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ABSTRACT

This paper focuses on the stability and convergence analysis of a neuro-identification scheme for uncertain
nonlinear systems. Based on linearly parameterized neural networks and the previous knowledge of upper
bounds for the approximation error and disturbances, a robust modification of the descent gradient
algorithm is proposed to make the overall identification process stable, and, in addition, the on-line
residual prediction error asymptotically null, despite the presence of approximation error and
disturbances. A simulation study to show the application and comparative performance of the proposed
algorithm is presented.
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1. INTRODUCTION

System neuro-identification is important not only to predict the behavior of the system, but also
for providing an appealing system parameterization, which can later be used in the synthesis of
control algorithms, since mathematical characterization is often a prerequisite to observer and
controller design, see for instance [1-10] and the references therein.

Neural identification models usually employed are the dynamic ones, being their weights mainly
adjusted using gradient and backpropagation algorithms or their robust modifications [3-10].
Most used robust modifications in neuro-identification are the  , switching- , 1 , parameter
projection, and dead zone [3-10] which avoid the parameter drift. Nevertheless, these
modifications, at present, can not ensure that the prediction error converges asymptotically to zero
in the presence of approximation error and bounded disturbances.

For instance in [3], the identification of a general class of uncertain continuous-time dynamical
systems was proposed, and a  -modification adaptive law for the weights of recurrent high-order
neural networks (RHONNs) was chosen to ensure that the state error converges to the
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neighborhood of the origin, which can be arbitrarily reduced by setting a sufficiently large
number of high-order connections in the RHONN model.

In [4], dynamic NNs with a gradient descent algorithm for weights adjustment were used to
identify a general class of uncertain nonlinear systems. Under the crucial assumption that the
unknown system can be exactly modeled by a NN model, that is, the disturbance and
approximation errors are identically null, it was shown that the state error converges
asymptotically to zero, whereas the weight errors remain bounded or, in case that the hidden-layer
activation function signal is persistently exciting, the weight errors converge to zero.

Similarly, also others relevant works, such as [5-10], showed that the dead zone, modified
− rule, and 1 -modification and others robust modifications can be used in weight adjustment

laws to make the entire identification process stable in the presence of approximation error and
disturbances.

Although the assumption of free disturbance may be interesting from a theoretical point of view,
from a practical perspective it is a restrictive assumption since the presence of approximation
errors are, in general, unavoidable, since the structure of the unknown system and the neural
model are unrelated. It is well-known that adaptive laws designed for the disturbance or modeling
error free case may suffer from parameter drift [11]. In fact, this lack of robustness in adaptive
systems in the presence of unmodeled dynamics or bounded disturbances was reported in the
early 1980s. Several robust modifications to counteract this [11] have been proposed since then.

Hence, in this paper we propose a robust modification for the weight adaptive law in neuro-
identification problems which ensures, in contrast to previous works, that the residual prediction
error converges to zero in the presence of approximation error and disturbances, provided that
some conditions on the design parameters are satisfied. The adaptive law consists of a leakage
modification of a standard gradient descent algorithm. However, in contrast to commonly leakage
modifications [3-10] which aim at stability in the presence of approximation errors and
disturbances, we introduce the leakage term here for, in addition to stability, ensuring that the
residual prediction error converges to zero. More precisely, it is show by using usual Lyapunov
arguments and an adaptive bounding technique [12] that the residual prediction error converges
asymptotically to zero, whereas the others error signals remain bounded.

Throughout the paper ( )⋅tr denotes the trace operator, ( )⋅min denotes the minimum eigenvalue

operator, ⋅ denotes the 2-norm and
F

⋅ denotes the Frobenius norm.

