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ABSTRACT 

 

Since the ancient determination of the five platonic solids the study of symmetry and regularity has always 

been one of the most fascinating aspects of mathematics. One intriguing phenomenon of studies in graph 

theory is the fact that quite often arithmetic regularity properties of a graph imply the existence of many 

symmetries, i.e. large automorphism group G. In some important special situation higher degree of 

regularity means that G is an automorphism group of finite geometry. For example, a glance through the 

list of distance regular graphs of diameter d < 3 reveals the fact that most of them are connected with 

classical Lie geometry. Theory of distance regular graphs is an important part of algebraic combinatorics 

and its applications such as coding theory, communication networks, and block design. An important tool 

for investigation of such graphs is their spectra, which is the set of eigenvalues of adjacency matrix of a 

graph. Let G be a finite simple group of Lie type and X be the set homogeneous elements of the associated 

geometry. The complexity of computing the adjacency matrices of a graph Gr on the vertices X such that 

Aut GR = G depends very much on the description of the geometry with which one starts. For example, we 

can represent the geometry as the totality of 1 cosets of parabolic subgroups 2 chains of embedded 

subspaces (case of linear groups), or totally isotropic subspaces (case of the remaining classical groups), 3 

special subspaces of minimal module for G which are defined in terms of a G invariant multilinear form. 

The aim of this research is to develop an effective method for generation of graphs connected with classical 

geometry and evaluation of its spectra, which is the set of eigenvalues of adjacency matrix of a graph. The 

main approach is to avoid manual drawing and to calculate graph layout automatically according to its 

formal structure. This is a simple task in a case of a tree like graph with a strict hierarchy of entities but it 

becomes more complicated for graphs of geometrical nature. There are two main reasons for the 

investigations of spectra: (1) very often spectra carry much more useful information about the graph than a 

corresponding list of entities and relationships (2) graphs with special spectra, satisfying so called 

Ramanujan property or simply Ramanujan graphs (by name of Indian genius mathematician) are important 

for real life applications (see [13]). There is a motivated suspicion that among geometrical graphs one 

could find some new Ramanujan graphs.  

 

1. INTRODUCTION 

 
Nowadays, lots of studies on graphs are motivated by real world applications. Graphs are 

mathematical model for road networks, telephone networks, digital circuits in information 

technology. Expanders are mathematical models of networks with the expansion property: there is 

a positive constant c such that for any set A containing at most half of all points on the plane 

(vertices) the number of all neighbours is at least cǀAǀ. For applications (parallel computation, 

networking, cryptography) we need expanders with a constant c as large as it is possible. It is said 

that the infinite family of graphs Xi is a family of expanders with constant c, if every Xi has an 

expansion constant c, which does not depend on i. Expander graphs are widely used in computer 

Science, in areas ranging from parallel computation to complexity theory and cryptography [16].  

 

Applications need t-regular expanders, i.e. graphs in which each vertex is connected with exactly 

t neighbours. It is known that random regular graphs are good expanders. For large number of 
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vertices n, most t-regular graphs are good expanders (Sarnak, see [26]). Explicit construction of 

infinite families of t-regular expanders (t fixed) turns out to be difficult. Gregory Margulis 

[21][22] constructed the only known infinite family of expanders of bounded degree. He used the 

deep representation theory of semisimple groups. For real life applications it is important to 

construct large (not necessarily infinite) families of t-regular expanders for given t, because we 

are working with finite network. 

 

2. PRELIMINARIES 

 
2.1 Graph Theory 

 

A graph is a pair Γ = (V,E) consisting of a set V = V(Γ), referred to as the vertex set of Γ 

and a set E = E(Γ) of 2-subsets of V, referred to as the edge set of Γ. That is, our graphs 

are undirected, without loops or multiple edges. Elements of V and E are called vertices 

(or points), and edges, respectively. 

 

The girth of a graph Γ, denoted by g = g(Γ), is the length of the shortest cycle in Γ. If Γ 

has no cycles, the girth of Γ is infinity. 

 

A tree is a connected (simple) graph with no cycles. Any graph without cycles is called a 

forest. So, a forest is a set of disjoint trees. 

 

The following classical statements can be found in any handbook on Graph Theory.  

Lemma: Every finite tree with vertices has a leaf, i.e., a vertex of valency l.  

