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ABSTRACT 

 
This paper reviews related work and state-of-the-art publications for recognizing motor symptoms of 

Parkinson's Disease (PD). It presents research efforts that were undertaken to inform on how well 

traditional machine learning algorithms can handle this task. In particular, four PD related motor 

symptoms are highlighted (i.e. tremor, bradykinesia, freezing of gait and dyskinesia) and their details 

summarized. Thus the primary objective of this research is to provide a literary foundation for development 

and improvement of algorithms for detecting PD related motor symptoms. 
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1. INTRODUCTION 
 
This research focuses on algorithms for detecting Parkinson's disease (PD) related symptoms in 
time series data. PD is a disorder of the central nervous system resulting in a loss of motor 
function, increased slowness and rigidity. Artificial intelligence (AI)-based techniques can be 
utilized to detect symptoms such as tremor or bradykinesia while focusing on minimizing false 
negatives (i.e. failing to recognize a symptom) and false positives (i.e. detection of a symptom 
where none is apparent). Those affected by PD bear a great burden and have to cope with a rather 
reduced quality of life. In the authors' eyes, this is an even more pressing issue when considering 
leading role of Germany. In 2004, Germany inhabited the largest number of people with 
Parkinson's within Europe [3]. 
 
Even though it can manifest itself at any age, PD is among other diseases (e.g. Alzheimer's, 
dementia, chronic bronchitis) usually attributed to elderly subgroups of the population. 
Considering demographic changes of the last decades, the number of cases and burden of PD is 
expected to increase [24, p. 36]. The World Health Organisation (WHO) estimates that around 5.2 
million people were suffering from PD worldwide in 2004 [40]. Depending on the estimating 
organization, Europe inhabited 1.2 [24] - 2.0 [40] million of them in the same year. 
 
PD is typically characterized as a chronic, progressive, neurodegenerative disorder [4], [26], [58], 
[20], [27]. The cardinal symptoms are bradykinesia, rigidity, tremor and postural instability [26], 
[58], [27], [20], [23], [60], [3], [32]. Among many other symptoms, these symptoms result from a 
dopamine deficiency in the substantia nigra. A part of the brain that is located within the basal 
ganglia circuit (see Figure 1). Dopamine is a neurotransmitter involved in movement control [69]. 
Usually by the time of diagnosis, a great number of dopamine-producing neurons have already 
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diminished [58]. Current treatments aim at slowing the progression of the disease, focus on 
symptomatic relief and attempt to lift the enormous burden of PD. However, a cure is yet to be 
found. 

Figure 1. Illustrates structures of the brain related to the basal ganglia circuit and substantia nigra.  

Latter is located in the upper end of the brain stem. The image is based on a figure which has 
been retrieved from Wikimedia Commons and belongs to the public domain. 
 
PD is a great burden, not just for people suffering from the disease but also for those being 
indirectly affected (i.e. relatives and caretakers). In an advanced stage of the disease and without 
proper treatment, patients are no longer capable of taking care of themselves. In the Global 
Burden of Disease study, the WHO rated PD to be on the same disability level as: amputated arm, 
congestive heart failure, deafness, drug dependence and tuberculosis [40, p. 33]. 
 
A large number of symptoms have been shown by people with Parkinson's [27], [26]. The most 
visible and easily noticeable symptoms are related to motor functions. However, quality of life is 
affected by an even greater number of motor and non motor symptoms (e.g. depression, sleep 
disorder, cognitive / neurobehavioral abnormalities, autonomic and gastrointestinal dysfunction) 
[27], [26], [3]. As the disease progresses, patient's symptoms change and fluctuate (i.e. some 
symptoms simply disappear, while others (re-) appear), creating a unique symptomatic history for 
each individual patient. Unfortunately, in an advanced stage of Parkinson's further (drug-induced) 
symptoms may become apparent. Dyskinesia is one of these symptoms and results from a lengthy 
pharmacological treatment (i.e. several years). It manifests itself as an involuntary movement of 
entire body parts (e.g. rhythmical moving of upper body). 
 
Tremor at rest (also known as rest tremor or resting tremor) is only present when muscles are at 
rest and dissolves during sleep as well as with action (i.e. voluntary movement of affected 
extremity) [34]. It manifests itself as an involuntary, unilateral (one-sided) shaking of an 
extremity (e.g. hand, foot, etc.). The shaking generally occurs at a frequency between 4-6 Hz 
[27]. 
 
Bradykinesia refers to slowness of movement [27], [34]. It usually appears in very early stages of 
the disease[58] and it is characteristic for basal ganglia disorders [27]. Depending on the severity, 
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movements may not only be slowed (bradykinesia), but also diminished (hypokinesia) or 
completely abrogated (akinesia). 
 
Freezing of gait (FOG) (also known as freezing or motor blocks) is a form of akinesia which 
presents itself as an inability to initiate or continue movement [27], [58]. Motor blocks are a 
common symptom, experienced by people with Parkinson's (although it does not occur 
uniformly) and can affect various extremities (e.g. arms and legs) as well as the face [27]. After 
onset of the symptom, it typically lasts for several seconds and disappears afterward. It is a 
common cause of falls [27], [58]. 
 