2. LINEARLY PARAMETERIZED NEURAL NETWORKS

Linearly parameterized neural networks (LPNNs) can be expressed mathematically as

( ) ( ) WWnn =, (1)

where Ln
W

×ℜ∈ ,  Lℜ∈ ,  LL ℜℜ : is the so-called basis function vector, which can be
considered as a nonlinear vector function whose arguments are preprocessed by a scalar function

( )⋅ , and  LLn ,, are integers strictly positive. Commonly used scalar functions ( )⋅ include

sigmoid, tanh, gaussian, Hardy’s, inverse Hardy’s multiquadratic, etc [3,13]. However, here we

are only interested in the class of LPNNs for which ( )⋅ is bounded, since in this case we have,
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( ) 0 ≤ (2)

being 0 a strictly positive constant.

The class of LPNNs considered in this work includes HONN [3], RBF networks [13], wavelet
networks [14], and also others linearly parameterized approximators as Takagi-Sugeno fuzzy
systems [15]. Universal approximation results in [3,13,14,15] indicate that:

Property 1: Given a constant 00 > and a continuous function nf ℜΩ: , where Lℜ⊂Ω is a

compact set, there exists a weight matrix ∗= WW such that the output of the neural network
architecture (where L may depend on 0 and f ) satisfies

( ) ( ) 0sup  ≤− ∗
Ω∈ Wf (3)

where ⋅ denotes the absolute value if the argument is a scalar. If the argument is a vector

function in nℜ then ⋅ denotes any norm in nℜ .

3. PROBLEM FORMULATION

Consider the following nonlinear differential equation

( )tvuxFx ,,,= , ( ) 00 xx = (4)

where Xx∈ is the n-dimensional state vector, Uu ∈ is a m-dimensional admissible input vector,
qVv ℜ⊂∈ is a vector of time varying uncertain variables and [ ) nVUXF ℜ∞××× ,0: is a

continuous map. In order to have a well-posed problem, we assume that VUX ,, are compact

sets and F is locally Lipschitzian with respect to x in [ )∞××× ,0VUX , such that (4) has a
unique solution.

We assume that the following can be established

Assumption 1: On a region [ )∞××× ,0VUX

( ) 0,,, htvuxh ≤ (5)

where

( ) ( ) ( )uxftvuxFtvuxh ,,,,,,, −= (6)

f is an unknown map, h are internal or external disturbances, and 0h , such that 000 ≥> hh , is a
known constant.

Hence, except for the Assumption 1, we say that ( )tvuxF ,,, is an unknown map and our aim is to
design a NNs-based identifier for (4) to ensure the asymptotical state error convergence, that is,
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the state error converges asymptotically to zero, which will be accomplished despite the presence
of approximation error and disturbances.

4. IDENTIFICATION MODEL AND STATE ESTIMATE ERROR EQUATION

We start by presenting the identification model and the definition of the relevant errors associated
with the problem.

Let f be the best known approximation of f, nnB ×ℜ∈ a scaling matrix defined as ( )ibdiagB = ,

0≠ib , gBg 1−= , and ( ) ( ) ( )uxfuxfuxg ,,, −= . Then, by adding and subtracting ( )uxf , , (4) can
be rewritten as

( ) ( ) ( )tvuxhuxgBuxfx ,,,,, ++= (7)

Remark 1: It should be noted that if the designer has no previous knowledge of f, then f is
simply assumed as being the zero vector.

From (3), by using LPNNs, the nonlinear mapping ( )uxg , can be replaced by ( )uxW ,∗ plus an

approximation error term ( )ux, . More exactly, (7) becomes

( ) ( ) ( ) ( )tvuxhuxBuxBWuxfx ,,,,,, +++= ∗  (8)

where nxLW ℜ∈∗ is an “optimal” or ideal matrix, which can be defined as

( ) ( )












−=
∈
∈Γ∈

∗ uxWuxgW

Uu
XxW

,ˆ,supminarg:
,ˆ

 (9)

with { }
W

WW ˆ
ˆˆ ≤=Γ ,

Ŵ
 is a strictly positive constant, Ŵ is an estimate of ∗W , and ( )ux,

is an approximation error term, corresponding to ∗W , which can be defined as

( ) ( ) ( )uxWuxgux ,,:,  ∗−= (10)

The approximation, reconstruction, or modeling error  is a quantity that arises due to the
incapacity of LPNNs to match the unknown map ( )uxg , . Since X, U are compact sets and from
(2), the following can be established

Assumption 2: On a region UX × , the approximation error is upper bounded by

( ) 0,  ≤ux (11)

where 0 , such that 000 ≥>  , is an known constant.



