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ABSTRACT 

QUANTUM EVOLUTIONARY ALGORITHM (QEA) IS A NOVEL OPTIMIZATION ALGORITHM, PROPOSED FOR 

COMBINATORIAL PROBLEMS LIKE KNAPSACK AND TRAP PROBLEMS. WHILE FRACTAL IMAGE COMPRESSION IS IN 

THE CLASS OF NP-HARD PROBLEMS AND QEA IS HIGHLY SUITABLE FOR THE CLASS OF COMBINATORIAL 

PROBLEMS, QEA IS NOT WIDELY USED IN FRACTAL IMAGE COMPRESSION YET. IN ORDER TO IMPROVE THE 

PERFORMANCE OF FRACTAL IMAGE COMPRESSION ALGORITHMS, THIS PAPER PROPOSES A DISTRIBUTED QEA 

WITH A NOVEL OPERATOR CALLED CYCLING QUANTUM EVOLUTIONARY ALGORITHM. IN STANDARD QEA THE 

DIVERSITY IN THE POPULATION DECREASES ACROSS THE GENERATIONS. DECREASING THE DIVERSITY OF THE 

POPULATION DECREASES THE EXPLORATION PERFORMANCE OF THE ALGORITHM AND CAUSES THE ALGORITHM 

TRAPPING IN THE LOCAL OPTIMA. IN THE PROPOSED ALGORITHM, THERE ARE SOME SUBPOPULATIONS SEARCHING 

THE SEARCH SPACE. AFTER THE SUBPOPULATIONS ARE TRAPPED IN A LOCAL OPTIMUM, THE BEST OBSERVED 

POSSIBLE SOLUTIONS IN THE SUBPOPULATIONS ARE EXCHANGED IN A CYCLIC MANNER. THE PROPOSED 

ALGORITHM IS USED IN FRACTAL IMAGE COMPRESSION AND EXPERIMENTAL RESULTS ON SEVERAL IMAGES SHOW 

BETTER PERFORMANCE FOR THE PROPOSED ALGORITHM THAN GENETIC ALGORITHMS AND QEA. IN COMPARISON 

WITH CONVENTIONAL FRACTAL IMAGE COMPRESSION, THE PROPOSED ALGORITHM FINDS A SUITABLE SOLUTION 

WITH MUCH LESS COMPUTATIONAL COMPLEXITY 
 

KEYWORDS 
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1. INTRODUCTION 
 

Fractals exist in nature widely. Fractal images contain few amount of information, but posses 

high-level of visual complexity [1]. Fractal image compression is potentially a great coding 

scheme since it features a high compression ratio and good retrieved image quality. In recent 

years, many researchers have studied and improved the fractal image encoding and have gotten a 

lot of achievements. In 1988, the fractal image compression was firstly proposed and utilized a 

number of affine mappings to denote the original image. Those mappings are iterated convergent 

and their limit is very close to the original image. In 1992, Jacquin introduced an automatic 
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encoding algorithm for the first time that called baseline fractal image compression or BFC [2–6]. 

This method breaks the original image into sub-blocks and needs to find the best matched sub-

blocks according to self-similarities in the image. BFC makes the fractal image encoding become 

a very hopeful technique to improve the storage schemes applied in the consumer electronics. 

Although BFC is very charming, a great deal of time cost during encoding limits it to widely 

practical applications. In order to solve this problem some improved approaches have been 

presented. In [6-7] authors proposed classification methods base on the feature of domain blocks. 

[8] proposed a kind of neighborhood matching method based on spatial correlation which makes 

use of the information of matched range blocks and effectively reduced the encoding time. 

 

Fractal Image Compression has attracted much interest due to its high compression ratio and 

quality of compressed image. Fractal Image Compression problem is in the class of NP-Hard 

problems. Quantum Evolutionary Algorithm is a novel optimization algorithm proposed for class 

of combinatorial problems [9]. The probabilistic representation of possible solutions in QEA 

helps the algorithm escaping from local optima. While QEA is highly suitable for class of NP-

