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ABSTRACT 

 This paper proposes an effective model based on the least squares support vector machines (LS-

SVM) and the particle swarm optimization (PSO), termed PSO-LSSVM, for prediction of natural 

gas consumption, as an important energy resource. The salient feature of mapping nonlinear data 

into high dimension feature space, distinguishes LS-SVM as a powerful approach for forecasting 

and estimation. Optimization of the model’s parameters by a fast and efficient PSO algorithm 

results in an optimized model which is employed for prediction of annual natural gas 

consumption in Iran and Unites States. Promising results were obtained for prediction of Iranian 

gas consumption from 1998 to 2006 and U.S. gas consumption from 2001 to 2005. Besides, 

comparison to an optimized multi-layer preceptron (MLP) network, using error indices of MAPE 

and NMSE demonstrated the superior performance of the proposed PSO-LSSVM approach.  
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1. INTRODUCTION 

Natural gas as a clean and efficient fossil fuel accounts for a considerable portion of world energy 
consumption. In 2008, 20.0% of total energy consumption of the world was supplied by natural 
gas [1]. Natural gas production and consumption are experiencing an increasing trend owing to 
the growth in world population and the economic development worldwide.  
Due to the favourable characteristics of natural gas, such as being clean, environment friendly and 
highly efficient as well as its strategic status, the accurate prediction of gas consumption is 
crucial. Hence, various methods and approaches have been developed by the researchers for this 
purpose, which can be identified as deterministic or stochastic, dynamic or static and linear or 
nonlinear models [2].  
As another classification, natural gas prediction methods can be distinguished as traditional (time 
series) and computational intelligence (CI)-based approaches.  Liu and Lin employed time series 
models for forecasting consumption of natural gas in Taiwan within the residential sector [3]. In 
their study, they explored the relationships among residential gas consumption and several 
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relevant time series variables, such as temperature of the service area and gas price, and then 
developed the forecast model. They provided both monthly and quarterly forecast using their 
developed model. A logistic curve interpretation approach was presented by Siemek et al for 
estimation of natural gas consumption [4]. In this approach the hypothetical natural-gas demand 
was described based on average trend of the economy development during recent decades. In 
another study, Akkurt et al used different time series models for prediction of natural gas 
consumption in Turkey [5]. They proposed different models such as such as exponential 
smoothing, winters’ forecasting and Box-Jenkins methods, to forecast natural gas consumptions 
of Turkey in different time periods. A system dynamics model has been developed by Li et al for 
Forecasting the growth of Chinese natural gas consumption [6]. They applied this model to 
provide an outlook for Chinese gas consumption until 2030. Stochastic Gompertz innovation 
diffusion model, which is a statistical model, was used by Gutiérrez et al to forecast Spain natural 
gas consumption [2]. This approach is based on obtaining the probability density function of the 
process and then forecasting the future values of the process.  
There are many uncertain factors influencing natural gas consumption which make gas 
consumption series highly complex and nonlinear [7]. Therefore, traditional linear models and 
statistical approaches such as linear regression or the method one proposed in [2], are not suitable 
for gas consumption prediction. Computational intelligence (CI) based models, including fuzzy 
logic, neural networks (NN) and support vector machines (SVM) are elaborate models which are 
effective in dealing with highly nonlinear and complex processes [8]. The CI-based models have 
been used for energy demand predictions to a great extent [9, 10]. Prediction of daily natural gas 
consumption by combination of artificial neural-network forecasters has been also carried out 
[11]. In this study, Khotanzad et al proposed a two-stage system with the first stage containing 
two NN forecasters. The second stage consisted of a combination module to mix the two 
individual forecasts produced in the first stage. They implemented their approach on real data 
from six different gas utilities.  
Support vector machines, established based on the statistical learning theory, exhibit distinctive 
advantages to solve complex problems [12, 13]. In this paper we propose the idea of optimizing 
least squares support vector machines (LS-SVM) parameters using the fast and efficient 
algorithm of particle swarm optimization. The developed PSO-LSSVM will be used for 
prediction of annual natural gas consumption in Iran and United States.  
 