International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

39

Remark 2: Assumption 1 is usual in identification or robust control literature. Assumption 2 is
quite natural since g is continuous and their arguments evolve on compact sets.  The previous
knowledge of upper bounds for approximation error and disturbances is common in the robust on-
line parameter estimation literature. For instance, the dead zone algorithm uses a previous
knowledge of bounds for the approximation errors, as can be seen in [5,6], or disturbances, as
reported in [11].

Remark 3: Note that any 00  > , 00 hh > , and 00  > also satisfy (2), (5), and (11). Hence, to

avoid confusion, we define 0 , 0h , and 0 to be the smallest constants such that (2), (5), and
(11) are satisfied.

Remark 4: It should be noted that ∗W and ( )ux, might be nonunique. However, ( )ux, is

unique from (9).

Remark 5: It should be noted that ∗W was defined as being the value of Ŵ that minimizes the

∞L - norm difference between ( )uxg , and ( )uxW ,ˆ . Hence, the scaling matrix B in (7) is

introduced to manipulate the magnitude of ( )uxg , , and therefore of
F

W ∗ , since any increasing

of ib implies that the corresponding ( )uxg i , decreases and, eventually, from (9), that
F

W ∗

decreases too. The matrix B provides an additional degree of freedom for shaping the transient
performance.

Remark 6: Notice that the proposed neuro-identification scheme is a black-box methodology,
hence the external disturbances and approximation error are related. Based on the system input
and state measurements, the uncertain system (including the disturbances) is parameterized by a
neural network model plus an approximation error term. However, the parameterization (8) is
motivated by the fact that neural networks are not adequate for approximating external
disturbances, since the basis function depends on the input and states, whereas the disturbances
depend on the time and external variables. The aim for presenting the uncertain system in the
form (8), where the disturbance h is explicitly considered, is also to highlight that the proposed
scheme is in addition valid in the presence of unexpected changes in the systems dynamics that
can emerge, for instance, due to environment change, aging of equipment or faults.
The structure (8) suggests an identification model of the form

( ) ( ) ( )xxLuxWBuxfx −−+= ˆ,ˆ,ˆ  (12)

where x̂ is the estimated state, nnL ×ℜ∈ is a positive definite feedback gain matrix introduced to
attenuate the effect of the nonzero uncertainties and the initial condition 0x . It will be
demonstrated that the identification model (12) used in conjunction with a convenient adjustment

law for Ŵ , to be proposed in the next section, ensures the asymptotic convergence of the state
error to zero, even in the presence of the approximation error and disturbances.

Remark 7: It should be noted that in our formulation, the LPNN is only required to approximate

( ) ( )[ ]uxfuxfB ,,1 −− (whose magnitude is often small) instead of the entire function

( )[ ]uxfB ,1− . Hence, standard identification methods (to obtain some previous f ) can be used
together with the proposed algorithm to improve performance.
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By defining the state estimation error as xxx −= ˆ:~ , from (8) and (12), we obtain the state
estimation error equation

