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ABSTRACT

Classification Rules (CRs) are often discovered in the form of ‘If-Then’ Production Rules (PRs). PRs, being
high level symbolic rules, are comprehensible and easy to implement. However, they are not capable of
dealing with cognitive uncertainties like vagueness and ambiguity imperative to real word decision making
situations. Fuzzy Classification Rules (FCRs) based on fuzzy logic provide a framework for a flexible
human like reasoning involving linguistic variables. Moreover, a classification system consisting of simple
‘If-Then’ rules is not competent in handling exceptional circumstances.  In this paper, we propose a
Genetic Algorithm approach to discover Fuzzy Censored Classification Rules (FCCRs).  A FCCR is a
Fuzzy Classification Rule (FCRs) augmented with censors. Here, censors are exceptional conditions in
which the behaviour of a rule gets modified. The proposed algorithm works in two phases. In the first
phase, the Genetic Algorithm discovers Fuzzy Classification Rules. Subsequently, these Fuzzy
Classification Rules are mutated to produce FCCRs in the second phase. The appropriate encoding
scheme, fitness function and genetic operators are designed for the discovery of FCCRs. The proposed
approach for discovering FCCRs is then illustrated on a synthetic dataset.

KEYWORDS

Data Mining, Fuzzy Classification Rules (FCRs), Fuzzy Censored Classification Rules (FCCRs), Genetic
Algorithm.

1. INTRODUCTION

The term Knowledge Discovery in Databases (KDD) signifies the complete process for
discovering useful and actionable  knowledge from huge amount of data existing in databases for
decision making [1]. Data mining, a particular step within KDD process, automates the process of
mining knowledge from large databases. Classification is a well known task of data mining where
the aim is to build a model to predict the class of unseen data instance based on predictor
attributes. The automated learning of classification model is accountable for discovering a set of
Classification Rules (CRs). Such rules can subsequently be used both to infer properties of the
class labels and to classify previously unclassified events from the data space. The generally
agreed upon criteria among data mining community for evaluating a classifier are accuracy,
comprehensibility and interestingness. Additionally, there has been a renewed focus on learning
those classification models that can handle approximate interpretations, reason in an environment
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of uncertainty, accommodate exceptions and exhibit variable precision logic with respect to
certainty and specificity. Many of these criteria depend on the underlying knowledge/rule
structure employed while learning classification models. The Classification Rules (CRs) are most
often represented as standard Production Rules (PRs) in the form of ‘If <Premise> Then
<Decision>’. PRs, being high level symbolic rules, are considered comprehensible, easy to
implement and several algorithms for reasoning using PRs already exist. However, there are also
a number of limitations of PRs:

• Discovery of CRs in the form of PRs severely fragments the knowledge thereby resulting in a
large number of rules.

• Although humans and computers both often have to reason using insufficient and incomplete
or tentative premises, yet a rule base in the form of PRs is unable to handle the imperative
uncertainties and vagueness that exists in decision making situations.

• An inference system is said to demonstrate variable precision logic if it is able to respond to
our queries with a varying degree of certainty and specificity subject to time and other
resource constraints [2]. The term ‘certainty’ refers to the degree of belief/confidence in a
statement while ‘specificity’ refers to the degree of detail of a description. PRs as underlying
rule structure for discovering classification rules do not exhibit variable precision logic.

• PRs simply ignore the exceptions as a noise and, hence, are unable to cope with
exceptional/unusual conditions.

To deal with some of these aforesaid shortcomings of PRs, advanced underlying rule structure
have been recommended in rule mining literature. Censored Production Rules (CPRs), proposed
by Michalski and Winston [2], in the form of ‘If <Premise> Then <Decision> Unless
<Censors/Exceptions>’ as the underlying rule structure for the discovery of classification models
not only accommodates exceptions but also exhibits variable precision logic with respect to
certainty.  A rule that has worked well in past might cease to work in some rare circumstances. In
such situations, it is advisable to augment the rules with the exceptional conditions.  Moreover,
discovering a rule along with its exceptions is considered interesting. A genetic algorithm for
discovery of CPRs from databases has been suggested in [3][4].

The limitation of a simple Classification Rule based systems (composed with conventional PRs
and/or CPRs) is that they entail sharp cut-offs for conditional clauses. Such classification rule
bases are unable to deal with uncertainty and vagueness vital to real world decision making.
Fuzzy logic is a precise logic to deal with imprecision and approximate reasoning. More
specifically, fuzzy logic has the capability to reason in an environment of imprecision,
uncertainty, incompleteness of information, conflicting information and partial truth [5]. Fuzzy
Classification Rules (FCRs) are produced by integrating fuzzy logic into CRs. FCRs are also in
the form of  ‘If-Then’ rules, with the difference that their antecedents and consequents are
composed of fuzzy constructs as an alternative to classical ones. As FCRs are considered more
comprehensible and appropriate to a range of decision making situations, there have been several
attempts to discover FCRs from real valued datasets [6][7][8][9][10].