Hard problems, it is not widely used in Fractal Image Compression. Several works have focused 

on improving the performance of QEA in solving knapsack and some other problems. In order to 

set the parameters of QEA for practical applications, [10] proposes some guidelines for parameter 

settings. In another work, by leading immune concepts in Artificial Immune Systems, [11] 

proposes a novel algorithm that is called the immune quantum-inspired evolutionary algorithm. In 

a more recent work, [12] proposes a novel multi-universe parallel Immune QEA that uses a 

learning mechanism. The proposed method maintains the population diversity along with better 

convergence speed. A multi-agent QEA is introduced in [13] and the multi-agent operators, 

competition and cooperation are performed to. The rotation gate is also considered as leverage to 

improve the performance of QEA. In [14] a new method of calculating rotation angle of quantum 

gate is proposed that causes a rapid convergence for QEA. In order to preserve the diversity in 

population and empower the search ability of QEA, [15] proposes a novel diversity preservation 

operator for QEA. Reference [16] proposes a sinusoid sized population QEA that makes a 

tradeoff between exploration and exploitation. 

 

Several works try to improve the algorithm of fractal image compression using Genetic 

algorithm. The low speed of fractal image compression blocks its way to practical application. In 

[17] a genetic algorithm approach is used to improve the speed of searching in fractal image 

compression. A new method for genetic fractal image compression based on an elitist model 

proposed in [18]. In the proposed approach the search space for finding the best self similarity is 

greatly decreased. Reference [19] makes an improvement on the fractal image coding algorithm 

by applying genetic algorithm. Many researches increase the speed of fractal image compression 

but the quality of the image will decrease. In [20] the speed of fractal image compression is 

improved without significant loss of image quality. In order to prevent the premature convergence 

of GA in fractal image compression a new approach is proposed in [21], which controls the 

parameters of GA adaptively. A schema genetic algorithm for fractal image compression is 

proposed in [22] to find the best self similarity in fractal image compression. 

 

In evolutionary algorithms the diversity in the population is decreased as generations advance. 

When the algorithm reaches its mature state, the diversity in the population is decreased to its 

lowest quantity. In order to deal with this problem, this paper proposes a distributed QEA with a 
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cycling exchange of best observed possible solutions. The proposed algorithm is applied on 

fractal image compression problem and shows better performance for the proposed algorithm 

than conventional QEA and GA. This paper is organized as follows, in Section 2, the theoretical 

basics of fractal image compression is presented. In section 3, QEA and its representation is 

presented, Section 4 proposes the novel distributed QEA with the cycling operator, in Section 5 

the proposed algorithm is applied on fractal image compression. Several experimental results are 

performed to in Section 6 to test the proposed algorithm, and finally Section 7 concludes the 

paper. 

 

2. THEORETICAL BASICS OF FRACTAL IMAGE COMPRESSION 

The fractal image compression is based on the local self-similarity property and PIFS. The related 

definitions and theorems are stated as follows [5-6]: 

Definition 2.1. Let X be a metric space with metric dx. A map w:X → X is Lipschitz with 
Lipschitz factor s, if there exists a real value s such that 

            Xyxsyxdxsywxwdx ∈∀〈〈≤ ,,10),,())(),((                                             (1) 

We also say that w is contractive with contractivity s. 

Definition 2.2. Let X be a metric space and xd be its metric. For a point Xx ∈   and a nonempty 

set XA ⊆ , let us first define the distance of x to A by 

           ),(inf),( axdAxd x
Aa

y
∈

=                                                                         (2) 

Then the Hausdorff distance between A and B is defined for any nonempty sets A, XB ⊆   as 

          )),(),,((),( ABdBAdMaxBAd hh=                                                (3) 

Where 

         ),(sup),( BadBAd Y
Aa

h
∈

=                                                (4) 

Let X be the set of N × N gray level images. The metric is defined as the usual Euclidean 
distance by regarding the elements in X as vectors of dimension N × N. Let I be a given image 
belonging to X. The goal is to find a set of transformations },...,,{ 21 nwww , each of which is a 
restricted function and satisfies (1), such that the given image I is an approximate attractor. The 
set },...,,{ 21 nwww  is called PIFS. The following theorem is an important fact for PIFS. 

 

Theorem 2.1. Consider a PIFS nwww ,...,, 21  with wi: X→X for all i. Let W =Uwi . Then there 
exists a unique point XA ∈   such that for any point XB ∈  

        )()( BwLimAWA
n

n

∞→

==                                                                  (5) 

The point A in (5) is called the fixed point or the attractor of the mapping W. Next, the famous 
Collage theorem will be introduced.  