( ) ( ) ( )tvuxhuxBuxWBxLx ,,,,,
~~~ −−+−=  (13)

where ∗−= WWW ˆ:
~

.

5. ADAPTIVE LAWS AND STABILITY ANALYSIS

Once the identification model and the relevant error equations associated with the problem of
estimation were presented, the following step is the design of adaptive laws for the weights to
achieve desired stability and convergence properties. Typically, in the literature [3-10], this is
performed based on Lyapunov-like analysis via an enlargement process, where the error equation
previously determined is used. Therefore, suitable weight adaptive laws are chosen to make V , a
time derivative of a Lyapunov function candidate V , negative semi-definite outside a ball whose
radius is proportional to the worst-case of approximation error. However, this procedure ensures
only practical stability. In this section we remove the aforementioned drawback by using dynamic
leakage gain to make the Lyapunov derivative negative semi-definite in all error space. This
choice is motivated by the fact that dynamic leakage gains can be considered as bounding
functions and then can be used to dominate positive terms in V and hence improve the
performance. Dynamic leakage gains have been used previously in [16].

Before presenting the main theorem, we state a fact, remark and lemma, which will be used in the
stability analysis.

Fact 1: Let Ln
WWWW

×∗ ℜ∈~
,ˆ,, 0 and nnC ×ℜ∈ be a diagonal matrix such that CCC T = , where

( )icdiagC = , 0>ic . Then, with the definition of ∗−= WWW ˆ~
, the following equalities are true:

( )[ ] ( ) ( ) 2

0

2

0

2

0
ˆ~ˆ~

2
FFF

T WWCWWCWCWWCWtr −−−+=− ∗

[ ] 2

0
2

0

2

0
ˆˆˆ2

FFF

T WWWWWWtr −−+= (14)

Remark 8: The first equality in (14) leads to the following inequality:

( )[ ] 2

0max

2

0min

2

min0
ˆ~ˆ~

2
Fi

F
iFi

T WWcWWcWcWWCWtr −−−+≥− ∗ (15)

where ( )ii cc maxmax = and ( )ii cc minmin = .

Lemma 5.1: Let a scalar bounding function be given by

( ) ( ) 



 −


 +−−= ∗∗∗   ,ˆ2ˆˆ,ˆ2~ˆ 1

2
0

2

21 lWWlx
FF

 (16)

where
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( ) ∗
∗

+
=




ˆ
2

,ˆ 0ll (17)

and 0,,,, 210 >∗ l . Then, subject to the condition

( ) ∗≥  0ˆ (18)

where
01

2
0201

4

4

l

Wl
F





+

= , the bounding function is lower bounded, for all 0≥t , by

( ) ∗≥  tˆ (19)

Proof: Consider the Lyapunov-like function

2ˆˆ 1 
−=V (20)

By taking the derivative of (20) along (16) we obtain





 −


 +−−= ∗ lWWlxV

FF
1

2
0

2

21 2ˆˆ2~ˆ (21)

Furthermore, based on (16) and (18) it follows that ( ) 0ˆ >t for all 0≥t . Then, with the
definition (17), the Lyapunov derivative (21) can be lower bounded as

[ ]∗−−≥  ˆ~ˆ2 1 xlV (22)

Hence, if ∗≤ ̂ we have 0≥V , which implies that the bounding function is directed towards

the outside or boundary of the region { }∗≤  ˆˆ . Consequently, based on (18), it follows

that ∗≥ ̂ for all 0≥t .

We now state and prove the main theorem of the paper.

Theorem 5.1: Consider the class of general nonlinear systems described by (4), which satisfies
Assumptions 1-2. Let the weight law be given by

( ) ( )[ ] ( ){ }uxxBKxWCIWCW T
W ,~~ˆˆ2ˆ

0
1

2  +−−−−= −∗
(23)

where ̂ is given by (16), 0>W , I is an identity matrix, PPK T += , P is the unique positive
definite solution of the Lyapunov equation

QPLPLT =+ (24)

where 0>L and 0>Q . Then, subject to the condition (18), and if
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01

42

l

KB
F




 =∗ (25)

min2 ic< (26)

00 Ω∈W (27)

[ ]210 ,∈l (28)

Where

( ){ }0000 ≤=Ω ∗ WWtrW T ,
2

0
1

max
1

2
F

i WW
c −= ∗


 ,

F

Fi WW
Wc

0
1

02max
2 4

−= ∗




 ,

0
1

04 hB
F

−+=  , ( )Qmin3  = (29)

the error signals ~,
~

,~ Wx are uniformly bounded and ( ) 0~lim =∞→ txt .

Proof: Consider the Lyapunov function candidate

( ) 2~~2
~~~~ 11  

−− ++= WWtrxPxV W
TT (30)

where ∗−=  ˆ~ .