Corollary: Every m-regular tree, m≥2, is an infinite graph.  

 

Lemma: An infinite m-regular tree exists for each m≥2. All m-regular trees are 

isomorphic. 

 

We can view a m-regular tree as an incidence graph for a group incidence structure. Via 

such a representation, a m-regular tree becomes a familiar object for algebraists. 

 

DEFINITION (Bipartite Graph). A bipartite graph G = (X,Y,E ) is a graph whose 

vertices are partitioned into two vertex sets, X and Y, and every edge in G joins a vertex 

in X with a vertex in Y. 

 

The concept of degree. The degree of a vertex is the number of edges that are incident on 

(or stick out of) the vertex. We will show that the sum of the degrees of all the vertices in 

a graph is twice the number of edges of the graph. 

 

DEFINITION Let G be a graph and v a vertex of G. The degree of v, denoted deg(v), 
equals the number of edges that are incident on v, with an edge that is a loop counted 

twice. The total degree of G is the sum of the degrees of all vertices of G.  

 

DEFINITION (Symmetric Matrix). An nxn square matrix A=(aij) is called symmetric if 

and only if, for all i,j=1,2,⋯,n  aij=aji 
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DEFINITION. The adjacency matrix of Γ is the nxn matrix A=A(Γ) whose entries aij are given by 

 

(2.1)    aij = �1, if	��	and	�� 	are	adjacent;		
0, otherwise. �   

  
If λ is an eigenvalue of A, then since A is real and symmetric, it follows that λ is real, and the 

multiplicity of λ as a root of the equation det(λI-A)=0 is equal to the dimension of the space of 

eigenvectors corresponding to λ. 

 

DEFINITION (Spectrum). The spectrum of a graph Γ is the set of numbers which are eigenvalues 

of A(Γ), together with their multiplicities. If the distinct eigenvalues of A(Γ) are λ0 > λl > ⋯ > λs-1, 

and their multiplicities are m(λ0), m(λl),⋯,m(λs-1), then we shall write 

 

0 1 1

0 1 1

              
 

( ) ( )  ( )

s

s

Spec
m m m

λ λ λ

λ λ λ
−

−

 
Γ =  

 

L

L
  

 

For example, the complete graph Kn is the graph with n vertices in which each distinct pair are 

adjacent. Thus the graph K9 has adjacency matrix 

 

� =

�
�
�
�
�
�
�
�
�

	
0	0	0	0	1	0	1	0	1
0	0	0	1	0	0	0	1	1
0	0	1	1	1	0	0	0	0
1	0	1	0	0	0	0	1	0
0	1	1	0	0	0	1	0	0
0	0	0	0	0	1	1	1	0
0	1	0	1	0	1	0	0	0
1	0	0	0	1	1	0	0	0
1	1	0	0	0	0	0	0	1�

 
 
 
 
 
 
 
!

 

and the spectrum of K9 is 

 

9

3 03
 K

1 26
Spec

 
=  
 

 

 

We refer to the eigenvalues of A=A(Γ) as the eigenvalues of Γ. The characteristic polynomial 

det(λI-A) will be referred to as the characteristic polynomial of Γ, and denoted by X(Γ;λ) 
Suppose the characteristic polynomial of Γ is 

 

X(Γ;λ)=λn+c1λ
n-1+c2λ

n-2+c3λ
n-3+⋯+cn 

 
The spectrum of a bipartite graph. A graph is bipartite if its vertex set can be partitioned into two 

parts V1 and V2 such that each edge has one vertex in V1 and one vertex in V2. If we order the 

vertices so that those in V1 come first, then the adjacency matrix of a bipartite graph takes the 

form  

 

0

0
T

B
A

B

 
=  
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If x  is an eigenvector corresponding to the eigenvalue λ, and x%  is obtained from x by changing 

the signs of the entries corresponding to the vertices in V2, then x%  is an eigenvector 

corresponding to the eigenvalue -λ. It follows that the spectrum of a bipartite graph is symmetric 

with respect to 0. 

The adjacency matrix of a bipartite graph Γ is a matrix of kind 
0

0
n T

B
M

B

 
=  
 

 

Eigenvalues of graph Γ are λ± , where λ is eigenvalues of matrix 
T

n
A BB= . 

