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ABSTRACT 
 

Metric dimension in graph theory has many applications in the real world. It has been applied to the 

optimization problems in complex networks, analyzing electrical networks; show the business relations, 

robotics, control of production processes etc.  This paper studies the metric dimension of graphs with 

respect to contraction and its bijection between them.  Also an algorithm to avoid the overlapping between 

the robots in a network is introduced. 
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1.INTRODUCTION 
 

If G is a connected graph with vertex set mivvvvGV mi ,...,2,1 },,...,,...,,{)( 21 ==  where nm ≥ and let 

{ } njvvvvW nj ,...,2,1,,...,,...,, 21 ==  be an ordered set of vertices of G and v be a vertex of G. The 

coordinate of v with respect to W is the k-tuple ( )),(),...,,(),,( 21 nvvdvvdvvd . If distinct vertices of 

G have distinct co-ordinateswith respect toW , then W is called a resolving set or location set for 

G. A resolving set of minimum cardinality is called a basis for G and this cardinality is called the 

metric dimension or location number of G and is denoted by dim(G) or ( )Gβ  
 

The concepts of graph theory have been used to describe navigation in network.  In a network, 

each place represented as nodes in a graph, and edges denote the connections between places.    

The places or nodes of a network where we place the machines (robots) are called landmarks.  

The minimum number of machines required to locate each and node of the network is termed as 

metric dimension and the set of all minimum possible number of landmarks constitute metric 

basis. 

 

The concept of metric dimension was introduced by P. J.Slater in [2] and studied independently 

by Harary and Melter in [3].  Applications of navigation of robots in networks were discussed in 

[4]. Applications to problems of pattern recognition and image processing, which involving the 

use of hierarchical structures were done in [5].  Besides,Kuller et.al.[6]provideda formula and a 

linear time algorithm for computing the metric dimension of a tree in [1].  On the other hand, 

Chartrand et.al.in [7] characterized the graph with metric dimension 1, n -1 and n -2 and the tight 

bound on the metric dimension of unicyclic graphs[8].  Shanmukha and Sooryanarayana [9,10] 

computed the parameters for wheels, graphs constructed by joining wheels with paths, complete 

graphs etc. In 1960’s Paul Erdos defined the dimension of a graph and stated some related 

problems and unsolved problems in [11]. The metric dimension of the Cartesian products of 

graph has been studied by Peters-Fransen and Oellermann [13]. 
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The metric dimension of various classes of graphs was computed in [3, 4, 5, 9, 10]. 

 

2. PRELIMINARIES 

 
This section summarizes basic definitions and results required in subsequent sections.  

 

2.1. Definition 

A graph ),( EVG = is an ordered pair consisting of a nonempty set of vertices, )(GVV = and a set 

of edges, )(GEE = .  If the endpoints of an edge are equal then it is called a loop and edges having 

the same pair of endpoints arte called parallel edges.  A graph having no loops and parallel edges 

is a simple graph.  A subgraph of a graph G is a graph H  such that )()( GVHV ⊆ and 

)()( GEHE ⊆ . 

 

Two vertices are said to be adjacent if there is an edgejoining them.  The number of vertices in 

)(GV adjacent to v is the degree of v ,denoted by )deg(v . 

 

A path is a sequence of distinct vertices vvvvu no == ,...,, 1  so that 1−iv is adjacent to iv  for all

,  1i i n≤ ≤ , such a path is said to be of length n  and if vu = then  it becomes a cycle of length n

denoted by nC . 

 

A connected graph is the one in which there is a path between every two vertices.  If each pair of 

vertices is adjacent then it is called complete graph. 

 

A connected acyclic graph is called tree.  A spanning subgraph of G  is a subgraph with vertex set 

)(GV and spanning tree is a spanning subgraph that is a tree. 

 

Let ),( vue = be an edge in G .  The contraction of edge e is the replacement of u and v with a 

single vertex and the edges other than e  incident with this single vertex are those edges that were 

incident with u or v .
.
  The resulting graph is denoted by eG  . and 1)().( −= GEeGE . 

 

2.2. Definition 

 
Coordinate of a vertex iv is represented by an n-tuple .,...,2,1 ),,...,,( 21 mimmm inii =  In particular for 

the vertex 1v  the coordinate is ),...,,( 11211 nmmm where ),(),,( 21121111 vvdmvvdm == and so on. 