Publications reveal a great number of techniques for automatic detection of PD motor symptoms 
which employ various AI-based methods such as neural networks (NNs) [30], [15], [5], [9], [55], 
[21], [16], [14], hidden markov models (HMMs) [54] and support vector machines (SVMs) [9], 
[50], [14]. Depending on the symptom and utilized sensors, various features are calculated (e.g. 
entropy [9], [50], [14], [43], spectral or fractal features [64], [61], [66], [5], [57], [44], [47], [29], 
[10], [11]). Over time, sensor signals are analyzed and compared or set in relationship to known 
samples of each symptom in order to recognize them. No matter whether these AI methods are 
continuous or window-based, all of them can be viewed as either data mining techniques and / or 
time series (analysis) algorithms. Much literature presents algorithms for detecting a single 
symptom (e.g. [63], [66], [54], [5], [7], [45], [39], [21], [16], [14]). Considering the 
heterogeneous nature of symptom profiles in PD patients, this is not sufficient. Few publications 
focus on detecting of multiple motor symptoms (e.g. [57], [15], [55], [50]), but even those rarely 
consider enough symptoms for use in real-world scenarios. In reality, patients are likely to 
experience multiple symptoms, thus increasing the chance of false negatives and false positives. 
 
To summarize, the objective of this research is to provide a literary foundation for 
development and improvement of algorithms for detecting PD related motor symptoms. 
 

2. IDENTIFYING PARKINSON'S DISEASE AND ITS SYMPTOMS 

 
Much research has been published with a focus on biological, chemical and genetic aspects of 
PD. Over the last two decades, an increasing number of publications originate from fields like 
computer science or AI, focusing on signifying motor symptoms in people with Parkinson's. 
Some of which are dedicated to detecting single motor symptoms [63], [66], [54], [5], [7], [45], 
[39], [21], [16], [14] and others on detection of multiple symptoms [57], [15], [55], [50]. These 
publications reveal a great number of techniques for automatically indicating the presence of PD 
motor symptoms (e.g. NNs [30], [15], [5], [9], [55], [21], [16], [14], HMMs [54] and SVMs [9], 
[50], [14]). Depending on symptom and utilized sensors, various features have been proposed and 
applied in literature (e.g. entropy [9], [50], [14], [43], spectral or fractal features [64], [61], [66], 
[5], [57], [44], [47], [29], [10], [11]) are known to be used in this context. In the course of this 
section a strong focus will be on the most common symptoms that are experienced by PD 
patients. Preference is given to those publications that do not focus on a single symptom (as 
opposed to multiple symptoms) or use synthetic datasets (as opposed to data recorded from 
sensors on the subject's body) but rather use unconstrained and unscripted activities of daily 
living (ADL). 
 
It should be kept in mind that there are many other publications with a focus on PD symptom 
indication of their severity, but do not make use of body-mounted sensors or otherwise do not 
resemble closely the previously elaborated criteria. Despite this reservation, a few selected 
publications that do not fit these criteria are presented nonetheless. 
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2.1. TREMOR AT REST 
 
In an early study by Salarian et al. [56], they were able to achieve a specificity of 98% and 
sensitivity of 76.6% on a dataset with ten patients and ten control subjects. In total, close to 
twenty hours worth of data were captured by the authors. Two tri-axial gyroscopes (i.e. one on 
each wrist) were used to record data while participants performed a set of scripted everyday 
activities. Spectral analysis was used to filter interesting regions within the specific frequency 
range specific to resting tremor(i.e. 3.5Hz-7.5Hz). In a later study [57] based on the same dataset, 
the data stream was divided into chunks with a length of three seconds to which the Burg method 
[13] was applied. Additionally a meta-analysis was introduced to remove isolated segments that 
were classified to exhibit tremor or tremor-like behavior (e.g. a single segment with tremor 
surrounded by none-tremor segments). This increased the sensitivity to 99.5% but lowered the 
specificity to 94.2%. 
 
In [72], inertial sensor data (i.e. acceleration and angular velocity) were gathered from six patients 
and seven control subjects. Zwartjes et al. had captured approximately 1.5-2 hours worth of data 
while participants were performing a set of scripted activities in laboratory conditions. A multi-
staged algorithm is utilized to indicate regions of tremor. At first some preprocessing is applied to 
the raw data, which is then used to classify the subject's activity and / or posture. This pre-
classification is used to highlight regions of interest where tremor is more noticeable (e.g. arms 
are hanging still while standing). If activity or posture were usable for detection of tremor (and its 
severity) then those portions of the data stream are divided into segments of three seconds length 
with a two-thirds overlap. For each segment, the Fourier Transform is used to identify tremor 
specific frequencies and thus tremor episodes as well. In the algorithm's last stage, a meta-
analysis removes isolated segments of tremor (very similar to the process that was utilized by 
Salarian et al. in [57]). Zwartjes et al. achieved an accuracy of about 84.7%. However, in 
comparison to studies by Salarian et al. [56],[57], the recorded activities were less constrained. 
 