2. LEAST SQUARES SUPPORT VECTOR MACHINES 

Support vector machines have been developed based on the statistical learning theory by Vapnik 
[14]. The main theme of SVMs lies in mapping the input space into a higher dimensional feature 
space, and then performing the linear regression using support vector regression (SVR). The less 
adjustable parameters of the SVMS compared to neural networks, has made them popular for 
prediction, control and signal processing applications [15], [16]. Furthermore, SVMs training 
involves optimization of a quadratic problem with a unique solution; therefore random 
initialization of the model's weighting factors is prevented. 
Various applications have been reported for SVMs, including pattern recognition, classification 
and regression analysis [17]-[19]. In case of time series prediction, SVR estimates a function 
using observed data and the SVMs are trained. In the rest of this paper, we restrict our attention to 
the mathematical formulations of the SVMs for the purpose of time series forecasting.  
Consider time series ( )x t  defined at 0,1,..., 1t N= −  and ( )y N + ∆  as the predicted values in 

the future. The prediction function ( )f x , defines the predicted output based on the m previous 

observations,  

 ( ) ( ) ( ) ( )( )1 2, ,..., my N f x N a x N a x N a+ ∆ = − − −  (1) 
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where a1, …, am are time lags. By applying regression analysis the prediction function for 
nonlinear regression applications is defined as below,  

( ) ( )( )f x w x bφ= ⋅ +   (2) 

where ( )xφ  is the kernel function, w is the vector of weights and b is the bias. The nonlinear 

regression in (2) maps the input space into a higher dimension feature space by means of the 
kernel function and then a linear regression is performed [14]. Next, the optimal weights w and 
the bias b must be found through an optimization procedure, considering the proper optimization 

criteria, namely the flatness of the weights, measured by the Euclidean norm 
2

w  and the 

estimation error, defined by a loss function. Two commonly used loss functions for SVMs are �-
sensitive and quadratic loss functions. The latter is associated with the least squares support 
vector machines (LS-SVM), employed in this paper. The mathematical representation of the 
optimization problem for LS-SVM, given N pairs of training data ( ), ,i ix y  1,...,i N=  is as 

follows,  

Minimize     
1

1

2

NT
ii

w w λ ξ
=

+ ∑  
(3) 

Subject to      ( ) 1T

i i iy w x bφ ξ − + = −   (4) 

where λ is referred to as the regularization constant and determines the penalties to the estimation 
error and ξi are slack variables which allow for some errors in the optimization problem.  

By using the Lagrange multipliers and considering the Karush-Kuhn-Tucker (KKT) conditions, 
the following is obtained,  

( )
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1 0
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i i ii
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∑  (5) 

Let us also define the ( ),i jK x x as the inner product of ( )ixφ  and ( )jxφ  vectors (called 

Kernel function) and consider a set of other definitions stated below:  

( ) ( ) ( )

[ ]

[ ]

[ ]

1 1 2 2

1 2

1 2

1 2

, ,...,

, ,...,

, ,...,

, ,...,

T T T

i i

i

T

i

T

i

Z x y x y x y

Y y y y

φ φ φ

ξ ξ ξ ξ

α α α α

  =
 

 =

 =

 =

 (6) 

By eliminating w and γ and using (5) and (6), the following equation is obtained: 
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 (7) 

 

 

Figure 1. Structure of SVM 

 

where [ ]1,1,...,1
T

I = . By applying Mercer’s condition [15] within the TZZ matrix, each element 

in this matrix will have the following form: 

( ) ( ) ( )TT

i j i j
ij

ZZ y y x xφ φ=  (8) 

Finally the resulting LS-SVM model can be represented as: 

( ) ( ) ( )*

1
,

N

i i ii
f x K x x bα α

=
= − +∑  (9) 

where αi and *
iα  are Lagrange multipliers. It is noticeable that with the aforementioned 

definitions, there is no need to compute ( )ixφ  . The Kernel function which is inner product of 

two ( )xφ  functions is instead incorporated in computations. Some common Kernel functions are 

introduced in (10)-(13). The RBF Kernel is used in this paper. 