 

2.3. Definition 

 
Cardinal number of a basis element is denoted by WvnjvCa jj ∈= ,,...,2,1),( and is defines as the 

number of vertices of G identified by jv with respect to .,...,2,1,),( milvvd ji ==
 

 

For example, consider the graph given in Figure1 that has metric dimension two with respect to 

the basis }.,{ baW =
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In the figure 2)( =aCa and 3)( =bCa with respect to 1),( =ji vvd . 

2.4. Definition 

 
Two vertices u and v in W  are said to be overlapping with each other if )()( vCauCa = with 

respect to .),(),( lvvduvd ii ==
 

 

In Figure 1 a and b are overlapping with respect to .1),(),( 11 == bvdavd
 

 

2.5. Robotic Assignment 

 
Let { } njvvvvW nj ,...,2,1,,...,,...,, 21 == be the basis and mivvvvGV mi ,...,2,1 },,...,,...,,{)( 21 == be the 

vertex set of .G For a vertex )(GVvi ∈ , the coordinate is .,...,2,1 ),,...,,( 21 mimmm inii = We can assign 

the basis element (Robot) jv if ijinii mmmmMin =),...,,( 21 for a particular .j  
 

Example 1:  In Figure 1 the coordinate of vertex 2v is (1, 2) with respect to the basis }.,{ baW =   

Here, 1)2,1( =Min , therefore basis element a is assigned to .2v
 

 

Note 1:  Suppose there is an alternative minima for j and .1+j  Then we can assign jv to iv  if 

).()( 1+< jj vCavCa
 

 

In Figure 1 the coordinate of 1v is (1,1).  Therefore 1),(),( 11 == vbdvad and here we can assign a

to 1v since )()( bCaaCa < where 2)( =aCa  and 3)( =bCa with respect to .1=l  

 

Note 2:  If )()( bCaaCa = then arbitrarily any one can assigned to a vertex iv  with respect to 

.1),(),( == ii vbdvad In Figure 2 for the vertex v , 1)1,1( =Min  and 1)()( == bCaaCa with respect to 

.1=l   So assign a or b to v . 
 

 

 

     

 

                                                                    Figure 2 

 

Figure 1 
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2.6. Robotic Assignment Subgraph 

 
After making the Robotic Assignment we may obtain a spanning subgraph called Robotic 

Assignment spanning subgraph(RASS).  Figure 3 represents the RASS for the graph given in 

figure 1. 

 

 

 

 

 

   
 

 

 

 

 

Now we recall a few results already published in [15,16] 

 

2.7. Theorem[7] 

 
The metric dimension of graph G is 1 if and only if G is a path. 

 

 
Figure 4 

 

2.8. Theorem [7] 
 

The metric dimension of a complete graph with n vertices is 1−n where 1>n  . 

 

2.9. Theorem [14] 

 
Let )(Gτ denote the number of spanning trees of a graph G .  If )(GEe∈ is not a loop then 

) .()()( eGeGG τττ +−= . 

 

3. MAIN RESULTS 

 
3.1. Theorem 

 

Consider the graph nK with n vertices ,,...,, 21 nvvv then ( ) .2 . −= neKnβ where eKn  . denote the 

contracted graph having no loops and parallel edges. 

 

Proof: We have ( ) 1−= nKnβ .  Let uve = be an edge in nK where u and v  are adjacent to every 

other 2−n vertices.  Consider the contracted graph eK n  .  .  Since every vertex in eKn  . are 

adjacent to the other 2−n  vertices.  Here the edge ) .( eKEe n∉ and the vertices u and v  are 

replaced by a single vertex say *
w .  Evidently the remaining 2−n vertices must adjacent to *

w  

 

Figure 3 
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since both u and v are adjacent to those vertices.  Then the simple graph eK n  . contains exactly 

1−n vertices and it should be .1−nK   Clearly ( ) .2111 −=−−=− nnKnβ   Hence the proof. 

Figure 5 represents 4K and its contraction (simple graph) with the edge  .e  

 

  

 

       

 

 

 

 

For large scale computations, network models consist of several nodes and can place uniquely a 

minimum number of Robots to identify them.  But in the case of optimization we cannot assign 

two machines (Robots) to the same node.  The following algorithm explains that how we can 

avoid the overlapping between the machines. 

 

3.2. Theorem (Algorithm) 

 

Let G be a simple connected graph with .,...,2,1 },,...,,...,,{)( 21 mivvvvGV mi == and 

{ } njaaaaW nj ,...,2,1,,...,,...,, 21 == be the basis of G  where ij va =  for some i and 

mnnj ≤=  & ,...,2,1 we can find any two adjacent vertices in G since it is connected. 

