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ABSTRACT 

In this paper, we present an empirical study on convergence nature of Differential Evolution (DE) 

variants to solve unconstrained global optimization problems. The aim is to identify the competitive 

nature of DE variants in solving the problem at their hand and compare.  We have chosen fourteen 

benchmark functions grouped by feature: unimodal and separable, unimodal and nonseparable, 

multimodal and separable, and   multimodal and nonseparable. Fourteen variants of DE were 

implemented and tested on fourteen benchmark problems for dimensions of 30. The competitiveness of 

the variants are identified by the Mean Objective Function value, they achieved in 100 runs. The 

convergence nature of the best and worst performing variants are analyzed by measuring their 

Convergence Speed (Cs) and Quality Measure (Qm). 
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1. INTRODUCTION  

Evolutionary algorithms (EA) have been widely used to solve optimization problems. 

Differential Evolution [1] is an EA proposed to solve optimization problems, mainly to 

continuous search spaces. The DE algorithm, a stochastic population-based search method, has 

been successfully applied to many global optimization problems [2].  As traditional EAs, 

several optimization problems have been successfully solved by using DE [3]. It shows superior 

performance in both widely used benchmark functions and real-world application [4, 5]. DE 

shares similarities with traditional EAs. As in other EAs, two main processes that derive the 

evolution are the perturbation process (crossover and mutation) which ensures the exploration 

of the search space and the selection process which ensures the exploitation properties of the 

algorithm. Both perturbation and the selection process are simpler than those used in other 

evolutionary algorithms. In the case of DE, the perturbation of a population element is done by 

probabilistically replacing it with an offspring obtained by adding to a randomly selected 

element a perturbation proportional with the difference between other two randomly selected 

elements. The selection is done by one to one competition between the parent and its offspring. 

There are three strategy parameters in DE, the population size NP, the crossover rate CR and 

the scaling factor F. Many works have been done to study the suitable setting of these control 
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parameters [6, 7, 8]. The CR parameter controls the influence of the parent in the generation of 

the offspring. The F parameter scales the influence of the set of pairs of solutions selected to 

calculate the mutation value. DE performs the perturbation based on the distribution of the 

solutions in the current population. In this way, search directions and possible step sizes depend 

on the location of the individuals selected to calculate the mutation values. 

Based on different strategies followed for perturbation, there are various DE variants are exists, 

they differ in the way how the solution is generated. Besides the suitable setting of control 

parameters, another important factor when using DE is the selection of the variant. The most 

popular variant of DE is rand/1/bin. There is a nomenclature scheme developed to reference 

different DE variants.  In rand/1/bin, “DE” means Differential Evolution, the word “rand” 

indicates that the individuals selected to compute the mutation values are chosen at random, “1” 

is the number of pairs of individuals chosen and finally “bin” means that a binomial crossover 

is used. The algorithm for rand/1/bin is presented in Figure. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. “rand/1/bin” algorithm, steps pointed out with ♦ will change from variant to variant. 

With seven   commonly  used  differential  mutation  strategies,  as listed in Table 1, and two 

crossover schemes (binomial and exponential), we get fourteen possible variants of DE. 

Following the standard DE nomenclature used in the literature, the fourteen DE variants can be 

written as follows: rand/1/bin, rand/1/exp, best/1/bin, best/1/exp, rand/2/bin, rand/2/exp, 

best/2/bin, best/2/exp, current-to-rand/1/bin, current-to-rand/1/exp, current-to-best/1/bin, 

current-to-best/1/exp, rand-to-best/1/bin and rand-to-best/1/exp. This paper, an empirical 

convergence analysis of DE variants has been attempted. 

The remainder of the paper is organized as follows. After a brief review of the related work in 

Section 2, Section 3 details the design of experiments. Section 4 describes the empirical 

measurements done in our study, Section 5 discusses the simulation results and finally Section 

6 concludes the paper. 