By evaluating (30) along the trajectories of (13), (16) and (23), and using the representation

( )  WKBxxBKWtr TTT ~~~~ = , we obtain

( ) ( )
( )[ ] ( )

xlxWWxl

WWtrxWWCWtrx

hBKxxPLPLxV

FF

TT

TTT

~~2~~ˆ~ˆ~2

~~~2ˆ~~~2

~~~

1
2

0

2

21

020







∗+


 ++−

−−−

+−+−=

(31)

By using Fact 1, the representation
222 ˆ~ˆ~2 ∗−+=  , and (24), the Lyapunov derivative can

be written as

( )
( ) ( ) ( )

xlxWWxl

WWtrxWWCWWCWCx

hBKBxxQxV

F

T

FFF

TT

~~2~~ˆ~ˆ~

~~2ˆ~~~

~~~

1

2

02

222
1

02

2

0

2

0

2

1







∗∗

∗∗

−

+−+


 −+−

+



 −−−+−

+−−=

(32)

Furthermore, by using Remark 8, condition (27), Lemma 5.1, and notation (29), the Lyapunov
derivative (32) can be upper bounded as
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+−+


 −+−




 −−−+−


 +−⋅≤

∗∗

∗







~2~ˆˆ~

ˆ~~

~~

1

2

02

222
1

2

0max

2

0min

2

min

43

lWWl

WWcWWcWc

KBxxV

F

Fi
F

iFi

F


(33)

Further using (26) and rearranging terms, we obtain


+


 −−

−++


 −−−⋅≤

∗∗

∗







~2ˆ

~

~~~~~

1

22
1

2

0max4

2
1

2

min3

ll

WWcKB

lWcxxV

FiF

Fi


(34)

By employ the definition of ∗ , see (25), recalling that ∗−=  ˆ~ , and using Lemma 5.1, (34)
reduces to


++−

−−


 −++


 −−−⋅≤

∗∗

∗∗∗







~2ˆ

ˆ2

~~~~~

1

2

1
2

1

2

0max

2

0max01

2
1

2

min3

lll

WWcWWcl

lWcxxV

FiFi

Fi


(35)

which, by using (17), implies


+

+
−

−−


 −++


 −−⋅≤

∗
∗

∗∗∗









ˆ4ˆ
ˆ
2

ˆ2

~~~~

2
01

201

2

0max

2

0max01

2

min3

l
l

WWcWWcl

WcxxV

FiFi

Fi


(36)

Thus by using Lemma 5.1 and rearranging terms in (36), we finally obtain

( )









 


 −+−

+
−





 