The application of Evolutionary Algorithms in the domain of rule mining has shown promising
results. As EAs cope better with large search spaces and problem of attribute interactions, over
recent times, there has been an increasing interest in evolutionary approaches for discovering
fuzzy rule bases from databases pertaining to various domains which mainly includes control and
data mining applications. Genetic Algorithms (GAs), a class of Evolutionary Algorithms (EAs),
are based on Darwinian natural selection and Mendelian genetics. In genetic algorithms, each
point in the search space is represented by a string of alphabets called chromosome. Each
chromosome is one of the possible solutions of the problem under consideration. The algorithm
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performs optimization by manipulating a finite population of chromosomes. In each generation, a
GA creates a population of new chromosomes by applying genetic operators like reproduction,
crossover and mutation, correlating in parallel to the processes in natural reproduction [11].
This paper proposes a Genetic Algorithm approach to discover Fuzzy Censored Classification
Rules (FCCRs) from datasets. The rule structure is basically an integration of fuzzy logic with
CPRs. A classifier discovered in the form of FCCR shall provide an excellent mechanism for
exception handling. In addition, it shall have flexibility of fuzzy logic with the further advantage
of reasoning with variable certainty. The rest of the paper is organized as follows. Section 2 gives
the related work for necessary contextualization of our work. The proposed system for discovery
of FCCRs is described in Section 3. An illustration for discovery of FCCRs from an example
dataset is given in Section 4. Concluding remarks and the future direction are presented in Section
5.

2. BACKGROUND AND RELATED WORK

2.1. Fuzzy Classification Rules (FCRs)

A classification problem involves learning a set of CRs from a training dataset and validating
these rules on a test dataset. These CRs are extracted in the form of PRs (‘If <Premise> Then
<Decision>’ or PD). A CR is represented as:

mnn ) Then Dvop(x...)vop(x)vopIf (x jjj 2211 ∧∧∧
Assuming a dataset with n real valued attributes and q categorical class labels, vij represents the jth

value of ith attribute, Dm is one of the class labels where m ∈1 .. q. The values of j may vary
depending on the number of values in the domain of attribute xi and op may take values =, <, <=,
> or >=. An example of such a rule is-

BrilliantstatusStudentThenIQandMarksIf =>≥ _)80()75(

This rule states that a student with marks more than or equal to 75 and an IQ greater than 80 is
considered brilliant. However, according to this rule a student with marks 74.9 and IQ=79.9 is not
classified as brilliant. Such sharp cut-offs are unreasonable and not suitable when modelling
human intuitive reasoning. As fuzzy logic has the ability to use linguistic interpretations in a
mathematical framework, it provides a natural way for constructing fuzzy rule based
classification systems that are closer to the human decision making process [5]. A FCR takes the
following form:

mnn ) Then D is A(x...) is A(x)is AIf (x kkk ∧∧∧ 2211

In the above rule, the antecedent or the consequent, or both, may be fuzzy rather than crisp. A1k,

A2k … Ank are antecedent fuzzy sets on unit interval [0, 1] where k varies over number of fuzzy
partitions or fuzzy linguistic labels (like small, medium and large) chosen for the attribute xi. The
value of k may be same for all the attributes or different for different attributes. Each Aik may
assume one of the linguistic labels. The earlier example of the CR takes the following form as
FCR which is a better and natural representation of the way human being comprehend and reason:

BrilliantstatusStudentThenHighIQandExcellentMarksIf === _)()(

Most of the approaches proposed in the literature for automated discovery of Fuzzy Classification
Rules use predefined fuzzy membership functions or fuzzy partitions and there are a number of
contributions where antecedent and consequent parts of simple PRs become fuzzy constructs
[12][13][14]. In this context, a pioneering work has  also been carried out by Thrift for learning of
fuzzy rule bases [15] and Ishibuchi (1999) has proposed a hybrid genetics-based machine learning
algorithm for designing a linguistic classification system that consists of small number of fuzzy
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‘If-Then’ rules [16]. Several other prominent and classical proposals by Ishibuchi et al. for
discovering FCRs can be found in [6][17][18]. FCRs have demonstrated their ability in a wide
spectrum of applications in the domain of control problems [19], modelling [20] and data mining
[21][22].