Rigas et al. [54] achieved an accuracy of 87% in detecting tremor in an accelerometer based 
dataset with twenty-three participants (i.e. ten patients and thirteen control subjects). All 
participants performed daily activities in laboratory conditions. The data stream is divided into 
three second windows with 50% overlap. Having applied standard filtering and analysis 
techniques (i.e. finite response (FIR) filters, Fast Fourier Transform, etc.) an HMM is utilized to 
detect tremor episodes. This is different from most algorithms for tremor indication. More 
common approaches rely on spectral features alone [64], [61], [66], [5], [57], [44], [47], [29], 
[10], [11] while other classify based on NNs [30], [15], [5], [9], [55], [21], [16], [14] or SVMs 
[9], [50], [14]. Rigas et al. state that HMMs are suitable for tremor indication because "tremor 
presents time-dependency" [54]. They consider HMMs as a time sensitivity extension of the naive 
Bayes classifier. 
 
Cole et al. [15] were able to detect tremor with a sensitivity of 93% and specificity of 95% in 
unconstrained and unscripted activities. The dataset contained about 48 hours worth of 
acceleration and electromyogram (EMG) measurements from twelve participants (i.e. eight 
patients and four control subjects). Here a dynamic neural network (DNN) is used in combination 
with a set of FIR filters to detect tremor. It is stated by the authors that DNNs [67] were utilized 
because they are more capable of learning and classifying time-dependent classes (e.g. tremor) 
when compared to regular and static neural networks. Cole et al. divide the data stream into 
segments of two seconds length for feature extraction. The features are simply passed to the 
DNN, where artificial neurons do their work. However, the neurons' outputs are not simply 
forwarded to the next layer of neurons. Instead, each neuron has an FIR filter attached to it which 
transforms the output before it is passed to subsequent neurons. Their results are mainly 



Health Informatics- An International Journal (HIIJ) Vol.2,No.4,November 2013 
 

5 

dependent on the choice of training data. Here a handcrafted representative subset of data was 
chosen. 
 
A dataset with nineteen patients and four control subjects was used by Roy et al. [55] to signify 
tremor. They achieved a sensitivity of 91.2% and a specificity of 93.4% in EMG and acceleration 
data. The participants were performing unscripted and unconstrained activities in a home-like 
environment for several hours. Here the data stream is also divided into two second windows and 
a combination of DNNs with FIR filters is fed with various features that were extracted from the 
two second segments. 
 
Niazmand et al. [46] collected data from accelerometers integrated into a pullover. Ten patients 
and two healthy control subjects performed standardized PD motor tasks. An average sensitivity 
of 80% in indicating postural tremor and resting tremor and a specificity of 98.5% was achieved 
by the authors. Their algorithm first determines the relative acceleration among the sensors and 
then determines the movement frequency. This is done because sensors are not fixed on the 
patient's body but rather in a garment which position can change depending on executed 
movements. The raw data is simply filtered, normalized and a noise removal method is applied. 
For determining the movement frequency, a combination of thresholds and peak counting is 
utilized. 
 

2.2. BRADYKINESIA 
 
In [14], Cancela et al. present a motor symptom monitoring and management system. Their work 
originates from a European research project called PERFORM (Personal Health Systems for 
Monitoring and Point-of-Care Diagnostics-Personalized Monitoring). Here a set of classification 
algorithms (e.g. SVM, k-nearest neighbors (KNN), NN, decision tree (DT), etc.) was evaluated. 
The highest accuracy of 86% was achieved by the SVM. The corresponding dataset consists of 
acceleration data from twenty patients performing a set of ADL (within the limits of a scripted 
protocol). A standard analysis procedure is used by Cancela et al. At first a Butterworth filter is 
applied to raw sensor data then the data stream is epoched in five second segments with a 50% 
overlap. A set of features (i.e. sample entropy, root mean square, cross correlation, etc.) is 
calculated for each segment and passed to the classification algorithms. Here, the algorithms 
classify presence and severity of bradykinesia. Interestingly, the severity is not derived from 
standard motor tasks but instead from ADL. 
 
Cancela was also involved in a publication by Pastorino et al. [49]. Here a slightly modified 
version of Cancela's algorithm is utilized (as in [14]). A dataset from twenty-four patients 
performing unconstrained and unscripted activities at their home was gathered for a week. Twice 
a day, a clinician came to visit the patient and performed a short protocolized session which was 
later used to test the previously developed algorithm. Pastorino et al. show that an additional 
meta-analysis can improve classification results. Instead of using the generated outputs from the 
SVM directly, they can be further filtered / smoothed to ignore impossible and unrealistic 
scenarios. Using a patient independent algorithm an accuracy of 68.3% ± 8.9% was achieved and 
a 74.4% ± 14.9% accuracy was achieved with the additional meta-analysis. They indicate that a 
patient specific training of the algorithms would likely lead to improved results. 
 
