldots, n
\end{cases} \]

\[\phi(u_{i}^{(2)}) = NK(n + m - 1) \cdot N(j - 2) \cdot N(n-1+k) \cdot N(k-1)(k-3) \quad \text{for } j = 2, 3, \ldots, k \]

For \(i = 2, 4, \ldots, n - 1 \)

\[\phi(u_{i}^{(3)}) = \begin{cases}
N(m + \frac{N(n-1+k)}{2}) + N(j - 2) + \frac{N(k-1)(k-2)}{2} & \text{for } j = 2, 3, \ldots, k \\
NK(m - 1) + \frac{N(n-1)}{2} + N + N(j - \frac{k}{2} - 1) + \frac{N(k-1)(k-2)}{2} & \text{for } j = \frac{k}{2} + 1, \frac{k}{2} + 2, \ldots, k
\end{cases} \]

For \(r = 1, 2, \ldots, m \)

\[\phi(v_{r}^{(1)}) = \begin{cases}
N(m + \frac{N(n-1+k)}{2}) + N(j - 2) + \frac{N(k-1)(k-2)}{2} & \text{for } j = 2, 3, \ldots, k \\
NK(m - 1) + \frac{N(n-1)}{2} + N(k - \frac{k}{2} - 1) + \frac{N(k-1)(k-2)}{2} & \text{for } j = \frac{k}{2} + 1, \frac{k}{2} + 2, \ldots, k
\end{cases} \]

The proof is similar to the proof in case(i).
Clearly \(\phi \) defines a one modulo \(N \) graceful labelling of regular bamboo tree.

Example 2.7. One modulo 5 graceful labelling of regular bamboo tree. (\(k = 6 \), \(n = 7 \), \(m = 3 \))
The proof is similar to the proof in case(i).

Example 2.8. One modulo 10 graceful labelling of regular bamboo tree. ($k = 8$, $n = 6$, $m = 2$)
Thus it is clear that the vertices have distinct labels. Therefore ϕ is 1 − 1.

We compute the edge labelling in the following sequence.

For $1 \leq i \leq m$
\[|\phi(u_{2i}) - \phi(u_{2i - 1})| = N(2k + i - 1) + 1 \]

For $1 \leq i \leq k$
\[|\phi(u_{2i}) - \phi(u_{2i - 1})| = N(2k + 1 - 2i) + 1 \]
\[|\phi(u_{2i}) - \phi(u_{2i + 1})| = N(2k - 2i) + 1 \]

This shows that the edges have the distinct labels \(\{1, N + 1, 2N + 1, \ldots, N(q - 1) + 1\} \).

It is clear from the above labelling that the function ϕ from the vertex set of G to \(\{0, 1, N, (N + 1), 2N, (2N + 1), \ldots, N(q - 1), N(q - 1) + 1\} \) is in such a way that (i) ϕ is 1 − 1 (ii) ϕ induces a bijection ϕ^* from the edge set of G to \(\{1, N + 1, 2N + 1, \ldots, N(q - 1) + 1\} \) where $\phi^*(uv) = |\phi(u) - \phi(v)|$.

Hence the coconut tree is one modulo N graceful. Clearly ϕ defines a one modulo N graceful labelling of coconut tree.

Example 2.10. One modulo 3 graceful labelling and graceful labelling of coconut tree.
Case (ii) n is even.
Let $n = 2k$.
Define
\[
\phi(u_{2i-1}) = 2Nk - (2N - 1) - N(i - 1) \quad \text{for } i = 1, 2, 3, \ldots, k
\]
\[
\phi(v_i) = 2Nk + 1 + N(i - 1) \quad \text{for } i = 1, 2, 3, \ldots, m
\]
The proof is similar to the proof in case (i).

Clearly ϕ defines a one modulo N graceful labelling of coconut tree.

Example 2.11. One modulo 10 graceful labelling and odd graceful labelling of coconut tree.
References