2.2. Censored Production Rules

A Censored Production Rule (CPR), proposed by Michalski and Winston, is in fact a PR
augmented with censor/exception conditions [2]. A CPR can be written in the form:

2144332211 :: )op v(x)op v Unless (x) Then Dop v(x...)op v(x)op vIf (x jmnn jjjj ∨∧∧∧

)op v(x...)op v(x)op v(xP jjj nn2211 ∧∧∧=
) v(x) v(x jj 4433 opopC ∨=

In this rule P is the premise part and is as usual a conjunction of attribute-value pairs. C may
contain a single exception/censor or it may be a disjunction of exceptions/censors. It is important
to note here that the attributes present in the premise and censor part are mutually exclusive. The
‘If P Then D’ part of a CPR holds frequently and the censor part C holds rarely. Therefore, the
‘Unless’ operator acts like an XOR operator between decision and censor but it has an expositive
aspect which is not commutative. To capture this asymmetry precisely, two parameters associated
with this kind of rule structure are defined below:

(1)Pr1 |P|

D||P

PΩ
PDΩ

ob.[D|P]γ ∧===

(2)
||

||
]|.[Pr2 P

CP

P

PCPCob
∧=

Ω
Ω

==

In the above equations, ΩPD is subset of events (objects in the database) for which both P and D
hold, ΩPC is subset of events for which both P and C hold, and ΩP is the subset of the events for
which only P holds. The main constraints on CPR are that ΩPD ∩ ΩPC =ϕ , ΩPD ∪ ΩPC =ΩP, 1 +
2 <= 1 and 1 >> 2. We are free to ignore a censor/exception condition if the resources are scarce
to establish its presence or simply no information is available as to whether the censor holds true
or not. As time permits, the censor condition C is evaluated establishing the conclusion D with
higher certainty if C does not hold, or simply changing the polarity of D to ~D if C holds. Let us
take the following example of a CPR about birds:

If (X = Bird) Then (Decision = Fly [γ1= 0.9]) Unless (X=kiwi [γ2=0.05]) ∨ (X=sick bird
[γ2=0.006])

Now, consider a query “Does X fly?” The quickest possible answer is that if X= Bird then it flies
with a certainty level of 90 percent. Given more time, exceptions can be evaluated.  If this bird is
a kiwi or it is sick then the decision is negated to ~Fly. If none of the exceptions hold then we can
say with more certainty that this particular bird flies. The certainty of the decision increases by
the factor γ2 in case an exception turns out to be false. For instance if X is not a kiwi then X flies
with a certainty factor of 0.95. Further, if the bird is not sick, it flies with certainty factor of 0.956.
That is how a CPR supports variable precision logic with respect to certainty of a decision and
hence approximate reasoning under resource constraint. It is obvious that If (X=kiwi) Then ~Fly
Unless (X=Bird) is not a CPR as it violates the constraints on γ1 and γ2. A CPR exercises control
over certainty and the specificity of the decision remains constant. A classification algorithm
based on evolutionary approach for discovering comprehensible rules with exceptions in the form
of CPRs, is presented in [3]. Further, a parallel GA approach (island model) for automated
discovery of CPRs has also been proposed in [4].
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3. THE PROPOSED SYSTEM FOR DISCOVERY OF FCCRs

This section describes the genetic algorithm approach for automated discovery of FCCRs. A
FCCR is an integration of FCR and CPR, and employs fuzzy constructs in its premise as well as
censor part.  A short notation is used in this paper to represent FCCR - CDP ⊕→ ; where
⊕ stands for the ‘Unless’ operator. A FCCR is specified as below:

)is A(x)is A(x D) is A(x...) is A(x)is A (x kkkkk mnn 44332211 ∨⊕→∧∧∧

An example FCCR involving fuzzy terms is shown below.

)____(
)(

)()__(

poorstatushealthEmphighstatusdefaulterEmp
ApprovedCreditThen

highincomehighemployedyearsmediumemployedyears

=∨=⊕
=→

=∧=∨=

The algorithm to discover FCCRs works in two phases. In the first phase real valued attributes are
normalized and fuzzified. Then a GA is employed to extract FCRs in the form DP → . In this
work, the antecedent of the discovered rules is in CNF form allowing disjunction between the
values of same attributes. These FCRs discovered in the first phase are taken as initial population
for the second phase. FCCRs are discovered by adding clauses as censors in ‘Unless’ part and
mutating the class Dm to some other class. The detail steps of the two phases are given below.

Phase 1: Discovery of FCRs: A Genetic Algorithm Approach

1. Normalization: The dataset is normalized so that all the data values fall between 0 and 1.
An attribute is normalized with the formula given below.