1. Begin 

2.   G=0 

3.   Create random initial population Xi,G   i =1,…,NP 

4.   Evaluate  f(Xi,G) i=1,…,NP 

5.   For G = 1 to MAXGEN Do 

6. For i = 1 to NP Do 

7.♦   select randomly r1 ≠ r2 ≠ r3 

8. ♦   jrand=randint (1,D) 

9. ♦   For j=1 to D Do 

10. ♦        If(randj[0,1)<CR or j=jrand) Then 

11. ♦           Ui,j,G+1=Xr3.j.G+F(Xr1.j.g-Xr2.j.G) 

12. ♦        Else 

13. ♦         Ui,j,G+1=Xi,j,G 

14. ♦        End If 

15. ♦    End For 

    16.    If  f(Ui,G+1 ) ≤ f(Xi,G) Then 

     17.                   Xi,G+1 = Ui,G+1 

18.    Else 

19.                    Xi,G +1= Xi,G 

20.      End If 

21. End For 

22.          G=G+1 
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Table 1. Differential Evolution Variants 

 

Nomenclature Variant 

rand/1 ��,� � ���	 ,� 
  � ���	 ,� � ���	 ,��  

best/1 ��,� � �����,� 
  � ���	 ,� � ���	 ,��  

rand/2 ��,� � ���	 ,� 
  F ���	 ,� � ���	 ,� 
 ���	 ,� � ���	 ,��  

best/2 ��,� � �����,� 
  F ���	 ,� � ���	 ,� 
 ���	 ,� � ���	 ,��  

current-to-rand/1 ��,� � ��,� 
 K���	 ,� � ��,�� 
 � ���	 ,� � ���	 ,��  

current-to-best/1 ��,� � ��,� 
 K������,� � ��,�� 
 F ���	 ,� � ���	 ,��  

 

2. RELATED WORKS  

Menzura-Montes et. al. [12] empirically compared the performance of eight DE variants on 

unconstrained optimization problems. Variants with arithmetic recombination, since they are 

rotationally invariant, were also considered in their work. He used convergence measure to 

identify the competitiveness of the variants. The study concluded rand/1/bin, best/1/bin, 

current-to-rand/1/bin and rand/2/dir as the most competitive variants. However, the potential 

variants like best/2/*, rand-to-best/1/* and rand/2/* were not considered in their study. 

Daniela Zaharie [6], provides theoretical insights on explorative power of Differential 

Evolutional algorithms, she describes an expression as a measure of the explorative power of 

population-based optimization methods. In her results, she analyzed the evolution of population 

variance for rand/1/bin for two test functions (Rastrighin and Ackley). Control of diversity and 

associated parameter tuning are discussed in [7, 8, 9] 

Hans-Georg Beyer [10], analyzed how the ES/EP-like algorithms perform the evolutionary 

search in the real-valued N-dimensional spaces. He described the search behavior as the 

antagonism of exploitation and exploration, where exploitation works in one dimension, 

whereas the exploration is a random walk. 

 

3. DESIGN OF EXPERIMENTS 

In this paper, we identify the competitiveness of DE variants and it is justified by investigating 
their convergence nature by implementing them on a set of benchmark problems with high 
dimensionality and different features. We have chosen fourteen test functions [11, 12], of 
dimensionality 30, grouped by the feature - unimodal separable, unimodal nonseparable, 
multimodal separable and multimodal nonseparable.  The details of the benchmark problems are 
described in Table 2. 

All the test functions have an optimum value at zero except f08. In order to show the similar 

results, the description of f08 was adjusted to have its optimum value at zero by just adding the 

optimal value  for the function with 30 decision variables (12569.486618164879) [12]. 

The parameters for all the DE variants were: population size NP = 60 and maximum number of 

generations = 3000 (consequently, the maximum numbers of function evaluations calculate to 

180,000). The moderate population size and number of generations were chosen to demonstrate 

the efficacy of DE variants in solving the chosen problems. The variants will stop before the 
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maximum number of generations is reached only if the tolerance error (which has been fixed as 

an error value of 1 x 10
-12)

 with respect to the global optimum is obtained. Following [12, 13], 

we defined a range for the scaling factor, F∈  [0.3, 0.9] and this value is generated anew at each 

generation for all variants. We use the same value for K as F.  