Theorem 2.2. Let },...,,{ 21 nwww  be a PIFS with contractivity   factor s. Let B be any 
nonempty compact set in X. Then we have 

       ))(,()1(),( 1 BWBdsBAd −−≤                                                      (6) 

where A is the attractor of the mapping W and d is the Hausdorff metric (3). 
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Let ε≤))(,( IWId  where e is a very small positive real number. By the Collage theorem, one can 
obtain that 
 

       
ε

ε

−
≤

1
),( IAd                                                                               (7) 

From Eq. (7), one can see that after a large number of iterations, an attractor A is generated 
which is sufficiently close to the given image I. 

 
For practical implementation, let I be a given 256 × 256 gray level image. The domain pool D is 
defined as the set of all possible blocks of size 16 × 16 of the image f, which makes up        (256-
16+1) × (256-16+1) =58081 blocks. The range pool R is defined to be the set of all non-
overlapping blocks of size 8×8, which makes up (256/8) × (256/8) = 1024 blocks.  
 
For each block v from the range pool, the fractal transformation is constructed by searching all 
elements in the domain pool D the most similar block. Let u denote a sub-sampled domain block 
which is of the same size as v. The similarity of u and v is measured using Mean Square Error 
(MSE) defined by 

        [ ]2
7

0

7

0
2

),(),(
8

1
jivjiuMSE

IJ

−= ∑∑
−−

                                                            (8) 

The fractal transformation allows the dihedral transformation of the domain blocks, i.e., the eight 
orientations of the blocks generated by rotating the blocks counterclockwise at angles 0, 90, 180, 
and 270 degrees and flipping with respect to the line y = x, respectively.  Thus, for a given block 
from the range pool, there are 58081×8 = 464,648 MSE computations to obtain the most similar 
block from the domain pool. Thus, in total, one needs 1024 × 464,648 = 475,799,552 MSE 
computations to encode the whole image using this full search compression method. 

 
For a given range block v, the fractal transformation also allows the adjustment of the contrast p 
and the brightness q on the subsample domain block u. The similarity is measured by the quantity 

vqupd k −+= . , where uk , 70 ≤≤ k ,are the eight orientations of u. By simple optimization 
method, p and q can be computed directly as 

        
]1,,[

]1,1,,[
2〉〈−〉〈

〉〉〈〈−〉〈
=

uuuN

vuvuN
p                                                               (9) 

 And 

       ]1.1..[1 〉〈−〉〈= −
upvNq                                                          (10) 

 

Where N=64. 

The position of the most similar domain block, the contrast p, the brightness q, and the 
orientation k constitute the fractal code of the given range block v. In practice, for 256 ×256 
image, 16 bits are required to represent the position of the domain block. Finally, as v runs over 
all 1024 range blocks in the range pool R, the encoding process is completed. 

 
To decode, one first makes up the 1024 affine transformations from the compression codes and 

chooses any initial image. Next, one performs the 1024 affine transformations on the image to 

obtain a new image, and then proceeds recursively. According to Theorems 2.1 and 2.2, the 

sequence of images will converge. The stopping criterion of the recursion is designed according 
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to user’s application and the final image is the retrieved image of fractal coding. 

 

3.  QUANTUM EVOLUTIONARY ALGORITHMS 
 

QEA is inspired from the principles of quantum computation, and its superposition of states is 

based on q-bits, the smallest unit of information stored in a two-state quantum computer [18,20]. 

A q-bit could be either in state “0” or “1”, or in any superposition of the two as described below: 

     10 βαψ +=                                                                         (11) 

Where α and β are complex number, which denote the corresponding state appearance 

probability, following below constraint: 

    1
22

=+ βα                                                                             (12) 

This probabilistic representation implies that if there is a system of m q-bits, the system can 

represent m2  states simultaneously. At each observation, a q-bits quantum state collapses to a 

single state as determined by its corresponding probabilities. 