(3)
)(min)(max

)(min
'

AA

AA
A

−
−=

2. Fuzzification: The dataset is fuzzified in the pre-processing phase. The fuzzification is done
by assigning a membership degree to the numeric values of an attribute into three fuzzy
linguistic values (small, medium, and large). The membership degree of linguistic values can
be decided either subjectively or by a membership function defined on the range of numeric
values of the attribute. Although there are several fuzzy membership functions, we have
used the triangular fuzzy membership function for the sake of simplicity and it is shown in
Fig1.

Figure 1. Triangular Membership Function
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The formula used to fuzzify values of an attribute into three fuzzy partitions is as follows:

(4)}0),
||

1max{(
kb

aX i
ki

k
−−=
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The value k denotes the number of linguistic variables. An illustration to determine the
membership degree of the value 0.12 into three fuzzy linguistic variables (small, medium,
large) is given below:

76.0}0),
5.0

|012.0|
1max{(3 =−−=small

24.0}0),
5.0

|5.012.0|
1max{(3 =−−=medium

0}0),
5.0
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1max{(arg

3 =−−=el

3. Initializing Population: This step generates an initial population of ‘If-Then’ rules to be
processed by GA. We have adopted the Michigan approach where each chromosome in
the population represents a single rule. A chromosome (an individual) is divided into two
parts: If part consists of the premise and a consequent part represents the decision class.
We have used a pure binary string for encoding a chromosome. A block of three bits is
used for each attribute.  The three bits in a block correspond to three consecutive
linguistic fuzzy variables- ‘small’, ‘medium’ and ‘large’. Within a block, a ‘1’ bit
indicates the presence of the linguistic term whereas a ‘0’ bit marks the absence of any
value. A block with all three bits set to 1 or 0 is treated as a ‘do not care’ state which
indicates absence of an attribute from the rule.  The consequent part contains the number
of bits equal to the number of class labels i.e. for a three class classification problem the
consequent part will have three bits. In the consequent part only one of the bits can be set
to 1 so that the chromosome is assigned to only one of the classes. The encoding scheme
and its mapping to rules are shown in Figure 2. The encoding scheme maps the
chromosomes to rules in CNF form where there is a conjunction between different
attributes and a disjunction within the different values of the same attribute.

Figure2. Encoding Scheme

4. Evaluating Fitness: Several criteria are used to quantify the quality, or fitness, of a rule.
Some of these criteria are highly qualitative and in some cases subjective. However in the
context of generic search we must formulate a single numerical quantity that encapsulates

Genotype (Chromosomes) Phenotype (Rules)

A1 A2 A3 A4 A5 Class
100 000 111 000 001 100 (A1=Small) ∧ (A5=Large) → D1

A1 A2 A3 A4 A5 Class
100 111 000 011 111 010 (A1=Small) ∧ (A4=Medium ∨ A4=Large)

D2
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the desirable features. In the proposed approach the product of confidence and coverage
of a fuzzy rule is considered as a measure of fitness.  To compute the confidence and
coverage we need a mechanism to measure the degree of match between a fuzzy rule and
an object from the dataset. The process of computing the degree of match between a
fuzzy rule r and an object of database u is based on MAX_MIN operators of Mamdani
model and same as used in [20]. The match method is described as below.
The degree of match for an individual attribute Ai between a rule r and an object u is
given by

(5)minmax
1





 =

= otherwise) (u)μT),s (T( (
j

 #,)is (Aif
(r, u)imA k

i

k
i

In the above equation, s(Ai) represents the binary string for ith attribute, ‘#’ stands for ‘don’t care’
state, )( k

iTs symbolizes the kth bit of the ith attribute and )( uk
iT

 gives the membership degree

of corresponding term in kth fuzzy set. The degree of match between the premise P of a rule r and
an object u of the dataset is given by

(6))),((),( urimA
i

MinurmP =

As the conclusion part of the rule is not in a fuzzified form in our implementation, the conclusion
of the rule r and the class of an object u can be directly matched. To make things clearer an
illustration of the above matching process for the premise part follows here. Let us assume the
premise part of a rule has five attributes and a fuzzified instance of an object u as shown below in
Figure. 3.

Figure 3: Matching Process for a rule r and an object u

In case of above illustration we can conclude that the premise part of the rule r and the instance u
matches with a degree of 0.62. This degree of match is compared to significance level .  If the
value of mP (r, u) is greater than the cut value, and the conclusion part of the rule r (c) and the
class label of the instance u (c) matches, we can count this as one of the true positive cases. Now
that we have a mechanism for matching a rule r and an instance u belonging to the dataset, we can
define confidence factor and coverage of a rule at significance level  as follows [23].