Table 2. Details of the test functions used in the experiment 

Functions and  Ranges Functions and Ranges 

�� �  �� !"# � ∑ "�%&'�(�  ; �100 + "� +100  

�, � ��-.!"# � ∑ �"� sin�2|"�|��&'�(� ;  - 

500 + "� + 500    

�% � ��-.!"# � ∑ |"�| 
 ∏ |"�|&'�(�&'�(�  ;   

�10 + "� + 10  

�6 �  �78�!"# � ∑ 9"�% � 10 cos!2="�# 
 10>&'�(� ; 

 �5.12 + "� + 5.12 

�& � ��-.@�!"# � ∑ �∑ "A�A(� �%&'�(�  ; 

 �100 + "� + 100; 

��' �  �B-C!"# �
20 
 D � 20D"E F�0.2G�

 ∑ "�% 
�(% H �

D"E � ∑ cos !2="�# 
�(� � ;  

�30 + "� + 30  

�J � ��-.!"# � KL"�M|"�|, 1 + N + 30O 
;  

 �100 + "� + 100 

���: ����!"# � �
J'''∑ "�%&'�(� �∏ QRS T	√��&'�(� 
 1 ;  

�600 + "� + 600 

�W �  �7X�!"# � ∑ |100�"�Y� �%6�(�"�%#% 
 !"� � 1#%| ;  
�30 + "� + 30  

��%: ��Z[�% � \
&' ]10SN^%!=_�# 
 ∑ !_� �&'�(�

1#%`1 
 10SN^%!=_�Y�#a 
 !_b � 1#%O 

∑ c!"�, 10,100,4#&'�(� ;   
 

�50 + "� + 50  

�f: ���!"# � ∑ !g"� 
 0.5h#%&'�(�  ;  

 �1.28 + "� + 1.28 
 

 

��& � ��Z[�& � 0.1]SN^%!=3"�# 
 ∑ !"� �%6�(�1#%`1 
 SN^%!3="_�Y�#a 
 !"b � 1#%O`1 

SN^%!2="&'#a 
 ∑ c!"� , 10,100,4#&'�(�  ; 

 �50 + "� + 50 

�j � �k[!"# � ∑ N"�J 
&'�(�lL^mR^g0, n1#;n  
 �1.28 + "� + 1.28 

��J � �oX. � "�% 
 2"�Y�% � 0.3QRS!3="�# �0.4QRS!4="�Y�# 
 0.7 ;  

�100 + "� + 100  
 

The crossover rate, CR, was tuned for each variant-test function combination. Eleven different 

values for the CR viz. {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} were tested for each 

variant-test function combination. For each combination of variant-test function-CR value, 50 

independent runs were conducted. Based on the obtained results, a bootstrap test was conducted 

in order to determine the confidence interval for the mean objective function value. The CR 

value corresponding to the best confidence interval was chosen to be used in our experiment. 

The fourteen variants of DE along with the CR values for each test function are presented in 

Table 3. 

As EA’s are stochastic in nature, 100 independent runs were performed per variant per test 

function (by initializing the population for every run with uniform random initialization within 

the search space). The competitiveness of DE variants in solving the benchmark functions are 

identified by comparing their mean objective function values (MOV). The convergence analysis 
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of the variants are carried out by measuring their Convergence Speed (Cs), Quality Measure(Q-

Measure Qm) [14] for each variant-test function combination. 

 