Salarian et al. were not only involved in detecting tremor in time series data, they were also using 
gyroscopes on the wrists to indicate the presence of bradykinesia. In [56], ten patients and ten 
healthy control subjects participated in the collection of twenty hours worth of data. All 
participants were performing scripted ADL. Salarian et al. showed that the features rotation of 
hand (RH) and mobility of hand (MH) correlate well with the clinician's ground truth (r=-0.84 and 
r=-0.83 for MH and RH respectively and p<0.00001). Several years later, Salarian et al. were able 
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to reproduce their results in [57]. However in latter publication, window sizes of five minutes and 
above were used. Even though their work does not produce results in real-time, it does give hope 
that not many sensors are required for a decent accuracy in bradykinesia detection.  
 
The authors Zwartjes et al. [72] were able to identify bradykinesia related parameters that 
correlate well with the patient's unified Parkinson's Disease rating scale (UPDRS) scores. Here a 
dataset based on accelerometers and gyroscopes from six patients and seven healthy control 
subjects was analyzed. All subjects performed a mixture of standardized motor tasks and ADLs in 
a random predefined order. An activity / posture classifier is used to identify a set of elementary 
activities (i.e. walking, standing up) and postures (i.e. standing and sitting). For upper extremities, 
an average arm acceleration is calculated while various gait-related features (i.e. step length, step 
velocity, etc.) are determined from a tri-axial gyroscope and a tri-axial accelerometer that are 
placed on a foot. These features provide the basis for bradykinesia (slowness of movement) and 
hypokinesia (poverty of movement) quantification. The authors' results indicate that a significant 
correlation is present in almost all bradykinesia-related parameters while "none of the 
hypokinesia-related parameters were significantly correlated" [72]. 
 

2.3. AKINESIA / FREEZING OF GAIT 
 
In [21], Djurić-Jovičić et al. employed a neural network and a simple thresholding technique to 
classify walking patterns in PD patients. A set of six inertial measurement units, each containing a 
tri-axial accelerometer and a tri-axial gyroscope, were attached to the subjects' legs (i.e. thigh and 
shin) as well as their feet. The kinematics of four patients (as they were following a 
predetermined path) were gathered, annotated and used to train a neural network. In total, about 
30 minutes of data were collected. The path itself included several (potential) hurdles which have 
been designed to provoke FOG (e.g. start hesitation, destination hesitation, narrow path or turn 
hesitation, etc.). A combination of heuristically determined thresholds and a NN were utilized to 
differentiate between "normal" (i.e. standing and regular steps) and pathological (i.e. festination, 
akinesia, shuffling and small steps) walking patterns. The authors of [21] achieved an error rate as 
high as 16% due to the choice of thresholds (i.e. thresholds were independent of patients, etc.). 
On the contrary, the algorithm was working in real-time (i.e. about 0.5 seconds delay). 
 
A similar technique was developed by Cole et al. in [16]. However, instead of a regular (static) 
neural network a dynamic neural network [67] was utilized. Their indicator algorithm showed a 
sensitivity of 82.9% and specificity of 97.3% in a dataset containing unconstrained and unscripted 
activities. Ten patients and two healthy control subjects contributed and helped to gather about 
two hours worth of data from several accelerometers (i.e. forearm, thigh and shin) and an EMG 
sensor (i.e. shin). The authors employed a multi-staged algorithm [16]. In the first stage a simple 
linear classifier determines whether the subject is in an upright position (i.e. standing and not 
sitting or lying). If this is the case then a DNN determines episodes of akinesia. The idea was to 
identify periods in the data stream were episodes of akinesia are more likely to be apparent (both 
visually and in data stream). In contrast to a static NN, Cole et al. [16] have decided to use a DNN 
because they are able to better capture time-varying weights that are present in FOG episodes. 
 
An accelerometer based smart garment called MiMed-Pants [48] has been used by Niazmand et 
al. [47] to extract and analyze gait-related features. In this case, the measurement device has been 
successfully integrated in an item that is "suitable for daily use" [47]. The pair of pants can be 
washed like a regular textile. A sensitivity of 88.3% and specificity of 85.3% has been achieved 
with this setup. Five accelerometers (i.e. each shin, each thigh and belly button) provided 
kinematics on six patients while they were performing standard activities [71] (i.e. walking 
course, including narrow spaces, gait initialization and reaching destination, etc.). In total about 
one hour worth of data was collected by Niazmand et al. No use of advanced artificial intelligence 
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methods was made in [47], but instead a linear classification was applied to features that were 
extracted from the sensors. The algorithms provided feedback with a delay of about two seconds. 
 
In 2009, Bächlin et al. published their work on a wearable and context-aware system for real-time 
detection of FOG events [11]. The system provides acoustic feedback within a two second 
window. A set of accelerometers and gyroscopes was utilized (e.g. on shank, thigh and waist). 
Over eight hours worth of data were gathered from ten patients performing ADL, as well as 
walking in a straight line and a random walk. Bächlin et al. claim to have built the first context-
aware and wearable system to assist PD patients in detecting FOG events. An overall sensitivity 
of 73.1% and 81.6% specificity were achieved in [11]. The results were mainly due to different 
walking styles (that were used by the subjects in their dataset), choice of features and use of 
patient independent thresholding. They state that a personalized training and choice of threshold 
might have produced better results. 
 