(7)
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A1 A2 A3 A4 A5
Encoded
FCR(r)

1 1 0 0 0 0 1 0 1 0 1 0 0 1 1

object (u) 0.82 0.12 0 0.9 0.1 0 0.62 0.38 0 0 0.84 0.16 0.72 0.68 0

mAi(r,u)

mA1(r,u) =
max[min(1, 0.82),

min(1, 0.12),
min(0, 0)] = 0.82

mA2(r,u) = 1.0
(do not care

state)

mA3(r,u) =
max[min(1,0.62),

min(0,0.38),
min(1,0)]=0.62

mA4(r,u )=
max[min(0,0),
min(1,0.84),

min(0,0.16)]=0.84

mA5(r,u ) =
max[min(0,0.72),

min(1,0.28),
min(1,0)]=0.68

mP(r,u) = min (0.82, 1.0, 0.62, 0.84, 0.68) =  0.62
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Here f is the  cut function with a value greater than 0.5. In our experiments we have taken

the value of  as 0.6.

5. Applying Genetic Operators: Genetic operators are used to create new individuals from
existing ones. There are two primary genetic operators: crossover and mutation. The
operators employed in this GA are described as under:

Crossover:

Crossover operator exchanges a random number of complete blocks from two parents to
make two offspring. The random creation of crossover points takes place only at the start of
the blocks. For example, two parents generating two offspring through crossover at the
beginning of fourth blocks are shown below.

Parent1: 100: 000:110:000:111:100
Parent2: 001:110:111:011:000:001
Child1:  100:000:110: 011:000:001
Child2:  001:110:111: 000:111:100

These chromosomes can be interpreted as following rules
Parent1: (A1=small) && (A3=small || A3= medium) → D1

Parent 2: (A1=large) && (A2=small ||A2=medium) && (A4=medium ||A4=large) → D3

Child1; (A1=small) && (A3=small || A3=medium) && (A4=medium ||A4=large) → D3

Child2; (A1=large) && (A2=small || A2=medium) && → D1

The crossover operator is capable of inserting and dropping the whole attributes as well as the
terms within an attribute block.

Mutation:
Mutation operator introduces a gene value into an individual that was not even present in the
population thereby increasing the genetic diversity of the population. The mutation operator
generates a new chromosome by mutating one of the blocks in the chromosome. Each block
has equal probability of being mutated. For example, mutation on third block may generate
one of the seven new chromosomes as given below.

Parent:     (001:110: 010: 011: 000: 001)
Mutated:  (001:110: 000: 011: 000: 001) or

(001:110: 001: 011: 000: 001) or
(001:110: 011: 011: 000: 001) or
(001:110: 100: 011: 000: 001) or
(001:110: 101: 011: 000: 001) or
(001:110: 110: 011: 000: 001) or
(001:110: 111: 011: 000: 001)

The detailed algorithm for evolving FCRs is given in Figure 4.
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Phase 2: Discovering FCCRs from FCRs

In this phase the population of the FCRs discovered in the first phase is mutated over a number of
generations to produce FCCRs. As the attributes occurring in the premise and censor part are
mutually exclusive, the mutation operator in this phase is restricted only to the blocks of attributes
which do not figure in the premise part of the pre-discovered FCRs. The detailed algorithm for
the second phase is given in Figure 5.

Figure 4. Algorithm evolving FCRs in the first phase

Figure 5. Algorithm for discovering FCCRs in the Second Phase

Algorithm Evolving_FCRs
Input: T: Training Dataset
Nreplace // Crowding factor
Nworst //Crowding sub-population size
Output: A set of FCRs
Begin
1. Normalize the dataset
2. Fuzzify values of each attribute into small, medium and large fuzzy terms.
3. Generate an initial population of FCRs by randomly generating bits over the chromosome

length
4. While stopping criterion not met do

4.1. Evaluate the fitness of each rule in the population based on training dataset T
4.2. Apply proportionate selection
4.3. Apply crossover and mutation to create new rules
4.4. Replace most similar Nreplace ruless among a randomly selected  Nworst rules from the

current population
End While

Stop.