 −+−

+
−













−−−





−−⋅≤

∗∗
∗

∗
∗

∗∗














1

2

0max00
1

1

2

0max00

2
1

2
02

2
01

2

0max

2

min3

2ˆ
ˆ

ˆ

2
ˆ

ˆ

4

~~~~

Fi

Fi

F
Fi

Fi

WWcll

WWcll

W

l
WWc

WcxxV

(37)
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It addition, we note from (28) that

( )
2

0max2

2
01

2

0

4

Fi
F Wc

l
WW




≥−∗ , 1

2

0max
0

2


Fi WWc
l −≥ ∗ (38)

By substituting (38) into (37), and using Lemma 5.1, we arrive at

2
3

~xV −≤ (39)

Hence, the error signals ~,
~

,~ Wx are uniformly bounded. Further, since V is bounded from below
and non increasing with time, we have

( ) ( ) ∞<−≤ ∞
∞→ ∫

30

2 0~lim


 VV
dx

t

t (40)

where ( ) ∞<= ∞∞→ VtVtlim . Notice that with the bounds on  ,~,
~

,~ Wx and h,
2~x is uniformly

continuous. Thus from (13), it follows that x~ is bounded. Hence by Barbalat´s lemma [11], we
conclude that ( ) 0~lim =∞→ txt .

Remark 9: Conditions (18), (24), and (26) are trivial since them are defined by the user according
to a desired performance. Condition (25) implies the previous knowledge of upper bounds for the
approximation error and disturbances. Conditions (27) and (28) require at least that the sign of

some entry of ∗W and bounds for the ideal weights are known. The previous knowledge of
bounds for the modeling error and ideal weights is not peculiar to the proposed scheme. Most
robust modifications in the literature, as for example, switching- , parameter projection, and
dead-zone require a priori information on the plant or modeling error for ensuring stability, as
reported in [3,5,6,11]. Despite the aforementioned drawback, the relevance of the proposed
algorithm consist in the introduction of a new robust modification and the establishment of
conditions, on the design parameters, for which the residual prediction error converges to zero,
even in the presence of approximation error and disturbances.

Remark 10: There is at least one way of selecting the design parameters to satisfy the interval

condition (28): by selecting a conservative
F

W0 (large enough) and, in the sequence, by

adjusting
F

WW 0−∗ (small enough), what can be achieved by appropriate selection of the

scaling matrix B.

6. SIMULATIONS

To illustrate the application of the proposed scheme, we consider an engine model operating
under idle [17,18] described by

( )aoaip mmkP  −= (41)

( )lin TTkN −= (42)
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where

( ) )(1 2
21 Pgkkm mmai  ++= ,

2
6543 NPkNPkPkNkm mmmmao ++−−= ,





>−
≤

=
6625.50325.1010197.0

6625.501
)( 2 PPP

P
Pg ,

 635.00112.032502422.39 2 +−+−= aoi mT

( )( ) ( ) 22 000102.060/2000675.00216.060/2 NN  −++ ,

( ) dl TNT += 217.263/ , ( ) ( )Ntmm aoao 120/−=  , 40.42=pk , 26.54=nk , 907.01 =mk ,

0998.02 =mk , 0005968.03 =mk , 1336.04 =mk , 0005341.05 =mk , 000001757.06 =mk ,

P is the manifold pressure (kPa),

N is engine speed (rpm),

 is the spark advance (degrees),

 is the throttle angle (degrees),

aim is the mass flow rate into the manifold,

aom is the mass flow rate out of the manifold and into the cylinder,

dT are disturbances which act on the engine as unmeasured accessory torque  (N-m)

iT is the internally developed torque (N.m),

lT is the load torque made up of accessory torque dT and shaft torque (N.m),

( )Pg is a manifold pressure influence function,

aom is the air mass in the cylinder, and

 is a dynamic transport time delay,

The meaning of the main variables of the model is shown in Fig. 1 ([18]).

Figure 1- The main engine subsystem.
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Since the engine operation is highly nonlinear system, because it presents time delays that vary
inversely with engine speed and is time-varying due to aging of components and environment
changes such as engine warm-up after a cold star [17], and their dynamical equations entail a
great deal of uncertainty [18], the neural parameterization of the engine is relevant and useful.
The neural model is valid for any operation points, in contrast to others models derived from
steady-state map data and other empirical information.

We define [ ]TNPx = , [ ]Tu = , and select, as in [19],  as being a square wave with
amplitude 20o, frequency 0.25 rad/s,  as a sine wave with amplitude 30o, frequency 0.5 rad/s,