  Dot Product Kernel: 

( ) ( ), ,T
i iK x x x x=  (10) 

Polynomial Kernel: 

( ) ( ), , 1
d

T
i iK x x x x = +

 
 (11) 

MLP Kernel: 

( ) ( ), tanh ,T

i iK x x x x b = +
 

 (12) 
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RBF Kernel:  

( )
2

2
, exp

2
i

i

x x
K x x

σ

 −
 =
 
 

 (13) 

 

 

Based on the presented description, γ and σ are the only parameters of the LS-SVM which should 
be optimally tuned. The PSO algorithm is presented in next section and will be further used for 
optimal selection of LS-SVM's parameters.  

3. PROPOSED FORECAST FRAMEWORK 

The LS-SVM model, described in previous section, contains two adjustable parameters which 
have a key role in the accuracy of predictions of the produced of the model. Various optimization 
techniques, such as genetic algorithms (GA), simulated annealing (SA) and particle swarm 
optimization (PSO) can be utilized for fine tuning of the LS-SVM's parameters. In this paper, 
PSO algorithms, due to the speed of convergence, simplicity of implementation and less 
susceptibility of being trapped in local optima, are preferred [20].  
In PSO, particles flow in a multi-dimensional search space and the position of each particle is 
tuned based on the experiences gained by him and his neighbours. In this paper we adopt a gbest 
PSO algorithm. In gbest algorithm the new position of the particle is found by adding the velocity 
component, as following: 
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( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2

1 1

1

i i ij

ij ij j ij ij j ij

x t x t v t

v t v t c r t y t x t c r t y t x t

+ = + +

   + = + − + −   
)  (14) 

 

 

where, ( )ix t  is the position of particle i at time t, ( )ijv t is velocity of particle i at dimension j at 

time t, ( )iy t  is the best position found by particle i, ( )y t
)

is the best position found by swarm, c1 

and c2 are acceleration constants and ( )1r t and ( )2r t  are uniformly distributed number in [0, 1].  

For optimal selection of the LS-SVM's parameters, i.e. σ and λ, two dimensional particles are 
randomly distributed in the search space. The overall procedure of the LS-SVM optimization by 
the PSO algorithm is illustrated in Fig. 2(a). 
The framework of the proposed forecast approach is shown in Fig 2(b). This figure illustrates 
how the LS-SVM model is optimized by PSO algorithm through training data and the optimized 
model is employed for prediction of the test data. In next section, the proposed PSO optimized 
LS-SVM model will be applied to prediction of gas consumption in Iran and U.S.  

4. GAS CONSUMPTION PREDICTION  

In this section the annual gas consumption of Iran and the United States will be forecasted using 
the proposed PSO-LSSVM model. The consumption in previous period as well as the population 
to the last point are the standard input variables for the prediction. The training and test data set 
for each case are presented in Table 1. These data are collected from Institute for International 
Energy Studies (IIES) webpage, World Bank Development Indicator datasets and the U.S. energy 
information administration website [20-22]. For evaluation of the performance of the PSO-
LSSVM model, the following error measures are computed,  

Mean absolute percentage error (MAPE): 

1

1
100

T t t

t
t

y y
MAPE

T y=

−
= ×∑

)

 (15) 

Absolute percentage error (APE): 

100t t

t

y y
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y

−
= ×

)

 (15) 

Normalized mean squares error (NMSE): 
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( )

2

1
2

1
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t tt
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−
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−

∑
∑
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Figure. 3 Training MAPE versus PSO iterations 
 

 

where, ty and ty
)

are the actual and predicted consumptions at period t, respectively.  

4.1. Prediction of Gas Consumption in Iran 

In this case study, the annual consumption of natural gas in Iran form 1998 to 2006 will be 
forecasted. For this purpose the following input-output sets will be used for training the proposed 
model.  

Input vector Output 
(17) 

( ) ( ) ( ) ( ) ( ){ }1 , 4 , 3 , 2 , 1y t x t x t x t x t− − − − −  ( )y t  

where, ( )y t  and ( )x t  are gas consumption and population at time t, respectively. Furthermore, 

for the purpose of comparison, a multi-layer perceptron (MLP) network was trained and 
optimized using training data.  