3.1 Representation 

QEA uses a novel representation based on the above concept of q-bits. Consider ith  individual in 

tth  generation defined as an m-q-bit as below: 
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Where 1|||| 22 =+ t
ij

t
ij βα , j=1,2,…,m , m is the number of q-bits, i.e., the string length of the q-bit 

individual, i=1,2,…,n , n is the number of possible solution in population and t is generation 

number of the evolution. Since a q-bit is a probabilistic representation, any superposition of states 

is simultaneously represented. If there is, for instance, a three-q-bits(m = 3) individual such as 

(14): 
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iq                                                                     (14) 

Or alternatively, the possible states of the individual can be represented as: 

 

     111100101100011010001000
2

1

32

1

22

1

62

1

2

1

32

1

22

1

62

1 +++++++=t
iq                 (15) 

 

Note that the square of above numbers are true probabilities, i.e. the above result means that the 

probabilities to represent the state 010,100,001,000  are 1/24, 1/8, 1/24 and 1/12 respectively. 

Consequently, the three-q-bits system of (14) has all eight states information at the same time. 

Evolutionary computing with the q-bit representation has a better characteristic of diversity than 

classical approaches since it can represent superposition of states. Only one q-bit individual such 

as (14) is enough to represent eight states, whereas in classical representation eight individuals 

are needed. Additionally, along with the convergence of the quantum individuals, the diversity 

will gradually fade away and the algorithm converges. 
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3.2 QEA Structure 

In the initialization step of QEA, Tt
ij

t
ij ][ βα of all q0i are initialized with

2
1 . This implies that 

each q-bit individual 0
iq  represents the linear superposition of all possible states with equal 

probability. The next step makes a set of binary instants; t
ix  by observing 

},...,,{)( 21
t
n

tt qqqtQ = states, where ( ) },...,,...,,{ 21
t
n

t
i

tt
xxxxtX =  at generation t is a random instant of q-bit 

population. Each binary instant, t
ix  of length m, is formed by selecting each bit using the 

probability of q-bit, either 2|| t
ijα  or 2|| t

ijβ  of t
iq . Each instant t

ix  is evaluated to give some 

measure of its fitness. The initial best solution )}({max
1

t
i

n

i
xfb

=
=  is then selected and stored from 

among the binary instants of X(t). Then, in update Q(t), quantum gates U update this set of q-bit 

individuals Q(t) as discussed below. This process is repeated in a while loop until convergence is 

achieved. The appropriate quantum gate is usually designed in accordance with problems under 

consideration. 
The pseudo-code of QEA algorithm is defined as [4]:  

 
Procedure QEA 
begin 

       t=0 

1. initialize Q(0). 

2. make X(0) by observing the states of Q(0). 

3. evaluate X(0). 

4. Store X(0) into B(0). Store the best solution among X(0) into b. 
5. while not termination condition do 

begin 

t=t+1 

6. make X(t) by observing the states of Q(t-1) 

7. evaluate X(t) 

8. update Q(t) using Q-gates 

9. store the best solutions among B(t-1) and X(t) into B(t) 

10. store the best solution among B(t) into b 
11. if global migration condition  

then migrate b to B(t) globally 
12. else if local migration condition 

then migrate 
t
kb  in B(t) to B(t) locally 

end 
end 

 

QEA has a population of quantum individuals ( ) },...,,{ 21
t
n

tt qqqtQ = , where t is generation step and n 

is the size of population. The QEA procedure is described as: 

1. In the initialization step all q-bits 
0
ijα

 and 
0
ijβ

, ni ,...,2,1=  and mj ,....,2,1=  are initialized 

with 2.2 1−
. It means the probability of observing "0" and "1" for all q-bits is equal. 

2. In this step the binary solutions 
},...,,{)0( 00

2
0
1 nxxxX =

 at generation 0=t  are creating by 

observing Q(0). Observing xtij from qubit 
Tt

ij
t
ij ][ βα

 is performed as below: 





 <

=
otherwise1

)1,0(R0
2

t
ijt

ij

if
x

α

                                                          (16) 

Where ),( ⋅⋅R , is a uniform random number generator. 

3. All solutions in X(t) are evaluated with fitness function. 

4. Store X(0)  into B(0). Select best solution among X(0) and store it to b. 
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5. The while loop is running until termination condition is satisfied. Termination condition can be 

considered as maximum generation condition or convergence condition. 

6. Observing X(t) from Q(t-1). 

7. Evaluate X(t) by fitness function 

8. Update Q(t) 

9, 10. Store the best solutions among B(t-1) and X(t) to B(t). If the fittest solution among B(t) is 

fitter than b then store the best solution into b. 

11, 12. If global migration condition is satisfied copy b to all the solutions in B(t). If local 

migration condition is satisfied replace some of solutions in B(t) with best one of them. 