 

An upper bound for the largest eigenvalue. Suppose that the eigenvalues of Γ are λ0≥λ1≥⋯≥λn-1, 

where Γ has n vertices and m edges. 

 

A graph is said to be regular of degree p (or p -regular) if each of its vertices has degree p.  

Proposition. Let Γ be a regular graph of degree p. Then:  

 

(i) p is an eigenvalue of Γ; 

(ii) if Γ is connected, then the multiplicity of p is 1; 

(iii) for any eigenvalue λ of Γ, we have pλ ≤ . 

 

If v and w are vertices of a graph Γ, and e={v,w} is an edge of Γ, then we say that e joins v and 

w, and that v and w are the ends of e. 

 

The number of edges of which v is an end is called the degree of v. A subgraph of Γ is 

constructed by taking a subset S of E(Γ) together with all vertices incident in Γ with some edge 

belonging to S. An induced subgraph of Γ is obtained by taking a subset U of V(Γ) together with 

all edges which are incident in Γ only with vertices belonging to U. In both cases the incidence 

relation in the subgraph is inherited from the incidence relation in Γ. see [25]  

 

3. DESCRIPTION OF OBJECTS 
 

Let G be a group with proper distinct subgroups G1 and G2. The group incidence structure 

( ) ( )
1 2,G G

G GΓ = Γ has the set of points ( )1:P G G= , and the set of lines ( )2:L G G= , and 

incidence relation : ,I pIl  ,  p P l L∈ ∈  iff the set-theoretical intersection p l∩  of cosets is 

nonempty. 

 

Let us consider the bipartite graph ( ) ( )
1 2,G G

G GΓ = Γ of the incidence relation I. We will identify 

the incidence structure and related bipartite graph. If G is a free product of G1 and G2, then Γ(G) 
is an infinite tree. The graphs defined in the section below in terms of equations, can be 

considered as 

1 2,i G G

G

F

 
Γ  
 

where G=G1*G2 and G1, G2 are an elementary abelian finite group of 

order p and Fi is a special filtration for G. 
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The graphs D(m,k) are graphs ( )
1 2,G G

GΓ where G1= G2 = Zm and 
( )m n

n

Z Z
G

F

∗
=  where G is a 

factor group of the free product Zm with Zn by a special normal subgroup Fn of finite index and 

1 2 1n nF G F G∩ = ∩ = (for more details see[2])  

 

4. CONCLUSION 

 
We are able to create a model in a computer, t-regular expander Γ for given number t, with the 

size >M, where M is a given constant and estimate the related expansion constant. Possible 

parameters t and M are restricted only by the capacity of the computer. In fact we are working 

with 2 families of t-regular graphs D(t,k) [13] and Wk(t) [33] where t>2 and k>1 are integers, 

number of vertices for each graph is 2tk. For t = 2 the graph is not connected. We set up the 

computer program which demonstrate for quite big array of pairs (t,k) that these graphs are very 

good expanders. In fact, we got that 
1

2 2

t
c

t
≥ −  if t is a prime number. 

 

Walks via edges define natural distance on graph. Let Γ2 be the graph which has same vertices 

with Γ and vertices connected via edge in Γ2 iff they are at distance 2 in Γ. 

 

Our computations demonstrate that graphs (Wk(t))
2 and (D(t,k))2 are also good expanders. The 

valencies or the number of neighbours of them are t(t1̵) where t is prime and expansion constant c 

can be bounded below as 
( )

1 3

2 2 1t
−

−
. We are able to find (ts̵) regular subgraphs on 

( ) ( )1
2

k
t s t

−
− , for s=1,2 vertices inside of D(t,k) or Wk(t) with nice expansion properties. Such 

graphs can be useful in situation when D(t,k) is too big to operate by computer but subgraphs 

have reasonable size.  

 

Graphs Wk(t) and D(t,k) have rather different properties. For instance, if t is prime then D(t,k), k 
> 3 does not have small cycles (of length > k+5) but Wk(t) always has cycle of length 8. 

 

Anyway graphs Wk(t) and D(t,k) could be defined similarly in group theoretical terms via so 

called free product F(G) of two copies of the finite group G. Our results allow us to conjecture 

the existence of larger class of t-regular graph (quotients of geometry of F(G) which contains 

both families D(t,k) and Wk(t) and have same bound for expansion constant. The technique we 

use to estimate the expansion constant is based on mysterious connections between expansion and 

spectral properties of graphs. 