First, the optimization of the LS-SVM model was carried out by PSO algorithm for 30 iterations. 
The number of particles, dimension of each particle, c1,c2 for the PSO algorithm are set as 30, 2, 
2, 2 respectively. The MAPE for the training data was selected as the fitness function in PSO. The 
fitness value for PSO iterations is shown in Fig. 3. The actual and forecasted values of Iranian gas 
consumption for training and test data are illustrated in Fig. 4, revealing the remarkable 
performance of the proposed model in estimating oil consumption series. The actual and 
forecasted gas consumption for test period is shown in Table 2. A comparison between 
performance of the proposed method and the MLP network is presented in Table 3. According to 
this table the APE ranges from 0.28% to 27.5%. The maximum APE% was occurred in 2000 
when an abrupt change happens in the gas consumption series, as shown in Fig. 4, and the PSO-
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LSSVM failed to capture this change in consumption. The optimized MLP network has one 
hidden layer with 4 neurons. The surpassing performance of the proposed method is evident.  

 

 
Fig. 4 Actual and predicted values for train and test data for Iran Gas consumption 

 

4.2. Prediction of Gas Consumption in U.S. 

Due to unavailability of the data for U.S. gas consumption prior to 1980, training and test data 
different to the previous case study are employed here. As presented in Table 1, there are 20 
training data points, while the test data contain 5 samples. For single step ahead prediction of the 
U.S. gas consumption, following input features are considered, 

Input vector Output (18) 
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Table 3. Compsrison between the PSO-LLNF and MLP models for case study 1 
Method Data MAPE% NMSE 

MLP 
Training 7.33 0.26 

Test 8.45 0.33 

PSO-LSSVM 
Training 6.12 0.15 

Test 7.96 0.19 
 

Table 2. Actual and forecasted gas consumption for case study 1 
Year Actual Forecast APE% 
1998 227.3 249.5 9.77 
1999 262.3 251.7 4.04 
2000 223.4 285 27.57 
2001 230.8 250.1 8.36 
2002 263.3 258.1 1.97 
2003 288.1 288.9 0.28 
2004 341.9 311.3 8.95 
2005 364.9 354.1 2.96 
2006 401.9 370.7 7.76 
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( ) ( ) ( ){ }1 , 1 , 1y t x t w t− − −  ( )y t  

 
 
 

 
Fig. 5 Actual and predicted values for train and test data for U.S. Gas consumption 

 

 
 

 
 
where, ( )y t , ( )x t  and ( )w t  are gas consumption and population and GDP per capita at time t, 

respectively.  
Again, the LS-SVM model was optimized using PSO algorithm and MAPE as the fitness 
function. Similar to the previous case, an MLP network was also optimized with 3 neurons for 
making a comparison to the results obtained by the proposed PSO-LSSVM. The predictions of 
the PSO-LSSVM as well as the actual gas consumptions and the forecast error are depicted in 
Fig. 5. The remarkable forecast performance and accuracy of the proposed method is obvious in 
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this figure. The actual and forecasted values of the test data of the U.S. gas consumption are given 
in Table 4. The minimum and maximum values of APE% are 3.43% and 0.01%, respectively. 
Besides, the performance of the PSO-LSSVM and the MLP network in terms of error indices 
MAPE and NMSE are presented in Table 5. The results in this table demonstrate the noteworthy 
performance of the proposed method as well as its superiority over the optimized MLP network.  
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4.3. Comparison of the Results 

More detailed discussion on the prediction results is presented in this sub-section. For this 
purpose, the maximum and minimum values of APE, achieved through the proposed method and 
the MLP model, for both case studies is are shown in Table 6. For both case studies, there is a 
considerable difference between the minimum and maximum APEs associated with the PSO-
LSSVM method and the MLP model. For instance, the minimum APE of the PSO-LSSVM in the 
first case study is 0.28%, while this value for the MLP model is 1.96% (clearly 7 times that of 
PSO-LSSVM).  
To thoroughly analyze the superiority of the proposed method over MLP, the improvement in 
error indices, i.e. MAPE and NMSE, is computed and summarized in Table 7. Clearly, significant 
improvement has been achieved in both case studies by employing the proposed PSO-LSSVM 
mode.   
Furthermore, an overall comparison between the proposed approach and the MLP network for 
both case studies is provided by Fig. 6. Obviously, the proposed PSO-LSSVM model has 
outperformed MLP network in both case studies. As another finding from Fig. 6, both forecast 
models had better accuracy for the second case study. The reason for this can be understood by 
comparing actual gas consumption series of Iran and the U.S. in Figs. 4 and 5, respectively. As 
shown in these figures. the Iranian gas consumption series exhibits more changes and fluctuations 
through the time. Hence it is less predictable in comparison the U.S. gas consumption series, 
which is a more smooth series.  