In [62], Stamatakis et al. were able to show differences in walking patterns between a PD patient 
and a healthy control subject. The authors identified a set of features that may be used for 
differentiating between PD patients and healthy control subjects as well as for detecting FOG 
events and their duration. Even though no results in terms of accuracy or significance were 
presented in [62], their presented features may prove to be beneficial. 
 

2.4. DYSKINESIA 
 
Keijsers et al. [30] were able to achieve an accuracy of 96.8% in detecting dyskinesia. Thirteen 
participants were enrolled in their study. Each subject contributed about 2.5 hours of acceleration 
data while they were performing a set of scripted activities (approximately 35) in a controlled 
environment. In total six tri-axial acceleration sensors were attached to the subject's body (i.e. one 
on each thigh, one on each shoulder, one on trunk and one on wrist) during their recording 
session. The algorithm, used by Keijsers et al., classified fifteen minute segments using a regular 
neural network. The output of the NN indicated the presence (or absence) of dyskinesia within the 
segment. Several segment sizes were empirically evaluated (e.g. fifteen and one minute 
segments). The best accuracy was achieved with the fifteen minutes segments (i.e. 96.8%). 
However when using one minute segments the accuracy drops to about 80% on the same dataset. 
 
In contrast, Tsipouras et al. [65] were able to achieve similar results but on smaller segments. 
While Keijsers et al. [30] used fifteen minute segments, here two second intervals with 75% 
overlap are utilized. Tsipouras et al. state to have achieved a 93.7% accuracy using their dataset. 
This contains inertial sensor data (i.e. acceleration and angular rate) of four patients and six 
control subjects. All participants were performing a set of scripted activities. In total two 
gyroscopes (i.e. one on trunk and one on waist) and six accelerometers (i.e. one next to each 
gyroscope, one on each arm and one on each leg) were used during recording sessions. Here five 
classification methods were evaluated (i.e. naive Bayes, KNN, fuzzy lattice reasoning, DTs and 
random forests (RFs)). The RFs performed best with 93.7%. C4.5 is close behind with about 
93.5% while all other remaining classification algorithms achieved an accuracy around 85%. 
 
Cole et al. [15] used a DNN to better capture the time-based variables. The authors were able to 
achieve a 91% sensitivity and a 93% specificity in detecting dyskinesia. Here a similar procedure 
to their work in detecting tremor [15] and bradykinesia [16] was utilized. Their dataset contained 
several hours' worth of acceleration data and EMG measurements from eight patients as well as 
four control subjects. Participants were performing unscripted and unconstrained activities during 
their recording session. A set of features is extracted from a two second sliding window and fed 
to the DNN. Additionally, outputs of each artificial neuron (i.e. node within the neural network) 
are filtered using a five point FIR filter. 
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Similarly Roy et al. [55] combine DNNs with a rule-based reasoning method. They were able to 
achieve a sensitivity of 90% and specificity of 93.4% in a dataset containing acceleration data and 
EMG measurements from nineteen patients and four control subjects. One hybrid sensor 
(containing a tri-axial accelerometer and an EMG sensor) was located on each arm and leg. All 
participants were performing unconstrained and unscripted activities in a home-like environment. 
In total about 30 hours worth of data were gathered and used by Roy et al. [55]. Again the 
extracted features originate from two second segments. Their algorithm uses those features to 
feed two DNNs (i.e. one for mobility states and one for motor states). These DNNs provide 
preliminary results on patient's mobility state (i.e. sitting walking, standing, etc.) and motor 
symptoms. They are used in combination with a framework called IPUS (Integrated Processing 
and Understanding of Signals), which in turn activates different DNNs to maximize symptom 
recognition rates (e.g. based on the fact that the subject is walking, sitting, etc.). 
 
Patel et al. [51] utilized clustering techniques (and expectation maximization (EM)) to distinguish 
various levels of severity in PD patients while they were performing standardized motor tasks. A 
similar approach was used by Sherrill et al. [59]. Here six patients provided acceleration data to 
which clustering was applied in order to detect dyskinesia. 
 

2.5 DYSARTHIA AND DYSPHAGIA 
 
In [53], Revett et al. employ a rough sets approach for distinguishing healthy subjects and people 
with PD based on vocal data. Their dataset is based on thirty-one participants (i.e. twenty-three 
patients and eight healthy controls) performing a phonation task. Little et al. [36] originally 
constructed this dataset and donated it to the University of California Irvine (UCI) Machine 
Learning Repository [1]. On average each participant performed six phonations of the vowel [a]. 
Thus resulting in close to 200 samples of which a set of twenty-three features (including spectral 
features, shimmer, jitter, presence of PD, etc.) has been documented. Revett et al. report to have 
achieved a 100% accuracy when using all available features in their rough sets approach. This 
holds if the classification category is binary (i.e. healthy subject or PD patient). In this case 
several hundred rules are generated to identify a data sample's category. When trying to reduce 
the number of rules, the accuracy drops but stays well above 90% with about 100 rules. However, 
the authors did not attempt to perform classification based on the patient's duration of the disease, 
severity or UPDRS scores. 
 