 

One canonical way to retrieve the information about the graph Γ is to generate the adjacency 

matrix A, which is the matrix whose columns and rows are labelled by vertices of the graph and 

entry related to vertices u and v contains number 1 if v connected by an edge with u, otherwise 

the entry is 0. 

 

The array of eigenvalues of A is known as spectra of graph Γ. Spectra give the important 

information about graphs and spectral graph theory [4][5] is one of the most important branches 

of graph theory. Computation of eigenvalues is itself an important problem and there is the 

following connection between spectral and expansion properties of graphs. It can be shown that if 
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λ1(X) is the second largest eigenvalue of the adjacency matrix of a t-regular graph X, then 

1

2

t
c

t

λ−
≥ . 

 

Thus, if λ1 is small the expansion constant is large. According to the well-known result of Alon 

and Boppana, if Xn is an infinite family of t-regular graphs (t fixed), then ( )1lim 2 1nX tλ ≥ − . 

 

This statement was the motivation of the study of Ramanujan graphs among t-regular graphs. A 

finite t-regular graph Y is called Ramanujan if, for every eigenvalue λ of Y, either |λ|=t or

2 1tλ ≤ − . So, Ramanujan graphs are in some sense, best expanders. 

 

Explicit constructions of infinite families of Ramanujan graphs of bounded or unbounded degree 

is important problem of Graph Theory [17]. Just few families are known to be Ramanujan. We 

mention some of them. Explicit constructions of families of t -regular Ramanujan graphs were 

given by Lubotzky, Phillips and Sarnak [19] for all prime t-1. They proved that graphs defined in 

[22] turn out to be Ramanujan. M. Morgenstern (see [24]), generalized this result. He proved the 

existence of infinitely many Ramanujan graphs for every valency t of type 1p
α + , where p is an 

arbitrary prime and ⋯ is any positive integer. Both constructions have used the deep number 

theory. Our computations show that graphs D(t,k) and Wk(t) (t is fixed, k is a parameter) are 

Ramanujan for k=2,3,4. 

 

More then that we find the close formula for elements of spectra. Thus we introduce new families 

of Ramanujan graph. If k ≥ 5 and t is a prime number, graphs are "asymptotically" Ramanujan: 

the second largest eigenvalue for them is 2 t and clearly the ratio 
2 1

2

t

t

−
 goes to 1 when t is 

growing. We will discuss the results in more details below. 

 

Conclusion 4.1 
 

The first aim of research was to study spectra for several families of regular algebraically defined 

graphs and some special induced subgraphs of them by computational and theoretical tools. For 

computations a new computer package has been designed. It allowed us to generate the full data 

about the graph in the form of adjacency matrix and afterwards to compute the spectrum of the 

matrix. 

 

The second part was to analyse the data and guess the closest formula for the second largest 

eigenvalue or to get a close bound for it; to investigate whether or not the families are useful for 

application in networking (parallel computations, cryptography and etc.).  

 

The computer experiment have been completed for the graphs D(m,k) and W(m,k) for the 

following list of parameters: 
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3 64 for 2

3 17 for 3

3 8 for 4

3 5 for 5

3 4 for 6

3 for 7

m k

m k

m k

m k

m k

m k

≤ ≤ =

≤ ≤ =

≤ ≤ =

≤ ≤ =

≤ ≤ =

= =

 

 

They present graphically two dimension pictures presenting eigenvalues (axis 0x) and the related 

multiplicities (axis 0y). 

 

Vertical lines 2 1x m= ± − allow us to decide whether or not the graph is Ramanujan and if not 

how far the expansion properties of the graph are from the properties of a Ramanujan graph. 

 

Example of a table below shows the eigenvalues and multiplicities of eigenvalues for the graph 

D(5,3).  
 