Algorithm Discovering FCCRs
Input: Pre-discovered FCRs
Output: A set of FCCRs

Begin
1. Initializing FCCRs Population: FCCRs=[]
2. For each rule Ri ε FCRs (evolved in first phase) with confidence < 1 repeat the following steps

2.1. Create a set TP of true positive examples covered by the rule Ri (If P Then D) or P → D.
2.2. Create a set FP of false positive examples covered by If P Then ~ D or P → . ~D.
2.3. Repeat steps 2.3.1 to 2.3.9 over a number of generations

2.3.1. Insert new conditions through mutation in rule Ri keeping the conditions already present
in the rule fixed. Mutate the class D to ~D. This shall produce the rules in the form of
FCPRs: Ri’= P ∧Cj → ~D. Here, C represents censor condition.

2.3.2. Compute γ1, γ2 and confidence of Ri’ from the data subset containing TP+ FP.
2.3.3. TP’=| P ∧Cj ∧~ D|

2.3.4. FP’=| P ∧Cj ∧D|

2.3.5. γ1= TP/TP+FP // for the rule Ri (P → D)
2.3.6. γ2=TP’/TP+FP // for P ∧Cj → ~D

2.3.7. Conf(Ri’) = TP’/TP’+FP’
2.3.8. If  (γ1>> γ2 && conf(Ri’) ==1 && ((Ai =Vij) ∈C) ∉ TP) // none of the censor

// conditions can
//appear anywhere in the
//true positive examples
//covered by the rule if P
//Then/D

2.3.9. FCCRs[]=FCCRs[] ∪ Ri

End Repeat
Stop.
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4. EXPERIMENTATION AND AN ILLUSTRATION

The proposed approach is demonstrated through a synthetic dataset. The dataset represents a three
class classification problem involving five continuous attributes. The dataset containing 34
instances is shown in Table A-1 in the Appendix- A. It is to be noted that dataset is already in
normalized form. Each attribute of Table 1 is fuzzified according to three linguistic labels – small,
medium and large as described in the previous section. This fuzzified dataset is given in Table1.
Although the sum of membership degrees of all the linguistic terms for an attribute is equal to 1
in this table below, it is pertinent to mention here that membership degrees of linguistic terms are
not probabilities and we can very well use type of membership functions and this sum needs not
at all to be 1.

Table 1. Synthetic Dataset in Fuzzified from

We have implemented the proposed system for discovery of FCCRs in GAlib247 on Ubuntu
platform version 11.6. GAlib is a C++ library of genetic algorithm objects (developed at
Massachusetts Institute of Technology, USA http://web.mit.edu/) which includes tools for
applying genetic algorithms using a number of encoding schemes and genetic operators. We have
used a crowding GA instead of a simple genetic algorithm because our target is to get a solution
consisting of a set of best rules and not the single best rule.  A crowding GA maintains the
various species in the GA population where the offspring replace the most similar individuals

Sr.
No Attribute1 Attribute2 Attribute3 Attribute4 Attribute5 Class

S M L S M L S M L S M L S M L D1 D2 D3
1 0.76 0.24 0 0.78 0.22 0 0.9 0.1 0 0.98 0.02 0 0 0.9 0.1 1 0 0
2 0.64 0.36 0 0.52 0.48 0 0.92 0.08 0 0.4 0.6 0 0 0.86 0.14 1 0 0
3 0.74 0.26 0 0.64 0.36 0 0.84 0.16 0 0.6 0.4 0 0 1 0 1 0 0
4 0.68 0.32 0 0.98 0.02 0 0.9 0.1 0 0.9 0.1 0 0 0.82 0.18 1 0 0
5 0.64 0.36 0 0.9 0.1 0 0.7 0.3 0 0.92 0.08 0 0 0.92 0.08 1 0 0
6 0.66 0.34 0 0.84 0.16 0 0 0.82 0.18 0 0.88 0.12 0 0.2 0.8 1 0 0
7 0.62 0.38 0 0.8 0.2 0 0 0.8 0.2 0 0.8 0.2 0 0.4 0.6 1 0 0
8 0.9 0.1 0 0.96 0.04 0 0 0.88 0.12 0 0.78 0.22 0 0.24 0.76 1 0 0
9 0.88 0.12 0 0.86 0.14 0 0 0.92 0.08 0 0.92 0.08 0 0.26 0.74 1 0 0