 

 

5. CONCLUSION 

Accurate forecasting of natural gas consumption, due to its large contribution in providing the 
world energy demand, needs special attention. This paper proposed a PSO optimized LS-SVM 
approach for prediction of natural gas consumption in Iran and United States. Support vector 
machines show noticeable forecast and estimation capabilities owing to mapping nonlinear data 
into high dimensional feature space and then performing linear regression. Optimization of 
parameters of the LS-SVM model by a simple bust fast and efficient PSO algorithm resulted in a 
hybrid model, applied for gas consumption prediction. Finally, two different case studies were 
considered for evaluating the performance of the proposed PSO-LSSVM approach. Forecasting 
annual gas consumption in Iran, as one of the world largest gas producers, and the U.S., as one 
the world largest gas consumers, revealed the promising forecast ability of the method. Assessing 
performance of the proposed approach in terms of NMSE and MAPE and comparison to an 
optimized MLP network showed the superior performance of the PSO-LSSVM model.  
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APPENDIX: RAW DATA FOR PRESENTED CASE STUDIES 

Table A1: Raw data for Iran 

Year 
Gas consumption (million 

barrel of equivalent) 
Population (million people) 

1967 0.7 26.07 
1968 0.8 26.82 
1969 1 27.6 
1970 10.2 28.43 
1971 12 29.35 
1972 13.1 30.27 
1973 15.4 31.2 
1974 14.2 32.17 
1975 15 33.21 
1976 16.7 34.28 
1977 17.1 35.39 
1978 13.4 36.55 
1979 15.3 37.79 
1980 12.9 39.12 
1981 15.9 40.54 
1982 22 42.02 
1983 25.2 43.6 
1984 31.2 45.28 
1985 30.3 47.1 
1986 28.7 48.82 
1987 32.9 50.42 
1988 36.3 51.9 
1989 57.6 53.23 
1990 78.9 54.4 
1991 103.3 55.28 
1992 115.4 56.18 
1993 125.4 57.09 
1994 145.1 58.01 
1995 171.2 58.95 
1996 204.3 59.88 
1997 226.1 60.8 
1998 227.3 61.85 
1999 262.3 62.9 
2000 223.4 63.94 
2001 230.8 64.98 
2002 263.3 66.01 
2003 288.1 67.04 
2004 341.9 68.07 
2005 364.9 69.09 
2006 401.9 70.1 
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Table A2: Raw data for the U.S. 

Year 
Gas consumption 
(billion cubic feet) 

Population (million 
people) 

GDP per capita 

1985 17281 17588.81 3.21 
1986 16221 18427.29 2.43 
1987 17210.81 19394.19 1.95 
1986 18030 20698.24 1.84 
1987 19119 22038.82 1.82 
1988 19174 23053.97 1.94 
1990 19562 23492.67 1.83 
1991 20228 24526.93 1.85 
1992 20789.51 25447.54 2.03 
1993 21247 26719.14 1.87 
1994 22207 27637.66 1.49 
1995 22609 28894.11 1.97 
1996 22737 30363.79 2.17 
1997 22246 31687.05 1.97 
1998 22405 33332.14 2.24 
2000 23333 35080.73 3.95 
2001 22239 35898.09 4.43 
2002 23007 36796.57 3.15 
200 22277 38195.68 5.17 

2004 22389 40308.69 5.81 
2005 22011 42534.48 8.12 
2006 21685 44663.47 6.88 
2007 23097 46627.1 6.87 
2008 23227 47208.54 8.7 
2009 22816 45989.18 4.19 
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