dT as a sawtooth wave with amplitude 10 N.m, frequency 0.5 rad/s, 0= , and ( ) [ ]Tx 500100 = .
It should be noted that system (41)-(42) is only used for generation of state trajectory, which is
used in the implementation of the algorithm.

To identify the uncertain system (41)-(42) the proposed identification model (12) and the adaptive
laws (16) and (23) were implemented. The initial eigenvalues of the gain matrix L were freely
chosen since the system dynamic is not accessible. The basis function vector was chosen to be
very simple, to evaluate the performance of the proposed method in the presence of several
approximation errors. Hence, a conservative bound 4 was selected. In the sequence, by a trial
and error procedure, the others design parameters were adjusted for providing an adequate
transient and residual state error performance. The design parameter were chosen as

53.35354 = , ( ) [ ]Tx 550ˆ −= , ( ) 00ˆ =W , ( ) ∗=  0ˆ , 20=∗ , 5.00 =l , 0=f ,

IL 20= , IB = , IK 1.000= , 







=

0010

0001
0W , ( ) ( ) ( ) ( )[ ]Tususxsxs 2121= ,

( ) ( )[ ]⋅−+=⋅ 5.0exp110s , 1== W , IC 100= , 11 = , and 752 = . (43)

Notice that the design parameters in (43) satisfy the conditions (18) and (26). It is supposed that

condition (25) is satisfied when 20=∗ . Another arbitrary large upper bound can be obtained by
reducing the entries of K and, correspondingly, for shaping the transient performance, by
increasing the entries of L. Hence, condition (25) is mild, since 4 can be arbitrarily enlarged by
reducing K, as already mentioned.

Based on (43), condition (28) becomes

05.002.0 0 ≤−≤ ∗
F

WW (44)

It should be noted that others large upper and small lower bounds for (44) can be obtained by
adjusting the design parameters.

The performance in the estimation of the manifold pressure and engine speed are shown in
Figures 2-3. We can see that the simulations confirm the theoretical results, that is, the algorithm
is stable and the residual state error is small. Figure 4 shows the behavior of the weights, where a
logarithmic scale is used for the time axis.



International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

47

0 5 10 15 20 25 30 35 40
-10

0

10

20

30

40

50

60

70

80

90
manifold press (kPa)

time (s)

estimated
actual

Figure 2- Performance in the estimation of P.
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Figure 3- Performance in the estimation of N.
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In Figures 5-6, we compare the performance and robustness, in the presence of uncertainties, of
the proposed algorithm and that in [19]. These figures illustrate several points: 1) the proposed
algorithm exhibit robustness in the presence of uncertainties, 2) concerning the residual
estimation state error, the proposed algorithm presents good performance, and 3) it is not
necessary to use arbitrary high gains to obtain arbitrary small residual estimation state errors, as
can be seen from the design parameters (43).

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
- 8 0

- 6 0

- 4 0

- 2 0

0

2 0

4 0
m a n i fo l d  p r e s s  e r r o r  ( k P a )

t i m e  ( s )

a l g o r i t h m  i n  [ 1 9 ]
p r o p o s e d  a l g o r i t h m

Figure 5- Performance comparison in the estimation of P.
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Figure 6- Performance comparison in the estimation of N.

7. CONCLUSIONS

In this work, by using Lyapunov-like analysis, we have proved that a robust modification based
on a dynamic leakage gain can also ensure residual state error convergence to zero in neuro-
identification algorithms, even in the presence of approximation error and disturbances. The
proposed algorithm is based on a dynamic 1-modification and relies on the previous knowledge
of upper bounds for the ideal weight, approximation error and disturbances to ensure asymptotic
convergence. Although these bounds are usually unknown in practice, the proposed scheme has
stability properties similar to others robust modification since it is based on a 1-modification.
However, in contrast to previous works, the proposed algorithm has better convergence
properties, since it can also guarantee asymptotic convergence even in the presence of
approximation error and disturbances, if some conditions on the design parameters are verified.
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