List of eigenvalues of matrix A Multiplicity of eigenvalues 

0 88 

±√5 40 

±√10 40 

±5 1 

 

The analysis of the data show us interesting trigonometric properties beyond the spectra of 

graphs. Both families of graphs W(m,k) and D(m,k), m is prime, belong to a large class of 

graphs, which are quotients of forests related to free products of groups. If k=2 or 3, equations in 

description of objects show us that W(m,k) is same as D(m,k) for all possible values of m. But 

for k > 3 the behaviour of W(m,k) and D(m,k) is different. For instance, the girth of graph 

D(m,k) is at least k+5 but W(m,k) always has a cycle of length 8. It is very interesting that our 

computations show that spectral properties of the graphs are similar. 

 

Problems about expanders is discussed in [16]. Some of them deal with families of graphs of 

unbounded degree, others are about families of given degree. We will specialise the parameter k 

step by step (k=2, k=3, ⋯). Families D(m,k) and W(m,k) will depend only on degree m. 
 
We notice several interesting patterns depending on arithmetical properties of the parameter m.  

 

Let us consider the first case when m=p, where p is a prime number. 

 

k=2  m=p, p is prime number of graph D(p,2). 
Number of divisors of p is 2. Number of distinct eigenvalues 5.  

Conjecture: 

 

( ) ( )
( )

( )
1

2 1
p p

p
p pλ λ λ

−
−

± ± . 

 

We may conjecture that D(p,2), p is prime form a family of Ramanujan graphs. 

k=3 m=p, p is prime number of graph D(p,3).  
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Number of divisors of p is 2. Number of distinct eigenvalues is 7. 

Conjecture: 

 

( ) ( )
( )

( )
( )

( )
21

2 1 1
1 ( ( 1) 2) 22

p p p p
p p p

p p pλ λ λ λ
− −

− − +
± ± ±   

 

We may conjecture that D(p,3), p is prime form a family of Ramanujan graphs.  

k=4 m=p where p is prime number of graph W(p,4), p ≥ 5. 

 

Number of divisors of p is 2. Number of distinct eigenvalues is 9. 

Conjecture: 

 

( )
( )

( )
( )

( )
( )( )

( )
2 23 3 1 3

24 3 2 1 3 1 1 9
2 2 2 2 82 3

p p p p
p p p p p p p p

p p p pλ λ λ λ λ
− − −   

+ − + − − −   
   ± ± ± ±  

The above conjecture is checked for p=5, 7. 

 

We may conjecture that W(p, 4), p is prime form a family of Ramanujan graphs. 

We may conjecture that we have 3 new families of Ramanujan graph. 

 

If second largest eigenvalue is bounded away from valency, graph form a family of geometric 

expander in sense of Alon[l]. We may conjecture about existence of the following families of 

geometric expander with valency m, m is composite. 

 

k=2 m is a non prime degree of graph D(m,2) 

1. m=pq where { }, , : |  and  is a prime numberp q p q q p p q∈ >  

Number of divisors of m is 4. Number of distinct eigenvalues is 9. 

Conjecture: 

( ) ( ) ( )( )( ) ( )
( )( )

( )
( )

( )
( )

( )
2 2 1 1 1 12 1 1 1 1 m p q q q p pp q q p p q

m p q q p mλ λ λ λ λ
− − − −− + − − − −

± ± ± ±   

2. m=p2q where { }, , : |  and  is a prime numberp q p q q p p q∈ >   

Number of divisors of m is 6. Number of distinct eigenvalues is 13.  

Conjecture:  

( ) ( )( )
( )

( ) ( )
( ) ( )

( )
( )

( )
( ) ( )

( )
( )

( )

2 2 2
32 3 4

1 1 1 1
2 1 1 1 1 1 1 1

1 1 1 1
2

m m m p p p p p p m q p pp p p p

p p p pq q q q

p q pq

pq p p pq p q m

λ λ λ

λ λ λ λ

  
− − − + − + − − + −   − −   −  

− − − −

± ±

± ± ± ±

 

3. m=8p where p is a prime number different from 2. Number of divisors of m is 8. 

Number of distinct eigenvalues is 17.  

conjecture: 

( ) ( )
( )

( )

( )
( )

( )
( )

( ) ( ) ( )

221 43
4 1 3286

232 4

2 1 1 28

2 2 4 2 2

4 2 8 4 4 2

m
m m pm m

p p p p

p p p

p p p p m

λ λ λ λ

λ λ λ λ λ

 
− −+ −  

 

− −

± ± ±

± ± ± ± ±

 

4. m=6p where p is a prime number different from 2 and 3. Number of divisors of m is 8. 