Table 3. “CR” Value for Each Pair of Variant-Function 

Sno Variant f1 / f8 f2 / f9 f3 / f10 f4 / f11 f5 / f12 f6 / f13 f7 / f14 

1 rand/1/bin 0.9/0.5 0.2/0.1 0.9/0.9 0.5/0.1 0.9/0.1 0.2/0.1 0.8/0.1 

2 rand/1/exp 0.9/0.0 0.9/0.9 0.9/0.9 0.9/0.9 0.9/0.9 0.9/0.9 0.9/0.9 

3 best/1/bin 0.1/0.1 0.1/0.1 0.5/0.1 0.2/0.1 0.8/0.3 0.1/0.8 0.7/0.1 

4 best/1/exp 0.9/0.7 0.8/0.9 0.9/0.8 0.9/0.8 0.8/0.9 0.8/0.8 0.9/0.8 

5 rand/2/bin 0.3/0.2 0.1/0.1 0.9/0.1 0.2/0.1 0.9/0.1 0.2/0.1 0.9/0.1 

6 rand/2/exp 0.9/0.3 0.9/0.9 0.9/0.9 0.9/0.9 0.9/0.9 0.9/0.9 0.9/0.9 

7 best/2/bin 0.1/0.7 0.3/0.1 0.7/0.4 0.2/0.1 0.6/0.1 0.1/0.1 0.5/0.1 

8 best/2/exp 0.9/0.3 0.9/0.9 0.9/0.9 0.9/0.9 0.9/0.9 0.9/0.9 0.9/0.9 

9 current-to-rand/1/bin 0.5/0.4 0.1/0.1 0.9/0.1 0.2/0.1 0.1/0.2 0.1/0.3 0.2/0.1 

10 current-to-rand/1/exp 0.9/0.3 0.9/0.9 0.9/0.9 0.9/0.9 0.9/0.9 0.9/0.9 0.9/0.9 

11 current-to-best/1/bin 0.2/0.8 0.1/0.1 0.9/0.1 0.2/0.2 0.1/0.2 0.3/0.1 0.2/0.1 

12 current-to-best/1/exp 0.9/0.1 0.9/0.9 0.9/0.9 0.9/0.9 0.9/0.9 0.9/0.9 0.9/0.9 

13 rand-to-best/1/bin 0.1/0.8 0.1/0.1 0.9/0.9 0.4/0.1 0.8/0.1 0.4/0.2 0.8/0.1 

14 rand-to-best/1/exp 0.9/0.4 0.9/0.9 0.9/0.9 0.9/0.9 0.9/0.9 0.9/0.9 0.9/0.9 

 

3. EMPIRICAL MEASUREMENTS 

Convergence Speed is used to detect which variant is most competitive. To measure the 
convergence speed, we calculated the mean percentage out of the total 1, 80,000 function 
evaluations required by each of the variant to reach its best objective function value, for all the 
100 independent runs 

The algorithm convergence, usually mean the convergence of the objective function that we 

minimize. The rate of convergence is generally described by f(gen), where gen is the current 

generation. We use Q-Measure to study the convergence nature of DE Variants. Quality 

measure or simply Q-Measure is an empirical measure of the algorithm's convergence. It serves 

to compare the objective function convergence of different evolutionary methods. In our 

experiment, it is used to study the behavior of our DE variants. 

  The formula of Q-Measure is Qm = C / Pc 

  Pc – Probability of convergence, 

  C – Convergence Measure. 

 

  The Convergence Measure (C) is calculated as  C = SumEj / nc 

   nc – number of successful runs  

   SumEj – total number of function evaluations taken for all the 

successful runs 

 

4. RESULTS AND DISCUSSION  

The mean objective function values obtained for the unimodal separable functions: f1, f2, f4, f6 

and f7, and the unimodal nonseparable function f3 are presented in Table 4.  The results shows 

that best performance were provided by rand-to-best/1/bin, rand/1/bin, best/2/bin and 
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rand/2/bin variants for the unimodal separable functions. best/1/*, current-to-rand/1/exp and 

current-to-best/1/exp were the poorly performing variants. best/2/* variants alone was able to 

solve the unimodal nonseparable problem. The variant current-to-rand/1/* and current-to-

best/1/* displayed the worst performance. 

Table 5 displays the simulation results for the multimodal separable functions: f8, f9 and f14, and 

for the multimodal non-separable functions f5, f10, f11, f12 and f13. In case of multimodal 

separable problems, the best performance was shown by rand/1/bin, rand-to-best/1/bin and 

rand/2/bin variants once again as in the case of unimodal separable problems. Similarly, the 

variants current-to-rand/1/exp and current-to-best/1/exp consistently showed poor performance. 

In the case of multimodal nonseparable problems, function f5 and f10  were not solved by any 

variants.  

In this case of f11, f12 and f13, the best performing variants were rand-to-best/1/bin, rand/1/bin, 

rand/2/bin and best/2/bin, once again along with current-to-rand/1/bin and rand-to-best/1/bin. 

current-to-rand/1/exp and current-to-best/1/exp were the poorly performing variants along with 

best/1/* variants. 