 

The following steps yields a Robotic assignment subgraph for .G  
 

Step 1: If ),(),( 1 iji vadvad < for nj ,...,3,2= then assign 1a to iv and vice versa for mi ,...,2,1= and 

.Wvi ∉  
Step 2: Let 1a is adjacent to any of the vertex iv for some i that is not in W and .1),( 1 =ivad   

Consider all other ja such that .1),( =ij vad  

Step 3: If )()( 1 jaCaaCa < for nj ,...,3,2=  then assign 1a to iv and add the edge ( )iva ,1  or in other 

words iv is identified by the basis element .1a  

Step 4: Now take 2),( =ij vad  for some j  and iv  is ma vertex which is not previously identified 

by any of the basis element.  Consider all njjkak ,...,1,1,...,2,1 , +−=  at which .2),( =ik vad   

If )()( kj aCaaCa < for njjk ,...,1,1,...,2,1 +−=  then assign ja to iv  and join the path from 

ja to iv . 

Step 5: Continue the process till all the vertices in G is identified by the any of the basis element 

in .W  
Step 6: Joining an edge or path in this way we may obtain a connected or disconnected graph 

called Robotic assignment subgraph of G  obviously it is spanning subgraph of .G  
 

It can be easily verified that the graph in Figure 3 represents the Robotic assignment subgraph 

of the graph in Figure 1. 

  

4K  
Simple graph of e .4K  

Figure 5 
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Note: If the Robotic assignment subgraph is not connected then adjoin the edge or path between 

any two vertices which are not in W to make it a connected spanning subgraph.  This is 

possible since the graph is connected.  Hence we obtain a spanning tree for .G The 

following figure represents the Robotic spanning tree S of the graph in Figure 1. 

 

 

 

 

 

 

 

 

 

3.3. Adjacency matrix of S  

It is interesting to know about the paths between basis elements and vertices of graphs.  We know 

that the each entry in adjacency matrix [ ] nnS ×  gives the path of length one between any two 

vertices in the graph, entry in [ ]2S gives the path of length two between any two matrices and so 

on. We are concentrating on the different path from basis elements to the vertices in the graph 

that are not in the basis.  If we consider a sub matrix [ ] nnS × of order nmnm ≤×  , then each entry in 

that matrix gives path from Robots to nodes in the network.  One can easily show that the 

diagonal of the matrices [ ]2S and T
MM are equal where M is the incidence matrix of .S  

 

3.4. Example 
 

Suppose the following graph represents the Robotic spanning tree S of some graph G and its 

adjacency matrix and incidence matrix are given in Figure 7.   

 

 

 

 

 

Figure 6 

Figure 7 
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It is shown that the diagonals of [ ]2S and T
MM are same.  That is we can easily find the route of 

length two from a robot to itself. 
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Since S is a spanning tree the number of different spanning trees of S , .1)( =Sτ  

The following theorem shows that there is a one to one correspondence between )(SE and )e .(Sτ  

with respect to a contraction.  By means of contraction actually we reduce the cardinal number of 

each basis element.  So contraction has great importance in the routing of complex networks. 

 

3.5. Theorem 
 

If S is the Robotic spanning tree of a graph G and eS  .  is the contraction with respect to nonloop

e  then there exists a bijection between the edge set of S and )e .(Sτ . 

 

Proof: Assume that no two basis elements in S are adjacent.  For each edge ),(SEe∈  the 

contraction e .S  must be a tree since S itself a tree.  Now e .S contains 1-E(S) edges and 1-V(S)

vertices.  If S  contains m edges then corresponding to m edges we get m trees with respect to a 

contraction e. .S   Since each tree of e .S arises for exactly on edge from S and e .S itself a tree 

means .1)e .( =Sτ   That means each contracted edge gives one and only one spanning tree of e .S .  

Thus there is a bijection between E(S)and )e .(Sτ . 

 

3.6. Example 
 
Consider the Robotic spanning tree in the Figure 6.  The figure given below shows the 

correspondence stated in the above theorem. 
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Figure 8 
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4. CONCLUSION 

In this paper we studied the metric dimension of graphs with respect to contraction and its 

bijection between them.  The algorithm proposed is used to avoid the overlapping between the 

robots in a network. This is applied in Robotic Assignment spanning subgraph in a complex 

network and provides an optimization through an algorithm in which the routing of basis 

elements helps in solving some complicated networks.   
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