3.3  Quantum Gates Assignment 

The common mutation is a random disturbance of each individual, promoting exploration while 

also slowing convergence. Here, the quantum bit representation can be simply interpreted as a 

biased mutation operator. Therefore, the current best individual can be used to steer the direction 

of this mutation operator, which will speed up the convergence. The evolutionary process of 

quantum individual is completed through the step of “update Q(t).” A crossover operator, 

quantum rotation gate, is described below. Specifically, a q-bit individual t
iq  is updated by using 

the rotation gate U(θ) in this algorithm. The jth  q-bit value of ith  quantum individual in 

generation t Tt
ij

t
ij ][ βα  is updated as: 
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 Where θ∆  is rotation angle and controls the speed of convergence and determined from Table I. 

Reference [18] shows that these values for θ∆  have better performance. 

 

TABLE I.    Lookup table OF θ∆ . 
 

ix
 ib

 
)()( bfxf ≥
 

θ∆
 

0 0 false
 0  

0 0 true  0  
0 1 false

 π01.0  
0 1 true  0  
1 0 false

 π01.0−  
1 0 true  0  
1 1 false

 0  
1 1 true  0  

 

4. DISTRIBUTED QEA WITH CYCLING OPERATOR 
 

In QEA when the algorithm converges, all the q-individuals reach similar values and their 

quantum bits converge to either 1 or 0. This means that there is little if any exploration during 

latter stages of the algorithm’s convergence and that all of the individuals search about a single 

optimum before converging to it. In other words, the algorithm cannot explore the other parts of 
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the search space well, and all of the individuals are exploiting a single optimum. This section 

proposes a novel Distributed QEA with a cycling operator to improve the diversity of the 

population and so the performance of the QEA. In the proposed algorithm the population is 

divided into some dependent subpopulations searching the search space. Since each 

subpopulation searches the search space independently, each of them reaches a different local 

optimum. Here convergence estimation is used to determine if the subpopulation is trapped in a 

local optimum. The converged subpopulations are considered as the trapped subpopulations and 

the cycling operator will be performed on them. In the cycling operator, the best observed of the 

subpopulations will be exchanged. When the best observed possible solutions are exchanged, the 

q-individuals of each subpopulation will move toward another local optimum. During this 

movement, the q-individuals have a chance to meet new local optima and it increases the chance 

of possible solutions in finding global optimum. 

 

The algorithm of the proposed algorithm is briefly shown in figure 1. The propose algorithm is 

similar to except in steps 4 and 6. In this step the diversity preserving operator is performed on all 

the q-individuals. 

 

In step 4 the best possible solution in each subpopulation is found and the best possible solution 

throughout the search is stored in Bl. All the q-individuals in each subpopulation search around 

Bl. The distributed nature of the proposed algorithm prevents the whole population from trapping 

in local optima. Although there is a chance for each of the subpopulation trapping in local optima, 

the statistical nature of QEA guarantees the subpopulations searching distinct local optima.  

 

After trapping in local optima, the cycling operator is applied on the subpopulations. Here 

convergence estimation is used to determine if the subpopulation is trapped in a local optimum. 

The q-individual t
iq  converges if it satisfies the below constraint [23]: 

 

γα >−∑
=

m

k

t
ki

m
1

2
, ||21

1
                                                                         (18) 

Where, m is the size of q-individuals. This constraint is satisfied only when the average distance 

between the q-bits of the q-individual 
t
iq  and the converged states ( [ ] [ ]TT

10=βα  

or [ ] [ ]TT
01=βα ) is less than γ. 

In step 6, when the subpopulations are converged, the best observed possible solutions are 

exchanged among the subpopulation in a cyclic manner: 

1- 1BBS =  

2- For l=1 to S-1 

3- 1+= ii BB  

 Where 1B  is the best observed possible solution of the th−1  subpopulation and S  is the number 

of subpopulations. 
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5. DISTRIBUTED QEA FOR FRACTAL IMAGE COMPRESSION 
 

The proposed algorithm for each range block, searches among all the domain pool to find the best 

domain block and the best transformation. The coding method for the q-individuals in the 

proposed method is as figure 2. 
 