 

Table 4. MOV Obtained for Unimodal functions 
 

Variant f1 f2 f4 f6 f7 f3 

rand/1/bin 0.00 0.00 0.00 0.02 0.00 0.07 

rand/1/exp 0.00 0.00 3.76 0.00 0.02 0.31 

best/1/bin 457.25 0.14 1.96 437.25 0.09 13.27 

best/1/exp 583.79 4.05 37.36 591.85 0.06 57.39 

rand/2/bin 0.00 0.00 0.06 0.00 0.01 1.64 

rand/2/exp 0.00 0.02 32.90 0.00 0.05 269.86 

best/2/bin 0.00 0.00 0.00 0.07 0.00 0.00 

best/2/exp 0.00 0.00 0.05 0.39 0.01 0.00 

current-to-rand/1/bin 0.00 0.02 3.68 0.03 0.04 3210.36 

current-to-rand/1/exp 24.29 44.22 57.52 43.07 0.27 3110.90 

current-to-best/1/bin 0.00 0.02 3.71 0.00 0.04 3444.00 

current-to-best/1/exp 24.37 45.04 56.67 41.95 0.26 2972.62 

rand-to-best/1/bin 0.00 0.00 0.00 0.00 0.00 0.07 

rand-to-best/1/exp 0.00 0.00 3.38 0.00 0.01 0.20 
 

 

Based on the overall results in Table 4 and 5 the most competitive variants were rand-to-

best/1/bin, best/2/bin and rand/1/bin.  The variants rand/2/bin and best/2/exp also showed good 

performance consistently. On the other hand, the worst overall performances were consistently 

displayed by variants current-to-best/1/exp and current-to-rand/1/exp. The variants best/1/exp 

and current-to-rand/bin were also displaying poor performance. best/2/* variants show good 

performance for unimodal nonseparable functions. It is worth noting that binomial 

recombination showed a better performance over the exponential recombination.  
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Table 5 : MOV obtained for Multimodal functions 

 

Variant                   f8 f9 f14 f5 f10 f11 f12 f13 

rand/1/bin 0.13 0.00 0.00 21.99 0.09 0.00 0.00 0.00 

rand/1/exp 0.10 47.93 0.00 25.48 0.09 0.05 0.00 0.00 

best/1/bin 0.00 4.33 12.93 585899.88 3.58 3.72 15.78 973097.03 

best/1/exp 0.01 50.74 32.18 64543.84 6.09 5.91 131448.66 154434.94 

rand/2/bin 0.22 0.00 0.00 19.01 0.09 0.00 0.00 0.00 

rand/2/exp 0.27 101.38 0.01 2741.32 0.01 0.21 0.00 0.01 

best/2/bin 0.17 0.69 0.12 2.32 0.09 0.00 0.00 0.00 

best/2/exp 0.08 80.63 2.53 1.12 0.83 0.03 0.14 0.00 

current-to-rand/1/bin 0.14 37.75 0.00 52.81 0.01 0.00 0.00 0.00 

current-to-rand/1/exp 0.12 235.14 18.35 199243.32 13.83 1.21 10.89 24.11 

current-to-best/1/bin 0.19 37.04 0.00 56.91 0.01 0.00 0.00 0.00 

current-to-best/1/exp 0.10 232.80 18.21 119685.68 13.69 1.21 10.37 23.04 

rand-to-best/1/bin 0.22 0.00 0.00 17.37 0.09 0.00 0.00 0.00 

rand-to-best/1/exp 0.12 48.09 0.00 24.54 0.09 0.05 0.00 0.00 
 

Next in our experiment, we measure the Convergence Speed (Cs) as the mean percentage of total 

number of function evaluations required by each of the variant, for 100 runs, to reach their best 

objective function value. This measure is used to detect which variants are more competitive, in 

each set of function classes. The variants which are good in convergence will have less mean 

percentage ie, they will reach their optimum value with less number of function evaluations.  The 

result in Table 6 shows that the variants rand/1/bin, rand/2/bin, best/2/bin, rand-to-best/1/bin and 

best/2/exp are faster in convergence to global optimum. The variants which are taking 100% of the 

function evaluations, ie., poor performance, for all the functions are best/1/bin, best/1/exp, current-

to-rand/1/exp and current-to-best/1/exp. The variants which are providing the percentage less than 

100, for only one function, are rand/1/exp, rand/2/exp, current-to-rand/1/bin, current-to-best/1/bin 

and rand-to-best/1/exp. The results suggest that the top four variants which could reach the best 

objective function values with less number of function evaluations are rand/1/bin, rand-to-

best/1/bin, best/2/bin and rand/2/bin. The variants which perform poor are best/1/bin, best/1/exp, 

current-to-rand/1/exp and current-to-best/1/exp. 