Number of eigenvalues 17. 
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conjecture:  

( )
( )

( )
( )

( )
( )

( )
( )

( ) ( ) ( ) ( )

25
2 2 1 2 17 42

6

1 12 6 2

2 3 3 2

6 6 2 3 3 2

m p m p p pm m

p p

m p p

p p p p m

λ λ λ λ

λ λ λ λ λ

− − −+ −

−

± ± ±

± ± ± ± ±

 

5. m=pr, p is a prime number 

conjecture:  

 

( )
( ) 2 12 11

2
1 2

1
,  2, 2

ip pm ir r
p

i
m p p rλ λ λ

−−−
−

+

=

 
± Π ± ≥ ≥ 

 
 

k=3 m is a non prime degree of graph D(m,3) 
1. If m=2t where t is a prime number different from 2. Number of divisors of m is 4. 

Number of distinct eigenvalues is 11. 

conjecture: 

 
( )

( )

( )
( )( )

( )
( )

( ) ( )

3 2

2

5
2 2 1 13 9 12

4

1 4 2

2

2 2

m m m t tm m m

t t

m t

m t m

λ λ λ

λ λ λ

− + −− + −

−

± ±

± ± ±

 

Now let us discuss spectral properties of graphs N(D(m,k)) and N(W(m,k)).  
 

If m is prime then these families are distance two graphs for D(m,k) and W(m,k) respectively.  

If m is composite, then we may obtain N(D(m,k)) and N(W(m,k)) from distance 2 graph by 

throwing away edges between vertices such that difference of first coordinates of them is not 

invertible over 
mZ . 

 

Conjectures for the characteristic polynomial of N(D(m,2)) 
 
k=2 
 

1. m=p, p is prime number. 

Number of divisors of p is 2. Number of eigenvalues 3.  

Conjecture: 

 
( ) ( )

( )
( )( )

11
1

pp p
p p pλ λ λ

−−
+ − −   

We may conjecture that we have an infinite family of Ramanujan graphs of unbounded degree.  

2. m=ps
 where p is a prime number and s ≥ 1.  

Number of divisors of p is 2. Number of distinct eigenvalues is 3.  

Conjecture: 

  
( )2

12 21
p

m p
p m m

p p
λ λ λ

−

−
 −  

− +  
  

, where m is a nonprime number. 

3. m=2spt where { }: 3 |  is a prime number  and , 1.p p p p s t∈ ≥ ≥  

Number of divisors of m is 4. Number of distinct eigenvalues is 5. 

Conjecture:  

 
( )2

12 2
2

1

2 2

p

m p
p m m

p p
λ λ λ

−

−
 −  

± ±  
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4. m=qp  

where { }, , : 5 and 3 | | |  and  is a prime numberp q p q p q p q p q p q∈ ≥ ≥ ≠ >  

Number of divisors of m is 4. Number of distinct eigenvalues is 5. 

Conjecture: 

 ( )( )( )( )
( )( )

( )( ) ( )( )
2 1 11 1

1 1 1 1
p qq pm m

m q p m m q m pλ λ λ λ λ
− −− −− − − − − + − + −  

5. m=arbsct  
where 

{ }, , , , : 2,  3 and 5 | a b c | c b a | a, b  and  is a prime numb  

r,

er

s,t 1

a b c a b c a b c c∈ ≥ ≥ ≥ ≠ ≠ > >

≥
Number of divisors of m is 8. Number of distinct eigenvalues is 17.  

Conjecture:  

 ( )( ) ( )( ) ( ) ( )
( )2 2 1 2 16 2 1 1 2

p pm p
m p m p m pλ λ λ λ λ

− −− ± − ± − ± ±  

Conjectures for the characteristic polynomial of N(D(m,3) 
k=3  

1. m=p, p is prime number. 

Number of divisors of p is 2. Number of distinct eigenvalues is 4.  

Conjecture: 

( ) ( )( ) ( ) ( ) ( )( )
21 1

1 1 12 1
2 2 1

p
p p p pp p

p p p pλ λ λ λ
− 

− + −−  
 + − − − , where p is a prime number. 

Case of bounded degree. This case is the most interesting one. Just two families of expanders are 

known previously (see [26]). 