 

 

In the proposed approach each q-individual, has three parts: xP  shows the horizontal position of 

domain block, yP  shows the vertical position of the domain block and tP  shows the 

transformation. The transformations are the 8 ordinary transformations: rotate 0°, 90°, 180°, 270°, 

flip vertically, horizontally, flip relative to 45°, and relative to 135°. Each part of each solution is 

a real number and is converted to an integer number before evaluation process. 

 

 
Figure 1. The algorithm of the propose algorithm. 

xP  yP  tP  

 

Figure 2. The coding of the addresses for domain blocks. xP  is the 

horizontal position of domain block, yP  is the vertical position of 

domain block and tP  is the transformation. 
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6. EXPERIMENTAL RESULTS 
 

This section experiments the proposed algorithm and compares the proposed algorithm with the 

performance of GA in fractal image compression. The proposed algorithm is examined on images 

Lena, Pepper and Baboon with the size of 256256 ×  and gray scale. The size of range blocks is 

considered as 8×8 and the size of domain blocks is considered as 1616 × . In order to compare the 

quality of results, the PSNR test is performed: 

( ) ( )( )
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                                  (19) 

Where nm×  is the size of image. 

 

The crossover rate in GA is 0.8 and the probability of mutation is 0.003 for each allele. the 

parameters of QEA is set to Table I. The size of subpopulations is set to 5 for all the experiments. 

The convergence criteria, γ is considered as 0.98. Table II shows the experimental results on the 

proposed algorithm and GA. The number of iterations for GA, QEA and the proposed algorithm 

for all the experiments is 200. According to table II the proposed algorithm improves the 

performance of fractal image compression for all the experimental results. 
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TABLE II. Experimental results on Lena, Pepper and Baboon 

Picture Method 
Population 

Size 

MSE 

computations 
PSNR 

Lena 

Full Search - 59,474,944 28.85 

QEA 

30 6,144,000 28.49 

25 5,120,000 28.28 

20 4,096,000 27.95 

15 3,072,000 27.43 

PROPOSED 

ALGORITHM 

30 6,144,000 28.61 

25 5,120,000 28.29 

20 4,096,000 28.11 

15 3,072,000 27.49 

GA 

30 6,144,000 28.11 

25 5,120,000 28.04 

20 4,096,000 27.55 

15 3,072,000 27.27 

Pepper 

Full Search - 59,474,944 29.85 

QEA 

30 6,144,000 29.55 

25 5,120,000 29.09 

20 4,096,000 28.87 

15 3,072,000 28.12 

PROPOSED 

ALGORITHM 

30 6,144,000 29.57 

25 5,120,000 29.19 

20 4,096,000 28.83 

15 3,072,000 28.54 

GA 

30 6,144,000 29.14 

25 5,120,000 28.92 

20 4,096,000 28.64 

15 3,072,000 28.11 

Baboon 

Full Search - 59,474,944 20.04 

QEA 

30 6,144,000 19.28 

25 5,120,000 19.18 

20 4,096,000 18.95 

15 3,072,000 18.62 

PROPOSED 

ALGORITHM 

30 6,144,000 19.59 

25 5,120,000 19.33 

20 4,096,000 19.10 

15 3,072,000 18.61 

GA 

30 6,144,000 19.17 

25 5,120,000 19.02 

20 4,096,000 18.65 

15 3,072,000 18.41 
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                    (a)                                           (b)                                            (c) 

 

 

   
                    (d)                                           (e)                                            (f) 
 Figure 3. (a) Original image Lena of size 256256 × ,(b) initial image for decoder, (c) full search 

method, (d) proposed method, (e) GA method, (e) QEA method 

7. CONCLUSION 

Quantum Evolutionary Algorithms are novel algorithm proposed for combinatorial optimization 

problems like knapsack problem. Since fractal image compression is in the class of NP-Hard 

problems, QEA is highly suitable for this problem but is not properly applied to fractal image 

compression yet. This paper proposes a Distributed QEA with a cycling Operator for QEA in 

fractal image compression. In evolutionary algorithms during the search process the diversity in 

the population is decreased, and the algorithm is trapped in the local optima. This is true for QEA 

which uses a probabilistic representation for the individuals. Here we propose a new method to 

help the algorithm escaping from the local optima. In the proposed algorithm the population is 

divided into some subpopulations and a cycling operator exchanges the best observed possible 

solutions among the subpopulations. The experimental results on Lena, Pepper, and Baboon 

picture show an improvement on fractal image compression. 
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