We analyzed the performance of the variants  by each function class wise. We observed that for the 

unimodal functions the top four variants with the fastest convergence are rand/1/bin, rand/2/bin, 

best/2/bin and rand-to-best/1/bin.  For f4 and f7 all the variants behaves similar in their speed of 

convergence, but rand/1/bin, best/2/bin and rand-to-best/1/bin could reach the global optimum. The 

results suggest that, the variant rand/1/bin out performing others by its convergence speed and the 

variants best/1/bin, best/1/exp, current-to-rand/1/exp and current-to-best/1/exp are slow in 

convergence. For f3, best/2/exp is comparatively faster than other variants by 0.05%. For the 

multimodal functions f5, f8, f9, f10, f11, f12, f13 and f14 the top four variants with the fastest convergence 

are rand-to-best/1/bin, rand/1/bin, best/2/bin  and rand/2/bin  among these variants rand-to-

best/1/bin and rand/1/bin are equally faster in convergence than others. For the function f8 and f10, 

all the variants behave similar in their speed of convergence.  The results suggest that, the variants 

rand-to-best/1/bin and rand/1/bin are out performing others by its convergence speed and the 

variants which week or slow in converging to the optimum value are best/1/bin, best/1/exp, current-

to-rand/1/exp and current-to-best/1/exp.  
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Table 6. Convergence Speed Measured for the Variants. The lowest percentage is marked with “*” 

Variant             f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 

rand/1/bin 40.93* 56.45 100 100 100 10.89*100 100 65.50 10046.89 38.89*41.38 42.13 

rand/1/exp 100 100 100 100 100 39.34 100 100 100 100100 100 100 100 

best/1/bin 100 100 100 100 100 100 100 100 100 100100 100 100 100 

best/1/exp 100 100 100 100 100 100 100 100 100 100100 100 100 100 

rand/2/bin 70.05 90.57 100 100 100 17.78 100 100 100 10070.02 56.07 58.62 59.85 

rand/2/exp 100 100 100 100 100 81.64 100 100 100 100100 100 100 100 

best/2/bin 42.67 48.9* 100 100 99.97*12.47 100 100 87.29 10049.60 40.05 41.23 48.60 

best/2/exp 73.42 100 99.85*100 100 51.93 100 100 100 10088.94 80.43 81.42 98.35 

current-to-

rand/1/bin 100 100 100 100 100 40.13 100 100 100 100100 100 100 100 

current-to-

rand/1/exp 100 100 100 100 100 100 100 100 100 100100 100 100 100 

current-to-

best/1/bin 100 100 100 100 100 50.84 100 100 100 100100 100 100 100 

current-to-

best/1/exp 100 100 100 100 100 100 100 100 100 100100 100 100 100 

rand-to-

best/1/bin 43.11 63.57 100 100 100 11.45 100 100 65.10*10046.60*38.98 38.34*42.09*

rand-to-

best/1/exp 100 100 100 100 100 39.11 100 100 100 100100 100 100 100 
 

Next to Convergence Speed, we measured Q-Measure. This measure provides a more objective 

vision of the behavior of a DE variant. It is an integral measure that combines the convergence of a 

DE algorithm with its probability of convergence. By combining the convergence rate and its 

probability in one, now the Qm is a single criterion to be minimized. From the Qm values measured 

for all the variant-function combinations, we identified that the variants with least Qm value are 

rand-to-best/1/bin, best/2/bin, rand/1/bin and rand/2/bin. The variants with higher Qm value, ie., 

poor in performance, are best/1/bin, best/1/exp, current-to-best/1/exp and current-to-rand/1/exp. Qm 

value increases as probability of convergence decreases, ie., variants with lower  probability of 

convergence gives higher value for quality measure and vice versa. The results suggest that the 

variants with good convergence rate and higher probability of convergence gives minimum value of 

Qm, such variants are rand-to-best/1/bin, best/2/bin, rand/1/bin and rand/2/bin. The variants 

best/1/bin, best/1/exp, current-to-rand/1/exp and current-to-best/1/exp are slow in convergence. 