In a publication by Bakar et al. [8], they present a speech-based assessment tool for identifying 
PD. Here the same dataset (as originally constructed by Little et al. [36]) has been utilized. The 
authors performed several tests in which they compared testing accuracy, training accuracy, 
average mean square error (MSE) as well as average number of iterations of two training / 
learning algorithms for NNs (Levenberg-Marquardt (LM) and Scaled Conjugate Gradient (SCG)). 
Their results indicate that LM outperforms the SCG algorithm. Generally speaking, the LM-
approach resulted in better testing and training accuracy as well as a lower MSE while SCG 
performed better in terms of "number of iterations". The best result was achieved with a 97.9% 
accuracy in training and 93.0% accuracy in testing. 
 
Asgari and Shafran [6] utilized a similar set of features for classifying speech and phonation data. 
They performed a prediction of UPDRS motor scores based on these features. In more than one 
hundred recording sessions, twenty-one control subjects and sixty-one patients were asked to 
perform three tasks: sustained phonation (i.e. phonation of vowel [a]), diadochokinetic test (i.e. 
repetition of syllables [pa], [ta] and [ka]) and a reading task. The actual recordings were done 
with a dedicated device that was designed to be an at-home testing tool. The dataset itself was 
analyzed with 100 frames per second using Hamming windows (each of 25ms length). A rather 
large set of features is extracted from each frame and were generated for both voiced and 
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unvoiced segments. About 15K features were generated based on their recordings of phonation 
and speech data (including pitch, frequency, harmony, etc.). A SVM was employed to translate 
these features into UPDRS motor scores. Depending on the used features (or subset of features) a 
mean absolute error between 6.1 and 5.7 (UPDRS) points was achieved. 
 
In [41], Mekyska, Rektorova and Smekal evaluate a set of features for automatic analysis of 
speech disorders in PD. The authors provide an extensive summary on various speech-related 
parameters and highlight a few common problems in automatic speech analysis. Their dataset is 
composed of forty-two male control subjects and twelve male PD patients. Each participant was 
asked to pronounce all vowels (i.e. [a], [e], [i], [o], [u]) once in a natural speed and once slowly. 
The inter-intra class distance ratio method (IICDR) and minimum redundancy maximum 
relevance (MRMR) method were used by Mekyska et al. in order to sort out the top 20 
parameters for each method (after having started with 510 parameters in total). In a second step, 
the Jarque-Bera test was utilized to see which features show a normal probability distribution. 
Those with a normal distribution were used in a multi-factor analysis of variance (ANOVA). 
Their results show up to three features (i.e. “mean B-F1“ for p ≤ 5% as well as “mean F0” and 
“mean NHR” for p ≤ 10%) that can be used to distinguish healthy control subjects from those 
afflicted with PD. Mekyska et al. add that there are also several parameters which do not show a 
coherent tendency in published literature. The authors point out several papers in which a 
particular feature has been shown to be significant, non-significant and indifferent in terms of 
separating patients from healthy subjects.  However, they also comment that these conflicting 
publications usually used rather small datasets. Thus they are more prone to random variations 
and clusters. 
 
Xiuming et al. [70] describe a diagnostic approach to PD based on principle component analysis 
(PCA) and Sugeno integral. The authors employ a dataset by Little et al. [36] from UCI Machine 
Learning Repository [1]. Thus data of thirty-one participants (i.e. eight patients and twenty-three 
healthy control subjects) was analyzed. Xiuming et al. show five principle components which 
account for 86.5% of the information within the signal. In order to propose a diagnosis, the 
Sugeno measure and Sugeno integral are then determined for the top five most relevant features. 
The authors report a classification accuracy of 81.0%. 
 

2.6 OTHER 
 
In 2000, Hamilton et al. [25] published their work on outcome prediction in pallidotomy in PD 
patients. It was their goal to build a reliable tool which estimates an operation's outcome based on 
intra-operational recordings of neural activity. A standard NN was employed and trained with a 
set of features (e.g. signal power, entropy or fractal dimensions). This system could provide 
supplementary data and aid surgeons in minimizing risks (e.g. blindness, difficulties in speaking 
or swallowing, etc.) and maximizing effectiveness. Their results indicate that all evaluated NN 
performed similarly in terms of overall outcome prediction. Hamilton and colleagues found that 
their NNs handled exceptional cases well. 
 
In terms of diagnosis Kupryjanow et al. [35] came up with an alternative measurement technique 
for determining UPDRS sub-scores related to motor tests (i.e. finger tapping and rapid alternating 
movement of hands). Instead of relying on arguably subjective assessments from neurologists, 
they present a device called Virtual-Touchpad (VTP). Here a webcam is used to capture 
movements of hands and translate them into machine readable features. In comparison to other 
methods, this approach does not require equipment to be attached to the patient (or mounted on 
the patient). A SVM recognizes hand gestures and / or postures. The succession of those postures 
is used to extract the mentioned features and determine UPDRS scores. The authors did not 
describe a user study in [35]. 
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In [18], Cunningham et al. presented their work on a computerized assessment tool. The work is 
intended to identify movement difficulties found in people with PD and similar movement 
disorders. Here the participants' ability to point and click on targets on the computer screen is 
compared among those afflicted with PD and healthy control subjects. A benefit of this approach 
is that patients are not expected to wear "unusual" or specialized hardware. However, on the other 
hand, it requires the patient to sit in front of a computer and cannot be mobile (as it would 
considerably alter their ability to point and click). Their results show a difference in control 
subjects and PD patients. The control group was generally more accurate (i.e. clicked closer to the 
target's center and made less accidental clicks) and faster (i.e. required less time to click once the 
target has been reached). This holds for both computer literates and computer illiterates. Those 
being computer illiterates and suffering from PD showed a higher variance in terms of accuracy 
of clicking the target center. In [19], Cunningham et al. present their tool's abilities in indicating 
akinesia, bradykinesia, dyskinesia, rigidity and tremor. 
 