10 0.82 0.18 0 0.84 0.16 0 0 0.96 0.04 0 0.9 0.1 0 0.22 0.78 1 0 0
11 0 0.92 0.08 0.76 0.24 0 0.9 0.1 0 0.8 0.2 0 0 0.92 0.08 0 1 0
12 0 1 0 0.74 0.26 0 0.9 0.1 0 0.98 0.02 0 0 0.88 0.12 0 1 0
13 0 0.86 0.14 0.72 0.28 0 0.84 0.16 0 0.96 0.04 0 0.02 0.98 0 0 1 0
14 0 0.98 0.02 0.7 0.3 0 0.88 0.12 0 0.94 0.06 0 0.04 0.96 0 0 1 0
15 0 0.96 0.04 0 0.96 0.04 0.9 0.1 0 0.92 0.08 0 0 0.82 0.18 0 1 0
16 0 0.88 0.12 0 0.8 0.2 0 0.96 0.04 0 0.8 0.2 0 0.16 0.84 0 1 0
17 0.04 0.96 0 0 0.84 0.16 0 0.92 0.08 0 0.78 0.22 0 0 1 0 1 0
18 0.02 0.98 0 0 0.42 0.58 0 0.96 0.04 0 0.8 0.2 0 0.22 0.78 0 1 0
19 0.08 0.92 0 0 0.4 0.6 0 0.8 0.2 0 0.96 0.04 0 0.26 0.74 0 1 0
20 0 0.94 0.06 0 0.36 0.64 0 0.78 0.22 0 0.84 0.16 0 0.24 0.76 0 1 0
21 0 0.3 0.7 0.6 0.4 0 0.98 0.02 0 0.8 0.2 0 0 0.92 0.08 0 0 1
22 0 0.28 0.72 0.92 0.08 0 0.9 0.1 0 0.94 0.06 0 0 0.9 0.1 0 0 1
23 0 0.2 0.8 0.8 0.2 0 0.64 0.36 0 0.84 0.16 0 0 0.82 0.18 0 0 1
24 0 0 1 0 0.92 0.08 0.72 0.28 0 0.72 0.28 0 0 0.8 0.2 0 0 1
25 0 0.32 0.68 0 0.88 0.12 0.82 0.18 0 0.64 0.36 0 0 0.86 0.14 0 0 1
26 0 0.2 0.8 0 0.84 0.16 0 0.86 0.14 0 0.9 0.1 0 0.02 0.98 0 0 1
27 0 0.32 0.68 0 0.96 0.04 0 0.92 0.08 0 0.92 0.08 0 0.04 0.96 0 0 1
28 0 0.16 0.84 0 0.44 0.56 0 0.96 0.04 0 0.88 0.12 0 0.22 0.78 0 0 1
29 0 0.12 0.88 0 0.32 0.68 0 0.8 0.2 0 0.86 0.14 0 0.3 0.7 0 0 1
30 0 0.26 0.74 0 0.2 0.8 0 0.9 0.1 0 0.8 0.2 0 0.04 0.96 0 0 1
31 0.8 0.2 0 0 0.88 0.12 0 0.2 0.8 0 0.84 0.16 0.92 0.08 0 0 0 1
32 0.72 0.28 0 0 0.26 0.74 0 0.3 0.7 0.82 0.18 0 0.88 0.12 0 0 0 1
33 0 0.84 0.16 0.76 0.24 0 0 0.2 0.8 0.76 0.24 0 0.7 0.3 0 0 0 1
34 0 0.92 0.08 0.78 0.22 0 0 0.26 0.74 0.74 0.26 0 0.68 0.32 0 0 0 1

http://web.mit.edu/
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among a number of worst individuals selected from an overlapping population. A binary encoded
chromosome of length 18, single point crossover and flip mutation as described in previous
section is used. The parameters of the genetic algorithm were tuned in the few initial runs of the
genetic algorithm. The final results are obtained with a population size of 50, maximum number
of generation equals 300, crossover probability equals to 0.6, a mutation rate of 0.1, crowding
sub-population size of 4 and a crowding factor equals to 3. In the first phase our GA discovers
three FCRs as given in Table 2.

Table 2. FCRs discovered in first phase

In the table above, there are two rules that have confidence factors less than 1. These are the fuzzy
rules that can possibly have exceptions or censors.

Assuming 0.8 and 0.2 as the predefined thresholds for γ1 and γ2 respectively, let us consider the
first rule for the second phase. For this rule the set of true positive TP examples contains the first
10 objects of the Table 1. and the set of false positive FP contains only two cases (serial number
31 and 32). Therefore the value of γ1 evaluates to 10/12=0.8333. In the second phase, some bits of
the rule under consideration can undergo mutation. It is to be noticed that the bits that represent
the pre-discovered FCR are not allowed to change during mutation and kept fixed. A mutated
version of the FCR under consideration may be 100111001000000001 which maps to a rule R’=
(A1= Small) → D1 ⊕ A3= (Large) (D3). Let us check if this rule meets the criteria of a FCCR. The
value of TP’ for R’ is 2 and FP’=0; the value of γ2 for this FCCR computes to
TP’/TP+FP=2/12=0.167. The confidence factor of rule R’ is 1. Hence R’ is a perfect FCCR. This
FCCR is an interesting rule in the sense that it asserts that in most cases when A1 is small then the
decision is D1. However, if along with A1 being small, A3 takes the value large, which happens
very rarely, and then the class of this rule becomes D3. This rule gives us an opportunity to
change the decision in rare circumstances.