For the unimodal functions, the values of Qm are presented in the Table 7. The results show that the 

top four variants with least Qm values are rand/1/bin, best/2/bin, rand-to-best/1/bin and rand/2/bin. 

The variants best/1/exp, current-to-rand/1/exp and current-to-best/1/exp could not provide any 

successful run.  The variant with highest Qm value, id., poorest performance, is best/1/bin. The 

results suggest that, even though some of the “bin” variants behave worst, all the variants in the top 

are “bin” variants. Similarly, even though some of the “exp” variants could give moderate Qm value, 

all the variants which could not provide any successful run are “exp” variants. This shows the 

influence of binomial recombination in DE variants. 

For the function f3, results (Table 8) show that the top four variants with less Qm values are 

best/2/bin, best/2/exp, best/1/bin and rand-to-best/1/bin. The variant rand/1/bin is next in the list. 

The number of successful runs made by the variants current-to-bes/1/exp, rand/2/exp, rand/1/bin, 
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current-to-rand/1/bin, current-to-rand/1/exp, current-to-best/1/bin are zero. For f3 , the variants 

with higher Qm values, ie., poor performance, are best/1/exp , rand-to-best/1/exp and rand/1/exp.  

The convergence speeds of all the variants are equal, because all the variants have reached the 

global optimum at MaxFE only. 

Table 7. Q-Measure achieved by the variants for unimodal separable functions, in 

the ascending order of Q-Measure. 

 

Variant f1 f2 f4 f6 f7 SumEj C Qm=C/Pc 

rand/1/bin 73686.6 1E+07 18000000 1922580 1080000040958347 89428.70 976.30 

best/2/bin 7679760881916018000000 2135280 1350000050134200106668.51 1134.77 

rand-to-best/1/bin 77595001.1E+07 18000000 2061060 1080000050062560108831.65 1182.95 

rand/2/bin 1.3E+07 1.6E+07 - 3201060 360000 32474740107532.25 1780.34 

rand/1/exp 1.8E+07 1.8E+07 - 7081860 - 43081860143606.20 2393.44 

best/2/exp 1.3E+07 1.8E+07 180000 3767640 360000 35522400130597.06 2400.68 

rand-to-best/1/exp 1.8E+07 - - 7039200 - 25039200125196.00 3129.90 

current-to-rand/1/bin 1.8E+07 - - 7222800 - 25222800126114.00 3152.85 

current-to-best/1/bin 1.8E+07 - - 9150660 - 27150660135753.30 3393.83 

rand/2/exp 1.1E+07 - - 14695800 - 25675800159477.02 4952.70 

best/1/bin 540000 720000014220000 0 3960000 25920000180000.00 6250.00 

best/1/exp - - - - - - - - 

current-to-rand/1/exp - - - - - - - - 

current-to-best/1/exp - - - - - - - - 

 

Table 8. Q-Measure achieved by the variants for unimodal nonseparable, in the 

ascending order of Q-Measure. 
 

        Variant                         f3 SumEj C Qm=C/Pc 

best/2/bin 1800000018000000 180000 1800 

best/2/exp 1800000018000000 180000 1800 

best/1/bin 1548000015480000 180000 2093.02 

rand-to-best/1/bin 1422000014220000 180000 2278.48 

rand/1/bin 1314000013140000 180000 2465.75 

best/1/exp 1044000010440000 180000 3103.45 

rand-to-best/1/exp 1800000 1800000 180000 18000 

rand/1/exp 720000 720000 180000 45000 

current-to-best/1/exp - - - - 

rand/2/exp - - - - 

rand/2/bin - - - - 

current-to-rand/1/bin - - - - 

current-to-rand/1/exp - - - - 

current-to-best/1/bin - - - - 

The Qm values measured for the multimodal functions are presented in Table 9 and 10. The results 

show that the variants which are in the top with least Qm values are rand-to-best/1/bin, rand/1/bin, 

best/2/bin and rand/2/bin. The variants which are in the bottom of the list with higher Qm values are 

rand/2/exp, best/2/exp, current-to-best/1/exp and current-to-rand/1/exp. For the multimodal 

separable functions, the “bin” variants are outperforming the “exp” variants with good convergence 
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rate and higher probability of convergence.  For the multimodal nonseparable functions, the variant 

with higher values of Qm is best/1/bin.  For the variants current-to-rand/1/exp, current-to-best/1/exp 

and best/1/exp the number of successful runs are zero. The results suggest the influence of binomial 

recombination, the variants with higher convergence rate and higher probability of convergence are 

“bin” variants. But due to its less probability of convergence (0.2%), the variant best/1/bin could not 

perform well as other “bin” variants. 