In a preceding publication by Cunningham and colleagues [17], another study has been performed 
with ten PD patients. Here participants were asked to use a home-based assessment tool twice a 
day (i.e. once in ON state and once in OFF state) for a period of four days. It is their goal to 
differentiate between a participant's ON state and OFF state based on their test performance. As 
in other studies by Cunningham et al. [18], the subjects clicked on targets while their speed, time, 
distance and location of click were recorded. Regarding the time, a statistical significance was 
found when comparing performances in ON and OFF states (p = 0.017). The authors also note 
that a few subjects showed an increased variance in ON-OFF state which indicates that they 
might not have been in a clearly defined ON-OFF state at the time of testing. Nonetheless their 
results appear to be promising and larger follow-up studies are to be seen. 
 
Wang et al. [68] developed a new method for quantitative evaluation of symptoms in people with 
PD. Their proposed method is based on free spiral drawings with a digitizing table. Spiral 
drawings itself have been used a number of times to quantify motor dysfunctions (in particular 
[38], [37], [42] were highlighted by Wang et al.). However, these methods were usually 
employing some sort of guidance or template. In contrast, Wang et al. utilized free spiral 
drawings. A group of ten participants enrolled in their study at a hospital in Japan (Kaizuka). All 
of them were asked to draw a spiral which was then used to extract several features (e.g. number 
of turns, mean of radius, maximum radius, etc.). Their results indicate that healthy control 
subjects can be clearly separated from the remaining eight patients regarding the number of 

extreme points in radius curve. Most PD subjects were not able to "rapidly enlarge the circle as 
spiral" [68]. The authors remark that the features mean value of radius and slope of radius curve 
demonstrated stiffness and could be also used to distinguish between healthy and pathological 
subjects. 
 
Pradhan et al. [52] considered a similar methodology, but instead of drawing spirals thirty PD 
patients were tracking waves by applying force to sensors. Here two force sensors (i.e. one for 
index finger and one for thumb) were "squeezed" in order to track a wave (i.e. simple sine wave 
and complex wave with multiple frequency components) with and without  mental distraction. 
Their goal was to provide an assessment tool for clinical progression of PD patients. Pradhan and 
colleagues state that similar studies have been performed but "which may not be effective in 
documenting subtle changes in motor control" [52]. When comparing their task of wave tracking 
(involving precision control), other studies were usually employed to quantify surgical results or 
treatment progression. Three features were considered: spectral density, root mean square (RMS) 

error and lag. Although some of the features correlated significantly with UPDRS scores, there 
have been no significant improvements in prediction. Nonetheless, the authors suggest that their 
test may add an extra objective measure that other tests fail to capture. 
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In a publication by Brewer et al. [12], a similar approach has been used to predict UPDRS scores. 
Here twenty-six participants (all PD patients) were exhibiting pressure on force and torque 
sensors while they were performing wave tracking tasks. The authors used the same parameters to 
summarize the participants ability to properly track waves (i.e. spectral density, RMS error and 
lag). These features were evaluated in terms of their ability to predict UPDRS scores. The authors 
present four approaches: PCA, least squares linear regression, lasso regression and ridge 
regression. Their results indicate that ridge regression works best with an absolute error of 3.5 
UPDRS points. This is followed by lasso regression (i.e. 4.5 UPDRS points) and PCA (i.e. 7 
UPDRS points). 
 
Similarly, Kondraske et al. [31] utilize ordinary computer hardware for specialized PD tests. The 
authors present an initial evaluation of three objective, self-administered and web-based tests (i.e. 
alternating movement quality, simple visual-based response speed and upper extremity 
neuromotor channel capacity). Each test has an equivalent version in the real-world based on a 
testing device called "BEP 1". Twenty-one subjects (i.e. eight healthy controls and thirteen PD 
patients) enrolled in their evaluation where both lab-based and web-based tests were performed. 
The results indicate an encouraging well correlation by lab-based and web-based "rapid 
alternating movement" and "`neuromotor channel capacity" tests. The correlation for the "simple 
visual" test did not show expected results. The authors envision a three-tiered approach that first 
involves digital, web-based tests then lab-based tests and finally screening by an expert. As 
suggested by its nature, web-based tests are easily accessible to a broad population. They provide 
objective measurements within an uncontrolled environment and may provide an initial 
assessment on whether any signs of PD are apparent. The second tier can then be used for a 
complementary assessment in a controllable environment. Afterwards a proper clinical screening 
can be performed by a neurologist if previous results suggested parkinsonian behavior. 
 