 

First, let us consider an interesting trigonometry beyond graphs D(m,k) and W(m,k) in case of 

prime degree. We notice here that all eigenvalues except ±m of our graphs can be written in the 

form 2 cosm α . 

 

The distance two graphs for D(m,k) and W(m,k) coincide with N(D(m,k)) and N(W(m,k)).  

The largest eigenvalue is m(m-1) and all eigenvalues can be written in the form 2 cos mm β + .  

 

Thus we have the following conjecture: 

 
If m is fixed then families D(m,k), W(m,k), N(D(m,k)), N(W(m,k)) are families with fixed 

degree of expanders. Their second largest eigenvalue is bounded by 2  or 3m m . 

 

In case of small valency (p=3) there is a hope to get infinite family of Ramanujan graph, or other 

families of expanders.  

 

If n is composite, we notice the following patterns:  

 

Conjectures for the characteristic polynomial of W(m,k) and N(W(m,k)), for m=3. 

 
W(m,k) 
• Number of distinct eigenvalues is 7.  

For k=3,4,5,6,7 the characteristic polynomial of W(m,k) can be written as:  

( ) ( ) ( )
2 2

33 4 3 2 3 316 3 3 6 3
k k

kk

λ λ λ λ
− −

−− × ×
× ± ± ±  
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N(W(m,k)) 
Number of distinct eigenvalues is 4. 

For k=3,4,5,6,7 the characteristic polynomial of N(W(m,k)) can be written as: 

( ) ( ) ( )
3 2 3

4
3 8 3 2 3 3

9 3 3 6
k k k k

λ λ λ λ
− − −× ×

+ − −  

The assumption that these patterns are valid for all k is wrong, because according to the result of 

Alon and Boppana (see introduction) for the second largest eigenvalue λ1(k) of graph W(m,k) we 

have ( )1lim 2 3 1kλ ≥ − . 

 

Anyway it still can be two new infinite family of Ramanujan graphs of valency 3 (cubic graphs) 

and 6 respectively. 

 

Conjecture for the characteristic polynomial of W(m,k) for m=4. 

Number of distinct eigenvalues is 9: 

 

Conjecture: 

 

( )
( )

( ) ( )
( )

( )
( )

2 22 5
2 2 2 3

2 5 7 2 25 2 225 2 2 2 2 2 3 4
kk

k k
k

λ λ λ λ λ
−−− −− ××× ± ± ± ±  

 

The above conjecture is checked for k=4, 5, 6.  

 

We may assume that we got here an infinite family of Ramanujan graph of degree 4 (quadruple 

graphs). The formula above does not contradict to the Alon and Boppana theorem (see 

introduction). 

 

Free Product. Generalized conjecture:  

 
Connected components of graphs D(m,k) when k is even and of W(m,k), can be described in 

group theoretical terms as graphs of incidence structure ( )
1 2,

/
G G

G FΓ (see page 33), where G1 

and G2 are two copies of cyclic group ⋯m, G is the free product 
1 2G G∗  and F is a special 

normal subgroup. If m is prime, D(m,k) and W(m,k) do not contain cycles C4 and C6 (see [12]).  

 

We may generalize this in the following conjecture: 
 

 Let G1 and G2 be two copies of finite group H, and let F be a normal subgroup of G1*G2 such 

that 1 2
1G F G F∩ = ∩ =  and the graph ( )

1 2
1 2 /

G G
G G F

∗
Γ = Γ ∗ has no cycles 4 6,C C . Then 

the second largest eigenvalue of Γ is bounded by 2 H . 

 

This conjecture has been presented at conferences [9][30] and specialists expressed an interest to 

work on the proof of it.  

 

The problem to generate network with good expansion property (in other words expanding 

graphs) is very important for applications. We are able to construct some finite sequences of 

Ramanujan graphs of unbounded prime degree. In fact, even infinite family of graphs if our 

conjectures are correct.  
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We have construction of geometric expanders of valency m and ( )m mφ× , m with special 

arithmetic properties. If our generalized conjecture is true, we can generate a geometrical 

expander of any degree (|H| can be any number).  

 

Additionally, we have several families of graphs "under suspicion" that they are expanders of 

bounded degree. Our graphs can be computed efficiently and a specialist may use them in 

different problems: parallel computation, cryptography or networking. 
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