Table 9. Q-measure achieved by the variants for multimodal separable functions, in 

the ascending order of Q-Measure. 

 

Variant f8 f9 f14 SumEj C Qm=C/Pc 

rand-to-best/1/bin - 1.2E+07 7576620 1.9E+07 96476.1 1447.14 

rand/1/bin 720000 1.2E+07 7584180 2E+07 98504.1 1448.59 

best/2/bin 180000 6171360 6767700 1.3E+07 95759.6 2096.92 

rand/2/bin 180000 1.8E+07 1.1E+07 2.9E+07 144040 2149.85 

rand/1/exp 1260000 - 1.8E+07 1.9E+07 180000 5046.73 

rand-to-best/1/exp 1080000 - 1.8E+07 1.9E+07 180000 5094.34 

current-to-best/1/bin 540000 - 1.8E+07 1.9E+07 180000 5242.72 

current-to-rand/1/bin 360000 - 1.8E+07 1.8E+07 180000 5294.12 

best/1/bin 1.6E+07 540000 - 1.6E+07 180000 5934.07 

best/1/exp 1.5E+07 - - 1.5E+07 180000 6352.94 

rand/2/exp 360000 - 4680000 5040000 180000 19285.7 

best/2/exp 3060000 - 956880 4016880 167370 20921.3 

current-to-best/1/exp 900000 - - 900000 180000 108000 

current-to-rand/1/exp 540000 - - 540000 180000 180000 
 

Table 10. Q-Measure achieved by the variants for multimodal nonseparable 

functions, in the ascending order of Q-Measure 
 

        Variant              f5 f10 f11 f12 f13 SumEj C 

 

Qm=C/Pc 

rand-to-best/1/bin - - 8388600 7008720 6901200 22298520 74328.40 1238.81 

rand/1/bin - - 8437680 7000500 7448880 22887060 76290.20 1271.50 

best/2/bin 6835320 - 8927340 7028940 7422060 30213660 89654.78 1330.19 

rand/2/bin - - 12603420100921201055184033247380 110824.6 1847.08 

current-to-rand/1/bin - 1E+07 17280000172800001800000062640000 180000 2586.21 

current-to-best/1/bin - 1E+07 17280000163800001800000061740000 180000 2623.91 

best/2/exp 5220000 - 5929380 8896560 9076380 29122320138020.47 3270.63 

rand-to-best/1/exp - - 12420000180000001800000048420000 180000 3345.72 

rand/1/exp - - 12240000180000001800000048240000 180000 3358.21 

rand/2/exp - 1.2E+07 540000 18000000 9000000 39060000 180000 4147.47 

best/1/bin - - 180000 - - 180000 180000 900000.00

current-to-rand/1/exp - - - - - - - - 

current-to-best/1/exp - - - - - - - - 

best/1/exp - - - - - - - - 
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5. CONCLUSION 

In this paper, the competiveness and convergence nature of different variants of Differential 

Evolution algorithm are analyzed. Empirical comparison of fourteen DE variants to solve fourteen 

global optimization problems is done. The competiveness of the variants is analyzed by their mean 

objective function values and the best and worst performing variants are identified. Regardless of 

the characteristics and dimension of the functions, relatively better results seem to have been 

provided by the variants with binomial crossover. The competitiveness of the variants is validated 

by analyzing their convergence behavior, by measuring their convergence speed and quality measure. 

The results suggest that the best performing variants (rand/1/bin, rand/2/bin, best/2/bin, rand-to-

best/1/bin and best/2/exp) are faster in converging to the solution. The worst performing variants were 

found to have less probability of convergence, and hence they were slow in convergence. The 

identified difference in convergence behavior of the variants may be due to either stagnation 

problem or premature convergence, which are lead by improper balance between exploration and 

exploitation processes. This work can be still further analyzed by focusing on improving the 

performance of variants in the light of bringing balance between explorations exploitation during 

the generations. 
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