For the second phase mutation rate was kept at 0.2 and mutation was applied over 50 generations.
For the dataset used in this experimentation we discovered the FCCRs as shown in Table 3.There
is no censor to the third rule in Table 2. Hence it is included in the set of FCCRs with its Unless
part empty.

Table 3: FCCRs Discovered

Sr. No. FCCRs 1:2

1. (A1=Small) → D1 ⊕ (A3=Large ∨ A5 = small): D3 0.883:0.167

2. If (A1=Medium) → D2 ⊕ (A3=Large ∨ A5=Small): D3 0.883:0.167

3. If (A1=Large) → D3 ⊕ () 1:0

Sr. No. FCRs γ1 (confidence) Coverage Fitness

1 (A1= Small) → D1 0.8333 1 0.8333

2 (A1= Medium) → D2 0.8333 1 0.833

3 (A1=Large) → D3 1 0.7143 0.7143
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5. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we presented a genetic algorithm approach for discovery of Fuzzy Censored
Classification Rules from datasets. The discovery of FCCRs provides the advantages of Fuzzy
Classification Rules (FCRs) (like dealing with uncertain, imprecise and vague conditions inherent
in real world situations), as well as it offers an excellent exception handling mechanism.
Discovery of a classifier in the form of FCCRs makes it more interesting as the classifier is now
capable of giving right predictions even in exceptional cases. Learning of FCCRs may also
enhance the capabilities of automated and expert systems. The proposed discovery may also
prove to be very useful for fuzzy control applications to predict the behavior of a system in rare
circumstances. Another benefit of a classification model consisting of FCCRs is that it can make
predictions with variable certainty. The major limitation of the proposed system is that fuzzifying
the attributes in pre-processing phase employing the same membership function is a very simple
idea. This fuzzification technique may not suit the distribution of data values across all the
predicting attributes with respect to the class attribute. In fact, use of a single fuzzy membership
function with same number of linguistic labels for all the predicting attributes may lead to the
discovery of a classifier with unacceptable predictive accuracy. As the future work, the proposed
system needs to be applied and tested on some real world datasets in the fields of medical
diagnosis and fuzzy controllers. For real world datasets, the fuzzy membership functions to be
employed and number of fuzzy partitions to be induced shall definitely require separate tuning for
different attributes.
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Appendix –A

Table A-1. Synthetic dataset in normalized from
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Att1 Att2 Att3 Att4 Att5 -Class

0.12 0.11 0.05 0.01 0.55 1
0.18 0.24 0.04 0.3 0.57 1
0.13 0.18 0.08 0.2 0.5 1
0.16 0.01 0.05 0.05 0.59 1
0.18 0.05 0.15 0.04 0.54 1
0.17 0.08 0.59 0.56 0.9 1
0.19 0.1 0.60 0.6 0.8 1
0.05 0.02 0.56 0.61 0.88 1
0.06 0.07 0.54 0.54 0.87 1
0.09 0.08 0.52 0.55 0.89 1
0.54 0.12 0.05 0.1 0.54 2
0.50 0.13 0.05 0.01 0.56 2
0.57 0.14 0.08 0.02 0.49 2
0.51 0.15 0.06 0.03 0.48 2
0.52 0.52 0.05 0.04 0.59 2
0.56 0.6 0.52 0.6 0.92 2
0.48 0.58 0.54 0.61 1.0 2
0.49 0.79 0.52 0.6 0.89 2
0.46 0.8 0.6 0.52 0.87 2
0.53 0.82 0.61 0.58 0.88 2
0.85 0.2 0.01 0.1 0.54 3
0.86 0.04 0.05 0.03 0.55 3
0.9 0.1 0.18 0.08 0.59 3
1.0 0.54 0.14 0.14 0.6 3

0.84 0.56 0.09 0.18 0.57 3
0.90 0.58 0.57 0.55 0.99 3
0.84 0.52 0.54 0.54 0.98 3
0.92 0.78 0.52 0.56 0.89 3
0.94 0.84 0.6 0.57 0.85 3
0.87 0.9 0.55 0.6 0.98 3
0.1 0.56 0.85 0.58 0.04 3

0.14 0.87 0.95 0.09 0.06 3
0.58 0.12 0.9 0.12 0.15 3
0.54 0.11 0.87 0.07 0.16 3