An automatic evaluation approach for early detection of PD is presented by Jobbágy et al. [28]. 
The authors propose and evaluate a set of tests that were specifically designed to highlight 
features of PD symptoms. They employ a motion tracking system, called precision motion 
analysis system (PRIMAS), for recording movements patterns. The system uses a combination of 
infrared (IR) light, passive markers (i.e. small, lightweight reflective disks mounted on body) and 
cameras in order to track the participants' movements of their fingers and hands. Jobbágy and 
colleagues aim at providing tests and / or measures to indicate the presence of early to moderate 
PD and subtle changes in its progression. Twenty-nine participants took part in their study (i.e. 
thirteen young healthy subjects, ten elderly healthy subjects and six subjects afflicted with PD). 
Three tasks were performed: tapping task, twiddling task as well as a pinching and circling task. 
The authors describe their analysis of raw movement data from their tracking system and 
highlight their chosen features (e.g. frequency, symmetry, dexterity, amplitude, etc.). Based on 
these parameters a score (between zero and one) is proposed in which people with PD achieve 
higher score-values (as in UPDRS). Their empirical results indicate that their scale does indeed 
separate PD patients from healthy subjects. 
 

3.CONCLUSIONS 

It is apparent that indication of PD motor symptoms in time series data is clearly not an unwritten 
page. Alone in the past decade a great number of publications with a focus on this very topic have 
been seen. Some of the mentioned authors have published their work on several symptoms (e.g. 
Cole et al. [15],[16], Salarian et al. [56],[57] and Zwartjes et al. [72]). 

In recent years, accuracy of symptom indication and severity indication have reached percentages 
well above 90%. However it should be noted that datasets vary greatly in quality and quantity 
(e.g. from a few minutes to several hours or days of data). The accuracy increases and decreases 
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with the used datasets and employed algorithms. Authors with small datasets or even synthetic 
datasets tend to achieve higher accuracies than those that utilize medium-sized or large datasets 
from real people. Another aspect of quality is the task / activity which have been performed 
during recording sessions (i.e. scripted vs. unscripted, constrained vs. unconstrained, etc.). Here, 
preference has been given to those publications that were not using standardized motor tasks to 
identify symptoms (and their severity). Sensitivities in the range of 90%-95% (sometimes even 
greater) were achieved with today’s methods, but usually at the cost of a lower specificity. 
 
Table 2 summarizes the papers that were presented in this paper. Despite the reservation of 
highlighting publications that enable indication of PD motor symptoms and / or assessing their 
severity while being mobile, a set of publications that do not fit these criteria was presented. 
Table 1 points to several noteworthy publications with a similar focus, but do not necessarily 
intend to identify cardinal symptoms or make use of body-mounted sensors. As a consequence, 
they do not necessarily present the state-of-the-art. Nonetheless the interested reader is 
encouraged to read through them. 
 

FUTURE WORK 
 
Despite the fact that fairly high accuracies has already been reached, the presented results still 
allow for some improvements. The authors would like to employ a rather untraditional set of 
algorithms for indicating the presence of the mentioned PD motor symptoms in time series data 
(e.g. StreamKM++[2], ClusTree[33] and LogLog algorithm [22]). It is their intention to evaluate 
whether these approaches can perform on a similar level of accuracy or maybe even outperform 
the mentioned publications. A suitable framework, called MOSIS, for evaluating these 
approaches is actually under development (publication is pending; download available on 
mloss.org). Furthermore, the author's are likely to review more publications. 
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Table 1. Lists several related publications. The author(s) and title of their publication are highlighted. This 
list is intended to supplement state-of-the-art publications (shown in Table 2) with additional noteworthy 

and relevant papers. 

Author(s) Note 

Brewer et al. [12] Application of Modified Regression Techniques to a Quantitative Assessment 
for the Motor Signs of Parkinson's Disease 

Cunningham et al. [18] Identifying fine movement difficulties in Parkinson's disease using a computer 
assessment tool 

Cunningham et al. [17] Home-Based Monitoring and Assessment of Parkinson's Disease 

Hamilton et al. [25] Neural networks trained with simulation data for outcome prediction in 
pallidotomy for Parkinson's disease 

Kondraske et al. [31] Web-based evaluation of Parkinson's Disease subjects: Objective performance 
capacity measurements and subjective characterization profiles 

Wang et al. [68] A new quantitative evaluation method of Parkinson's disease based on free 
spiral drawing 

Jobbágy et al. [28] Early detection of Parkinson's disease through automatic movement evaluation 
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Table 2. Summarization of state-of-the-art publications on PD symptom indication algorithms. For each 
symptom (T: tremor, B: bradykinesia, F: FOG, D: dyskinesia) and reference, the employed classification 
techniques and utilized sensors (A: accelerometer, G: gyroscope, E: EMG sensor) are highlighted. 
Furthermore their results are indicated. It should be kept in mind that the results among these papers are 
not directly comparable due to employment of different 
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